
M A N N I N G

Michael McCandless
Erik Hatcher
Otis Gospodnetic

FOREWORD BY DOUG CUTTING

Covers Apache Lucene 3.0

SECOND EDITION
IN ACTION

,

www.it-ebooks.info

http://www.it-ebooks.info/

Praise for the First Edition

This is definitely the book to have if you’re planning on using Lucene in your application, or are
interested in what Lucene can do for you.

—JavaLobby

Search powers the information age. This book is a gateway to this invaluable resource...It suc-
ceeds admirably in elucidating the application programming interface (API), with many code
examples and cogent explanations, opening the door to a fine tool.

—Computing Reviews

A must-read for anyone who wants to learn about Lucene or is even considering embedding
search into their applications or just wants to learn about information retrieval in general.
Highly recommended!

—TheServerSide.com

Well thought-out...thoroughly edited...stands out clearly from the crowd....I enjoyed reading this
book. If you have any text-searching needs, this book will be more than sufficient equipment to
guide you to successful completion. Even, if you are just looking to download a pre-written search
engine, then this book will provide a good background to the nature of information retrieval in
general and text indexing and searching specifically.

—Slashdot.org

The book is more like a crystal ball than ink on pape--I run into solutions to my most pressing
problems as I read through it.

—Arman Anwar, Arman@Web

Provides a detailed blueprint for using and customizing Lucene...a thorough introduction to the
inner workings of what’s arguably the most popular open source search engine...loaded with code
examples and emphasizes a hands-on approach to learning.

—SearchEngineWatch.com

Hatcher and Gospodnetić bring their experience as two of Lucene’s core committers to author this
excellently written book. This book helps any developer not familiar with Lucene or development
of a search engine to get up to speed within minutes on the project and domain....I would recom-
mend this book to anyone who is new to Lucene, anyone who needs powerful indexing and
searching capabilities in their application, or anyone who needs a great reference for Lucene.

—Fort Worth Java Users Group
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

More Praise for the First Edition

Outstanding...comprehensive and up-to-date ...grab this book and learn how to leverage
Lucene’s potential.

—Val’s blog

...the code examples are useful and reusable.
—Scott Ganyo, Lucene Java Committer

...packed with examples and advice on how to effectively use this incredibly powerful tool.
—Brian Goetz, Quiotix Corporation

...it unlocked for me the amazing power of Lucene.
—Reece Wilton, Walt Disney Internet Group

...code samples as JUnit test cases are incredibly helpful.
—Norman Richards, co-author XDoclet in Action

A quick and easy guide to making Lucene work.
—Books-On-Line

A comprehensive guide...The authors of this book are experts in this field...they have unleashed
the power of Lucene ...the best guide to Lucene available so far.

—JavaReference.com
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Lucene in Action
Second Edition

MICHAEL MCCANDLESS
ERIK HATCHER

OTIS GOSPODNETIĆ

M A N N I N G
Greenwich
(74° w. long.)

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
180 Broad St.
Suite 1323
Stamford, CT 06901
Email: orders@manning.com

©2010 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine

Manning Publications Co. Development editor: Sebastian Stirling
180 Broad St. Copyeditor: Liz Welch
Suite 1323 Typesetter: Dottie Marsico
Stamford, CT 06901 Cover designer: Marija Tudor

ISBN 978-1-933988-17-7
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 15 14 13 12 11 10

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

brief contents

PART 1 CORE LUCENE ... 1
1 ■ Meet Lucene 3
2 ■ Building a search index 31
3 ■ Adding search to your application 74
4 ■ Lucene’s analysis process 110
5 ■ Advanced search techniques 152
6 ■ Extending search 204

PART 2 APPLIED LUCENE.. 233
7 ■ Extracting text with Tika 235
8 ■ Essential Lucene extensions 255
9 ■ Further Lucene extensions 288

10 ■ Using Lucene from other programming languages 325
11 ■ Lucene administration and performance tuning 345

PART 3 CASE STUDIES... 381
12 ■ Case study 1: Krugle 383
13 ■ Case study 2: SIREn 394
v

14 ■ Case study 3: LinkedIn 409

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

contents
foreword xvii
preface xix
preface to the first edition xx
acknowledgments xxiii
about this book xxvi
JUnit primer xxxiv
about the authors xxxvii

PART 1 CORE LUCENE..1

1 Meet Lucene 3
1.1 Dealing with information explosion 4
1.2 What is Lucene? 6

What Lucene can do 7 ■ History of Lucene 7

1.3 Lucene and the components of a search application 9
Components for indexing 11 ■ Components for searching 14
The rest of the search application 16 ■ Where Lucene fits into your
application 18

1.4 Lucene in action: a sample application 19
Creating an index 19 ■ Searching an index 23

1.5 Understanding the core indexing classes 25
IndexWriter 26 ■ Directory 26 ■ Analyzer 26
vii

Document 27 ■ Field 27

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSviii

1.6 Understanding the core searching classes 28
IndexSearcher 28 ■ Term 28 ■ Query 29 ■ TermQuery 29
TopDocs 29

1.7 Summary 29

2 Building a search index 31
2.1 How Lucene models content 32

Documents and fields 32 ■ Flexible schema 33
Denormalization 34

2.2 Understanding the indexing process 34
Extracting text and creating the document 34
Analysis 35 ■ Adding to the index 35

2.3 Basic index operations 36
Adding documents to an index 37 ■ Deleting documents from
an index 39 ■ Updating documents in the index 41

2.4 Field options 43
Field options for indexing 43 ■ Field options for storing fields 44
Field options for term vectors 44 ■ Reader, TokenStream, and
byte[] field values 45 ■ Field option combinations 46 ■ Field
options for sorting 46 ■ Multivalued fields 47

2.5 Boosting documents and fields 48
Boosting documents 48 ■ Boosting fields 49 ■ Norms 50

2.6 Indexing numbers, dates, and times 51
Indexing numbers 51 ■ Indexing dates and times 52

2.7 Field truncation 53
2.8 Near-real-time search 54
2.9 Optimizing an index 54

2.10 Other directory implementations 56
2.11 Concurrency, thread safety, and locking issues 58

Thread and multi-JVM safety 58 ■ Accessing an index over a
remote file system 59 ■ Index locking 61

2.12 Debugging indexing 63
2.13 Advanced indexing concepts 64

Deleting documents with IndexReader 65 ■ Reclaiming disk space
used by deleted documents 66 ■ Buffering and flushing 66
Index commits 67 ■ ACID transactions and index
consistency 69 ■ Merging 70
2.14 Summary 72

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS ix

3 Adding search to your application 74
3.1 Implementing a simple search feature 76

Searching for a specific term 76 ■ Parsing a user-entered query
expression: QueryParser 77

3.2 Using IndexSearcher 80
Creating an IndexSearcher 81 ■ Performing searches 82
Working with TopDocs 82 ■ Paging through results 84
Near-real-time search 84

3.3 Understanding Lucene scoring 86
How Lucene scores 86 ■ Using explain() to understand
hit scoring 88

3.4 Lucene’s diverse queries 90
Searching by term: TermQuery 90 ■ Searching within a term
range: TermRangeQuery 91 ■ Searching within a numeric range:
NumericRangeQuery 92 ■ Searching on a string:
PrefixQuery 93 ■ Combining queries: BooleanQuery 94
Searching by phrase: PhraseQuery 96 ■ Searching by wildcard:
WildcardQuery 99 ■ Searching for similar terms:
FuzzyQuery 100 ■ Matching all documents:
MatchAllDocsQuery 101

3.5 Parsing query expressions: QueryParser 101
Query.toString 102 ■ TermQuery 103 ■ Term range
searches 103 ■ Numeric and date range searches 104
Prefix and wildcard queries 104 ■ Boolean operators 105
Phrase queries 105 ■ Fuzzy queries 106
MatchAllDocsQuery 107 ■ Grouping 107 ■ Field
selection 107 ■ Setting the boost for a subquery 108
To QueryParse or not to QueryParse? 108

3.6 Summary 109

4 Lucene’s analysis process 110
4.1 Using analyzers 111

Indexing analysis 113 ■ QueryParser analysis 114
Parsing vs. analysis: when an analyzer isn’t appropriate 114

4.2 What’s inside an analyzer? 115
What’s in a token? 116 ■ TokenStream uncensored 117
Visualizing analyzers 120 ■ TokenFilter order can be
significant 125

4.3 Using the built-in analyzers 127
StopAnalyzer 127 ■ StandardAnalyzer 128 ■ Which core

analyzer should you use? 128

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSx

4.4 Sounds-like querying 129
4.5 Synonyms, aliases, and words that mean the same 131

Creating SynonymAnalyzer 132 ■ Visualizing token
positions 137

4.6 Stemming analysis 138
StopFilter leaves holes 138 ■ Combining stemming and
stop-word removal 139

4.7 Field variations 140
Analysis of multivalued fields 140 ■ Field-specific analysis 140
Searching on unanalyzed fields 141

4.8 Language analysis issues 144
Unicode and encodings 144 ■ Analyzing non-English
languages 145 ■ Character normalization 145 ■ Analyzing
Asian languages 146 ■ Zaijian 148

4.9 Nutch analysis 149
4.10 Summary 151

5 Advanced search techniques 152
5.1 Lucene’s field cache 153

Loading field values for all documents 154 ■ Per-segment
readers 155

5.2 Sorting search results 155
Sorting search results by field value 156 ■ Sorting by
relevance 158 ■ Sorting by index order 159 ■ Sorting by
a field 160 ■ Reversing sort order 161 ■ Sorting by multiple
fields 161 ■ Selecting a sorting field type 163 ■ Using a
nondefault locale for sorting 163

5.3 Using MultiPhraseQuery 163
5.4 Querying on multiple fields at once 166
5.5 Span queries 168

Building block of spanning, SpanTermQuery 170 ■ Finding
spans at the beginning of a field 172 ■ Spans near one
another 173 ■ Excluding span overlap from matches 174
SpanOrQuery 175 ■ SpanQuery and QueryParser 177

5.6 Filtering a search 177
TermRangeFilter 178 ■ NumericRangeFilter 179
FieldCacheRangeFilter 179 ■ Filtering by specific terms 180
Using QueryWrapperFilter 180 ■ Using SpanQueryFilter 181
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xi

Security filters 181 ■ Using BooleanQuery for filtering 183
PrefixFilter 183 ■ Caching filter results 184 ■ Wrapping a
filter as a query 184 ■ Filtering a filter 184 ■ Beyond the built-
in filters 185

5.7 Custom scoring using function queries 185
Function query classes 185 ■ Boosting recently modified
documents using function queries 187

5.8 Searching across multiple Lucene indexes 189
Using MultiSearcher 189 ■ Multithreaded searching
using ParallelMultiSearcher 191

5.9 Leveraging term vectors 191
Books like this 192 ■ What category? 195
TermVectorMapper 198

5.10 Loading fields with FieldSelector 200
5.11 Stopping a slow search 201
5.12 Summary 202

6 Extending search 204
6.1 Using a custom sort method 205

Indexing documents for geographic sorting 205 ■ Implementing
custom geographic sort 206 ■ Accessing values used in custom
sorting 209

6.2 Developing a custom Collector 210
The Collector base class 211 ■ Custom collector:
BookLinkCollector 212 ■ AllDocCollector 213

6.3 Extending QueryParser 214
Customizing QueryParser’s behavior 214 ■ Prohibiting fuzzy and
wildcard queries 215 ■ Handling numeric field-range
queries 216 ■ Handling date ranges 218 ■ Allowing ordered
phrase queries 220

6.4 Custom filters 221
Implementing a custom filter 221 ■ Using our custom filter
during searching 223 ■ An alternative: FilteredQuery 224

6.5 Payloads 225
Producing payloads during analysis 226 ■ Using payloads
during searching 227 ■ Payloads and SpanQuery 230
Retrieving payloads via TermPositions 230

6.6 Summary 231
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxii

PART 2 APPLIED LUCENE... 233

7 Extracting text with Tika 235
7.1 What is Tika? 236
7.2 Tika’s logical design and API 238
7.3 Installing Tika 240
7.4 Tika’s built-in text extraction tool 240
7.5 Extracting text programmatically 242

Indexing a Lucene document 242 ■ The Tika utility class 245
Customizing parser selection 246

7.6 Tika’s limitations 246
7.7 Indexing custom XML 247

Parsing using SAX 248 ■ Parsing and indexing using
Apache Commons Digester 250

7.8 Alternatives 253
7.9 Summary 254

8 Essential Lucene extensions 255
8.1 Luke, the Lucene Index Toolbox 256

Overview: seeing the big picture 257 ■ Document browsing 257
Using QueryParser to search 260 ■ Files and plugins view 261

8.2 Analyzers, tokenizers, and TokenFilters 262
SnowballAnalyzer 264 ■ Ngram filters 265 ■ Shingle
filters 267 ■ Obtaining the contrib analyzers 267

8.3 Highlighting query terms 268
Highlighter components 268 ■ Standalone highlighter
example 271 ■ Highlighting with CSS 272 ■ Highlighting
search results 273

8.4 FastVectorHighlighter 275
8.5 Spell checking 277

Generating a suggestions list 278 ■ Selecting the best
suggestion 280 ■ Presenting the result to the user 281
Some ideas to improve spell checking 281

8.6 Fun and interesting Query extensions 283
MoreLikeThis 283 ■ FuzzyLikeThisQuery 284
BoostingQuery 284 ■ TermsFilter 284 ■ DuplicateFilter 285
RegexQuery 285
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xiii

8.7 Building contrib modules 286
Get the sources 286 ■ Ant in the contrib directory 286

8.8 Summary 287

9 Further Lucene extensions 288
9.1 Chaining filters 289
9.2 Storing an index in Berkeley DB 292
9.3 Synonyms from WordNet 294

Building the synonym index 295 ■ Tying WordNet synonyms
into an analyzer 297

9.4 Fast memory-based indices 298
9.5 XML QueryParser: Beyond “one box”

search interfaces 299
Using XmlQueryParser 300 ■ Extending the XML query
syntax 304

9.6 Surround query language 306
9.7 Spatial Lucene 308

Indexing spatial data 308 ■ Searching spatial data 312
Performance characteristics of Spatial Lucene 314

9.8 Searching multiple indexes remotely 316
9.9 Flexible QueryParser 320

9.10 Odds and ends 322
9.11 Summary 323

10 Using Lucene from other programming languages 325
10.1 Ports primer 326

Trade-offs 327 ■ Choosing the right port 328

10.2 CLucene (C++) 328
Motivation 329 ■ API and index compatibility 330
Supported platforms 332 ■ Current and future work 332

10.3 Lucene.Net (C# and other .NET languages) 332
API compatibility 334 ■ Index compatibility 335

10.4 KinoSearch and Lucy (Perl) 335
KinoSearch 336 ■ Lucy 338 ■ Other Perl options 338

10.5 Ferret (Ruby) 338
10.6 PHP 340
Zend Framework 340 ■ PHP Bridge 341

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxiv

10.7 PyLucene (Python) 341
API compatibility 342 ■ Other Python options 343

10.8 Solr (many programming languages) 343
10.9 Summary 344

11 Lucene administration and performance tuning 345
11.1 Performance tuning 346

Simple performance-tuning steps 347 ■ Testing approach 348
Tuning for index-to-search delay 349 ■ Tuning for indexing
throughput 350 ■ Tuning for search latency and
throughput 354

11.2 Threads and concurrency 356
Using threads for indexing 357 ■ Using threads for
searching 361

11.3 Managing resource consumption 364
Disk space 364 ■ File descriptors 367 ■ Memory 371

11.4 Hot backups of the index 374
Creating the backup 374 ■ Restoring the index 376

11.5 Common errors 376
Index corruption 377 ■ Repairing an index 378

11.6 Summary 378

PART 3 CASE STUDIES.. 381

12 Case study 1: Krugle
Krugle: Searching source code 383
12.1 Introducing Krugle 384
12.2 Appliance architecture 385
12.3 Search performance 386
12.4 Parsing source code 387
12.5 Substring searching 388
12.6 Query vs. search 391
12.7 Future improvements 391

FieldCache memory usage 392 ■ Combining indexes 392

12.8 Summary 392
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xv

13 Case study 2: SIREn
Searching semistructured documents with SIREn 394
13.1 Introducing SIREn 395
13.2 SIREn’s benefits 396

Searching across all fields 398 ■ A single efficient lexicon 398
Flexible fields 398 ■ Efficient handling of multivalued
fields 398

13.3 Indexing entities with SIREn 399
Data model 399 ■ Implementation issues 400 ■ Index
schema 400 ■ Data preparation before indexing 401

13.4 Searching entities with SIREn 402
Searching content 402 ■ Restricting search within a cell 403
Combining cells into tuples 404 ■ Querying an entity
description 404

13.5 Integrating SIREn in Solr 405
13.6 Benchmark 405
13.7 Summary 407

14 Case study 3: LinkedIn
Adding facets and real-time search with Bobo Browse and Zoie 409
14.1 Faceted search with Bobo Browse 410

Bobo Browse design 410 ■ Beyond simple faceting 415

14.2 Real-time search with Zoie 416
Zoie architecture 418 ■ Real-time vs. near-real-time 421
Documents and indexing requests 421 ■ Custom
IndexReaders 423 ■ Comparison with Lucene near-real-time
search 424 ■ Distributed search 425

14.3 Summary 427

appendix a Installing Lucene 428
appendix b Lucene index format 433
appendix c Lucene/contrib benchmark 443
appendix d Resources 465

index 469
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

foreword
Lucene started as a self-serving project. In late 1997, my job uncertain, I sought some-
thing of my own to market. Java was the hot new programming language, and I
needed an excuse to learn it. I already knew how to write search software, and thought
I might fill a niche by writing search software in Java. So I wrote Lucene.

 In 2000, I realized that I didn’t like to market stuff. I had no interest in negotiating
licenses and contracts, and I didn’t want to hire people and build a company. I liked
writing software, not selling it. So I tossed Lucene up on SourceForge, to see if open
source might let me keep doing what I liked.

 A few folks started using Lucene right away. In 2001, folks at Apache offered to
adopt Lucene. The number of daily messages on the Lucene mailing lists grew
steadily. Code contributions started to trickle in. Most were additions around the
edges of Lucene: I was still the only active developer who fully grokked its core. Still,
Lucene was on the road to becoming a real collaborative project.

 Now, in 2010, Lucene has a pool of active developers with deep understanding of
its core. I’m no longer involved in day-to-day development; substantial additions and
improvements are regularly made by this strong team.

 Through the years, Lucene has been translated into several other programming
languages, including C++, C#, Perl, and Python. In the original Java, and in these
other incarnations, Lucene is used much more widely than I ever would have
dreamed. It powers search in diverse applications like discussion groups at Fortune
100 companies, commercial bug trackers, email search supplied by Microsoft, and a
web search engine that scales to billions of pages. When, at industry events, I am intro-
duced to someone as the “Lucene guy,” more often than not folks tell me how they’ve
xvii

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

FOREWORDxviii

used Lucene in a project. I figure I’ve only heard about a small fraction of all Lucene
applications.

 Lucene is much more widely used than it ever would have been if I had tried to sell
it. Application developers seem to prefer open source. Instead of having to contact
technical support when they have a problem (and then wait for an answer, hoping
they were correctly understood), they can frequently just look at the source code to
diagnose their problems. If that’s not enough, the free support provided by peers on
the mailing lists is better than most commercial support. A functioning open-source
project like Lucene makes application developers more efficient and productive.

 Lucene, through open source, has become something much greater than I ever
imagined it would. I set it going, but it took the combined efforts of the Lucene com-
munity to make it thrive.

 So what’s next for Lucene? I can’t predict the future. What I do know is that even
after over 10 years in existence, Lucene is still going strong, and its user and develop-
ment communities are bigger and busier than ever, in part thanks to the first edition
of Lucene in Action making it easier for more people to get started with Lucene. With
every new release Lucene is getting better, more mature, more feature-rich, and faster.

 Since the first edition of Lucene in Action was published in 2004, Lucene internals
and its API have gone through radical changes that called for more than just minor
book updates. In this totally revised second edition, the authors bring you up to speed
on the latest improvements and new APIs in Lucene.

 Armed with the second edition of Lucene in Action, you too are now a member of
the Lucene community, and it’s up to you to take Lucene to new places. Bon voyage!

 DOUG CUTTING

 FOUNDER OF LUCENE,
NUTCH, AND HADOOP

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

preface
I first started with Lucene about a year after the first edition of Lucene in Action was
published. I already had experience building search engines, but didn’t know much
about Lucene in particular. So, I picked up a copy of Lucene in Action by Erik and Otis
and read it, cover to cover, and I was hooked!

 As I used Lucene, I found small improvements here and there, so I started contrib-
uting small patches, updating javadocs, discussing topics on Lucene’s mailing lists,
and so forth. I eventually became an active core committer and PMC member, com-
mitting many changes over the years.

 It has now been five-and-a-half years since the first edition of Lucene in Action was
published, which is practically an eternity in the fast-paced world of open source
development! Lucene has gone through two major releases, and now has all sorts of
new functionality such as numeric fields, the reusable analysis API, payloads, near-real-
time search, and transactional APIs for indexing and searching, and so on.

 When Manning first approached me, it was clear that a second edition was sorely
needed. Furthermore, as one of the active core committers largely responsible for
committing so many of these changes, I felt rather obligated to create the second edi-
tion. So I said yes, and then worked fiendishly to cover Lucene’s changes, and I’m
quite happy with the results. I hope this Second Edition of Lucene in Action will serve
you well as you create your search applications, and I look forward to seeing you on
the user and developer lists, asking your own interesting questions, and continuing to
drive Lucene's relentless growth!

 MICHAEL MCCANDLESS

xix

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

preface to the first edition
From Erik Hatcher
I’ve been intrigued with searching and indexing from the early days of the Internet. I
have fond memories (circa 1991) of managing an email list using majordomo, MUSH
(Mail User’s Shell), and a handful of Perl, awk, and shell scripts. I implemented a CGI
web interface to allow users to search the list archives and other users’ profiles using
grep tricks under the covers. Then along came Yahoo!, AltaVista, and Excite, all which
I visited regularly.

 After my first child, Jakob, was born, my digital photo archive began growing rap-
idly. I was intrigued with the idea of developing a system to manage the pictures so
that I could attach meta-data to each picture, such as keywords and date taken, and, of
course, locate the pictures easily in any dimension I chose. In the late 1990s, I proto-
typed a filesystem-based approach using Microsoft technologies, including Microsoft
Index Server, Active Server Pages, and a third COM component for image manipula-
tion. At the time, my professional life was consumed with these same technologies. I
was able to cobble together a compelling application in a couple of days of spare-time
hacking.

 My professional life shifted toward Java technologies, and my computing life con-
sisted of less and less Microsoft Windows. In an effort to reimplement my personal
photo archive and search engine in Java technologies in an operating system–agnostic
way, I came across Lucene. Lucene’s ease of use far exceeded my expectations—I had
experienced numerous other open-source libraries and tools that were far simpler
conceptually yet far more complex to use.
xx

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE TO THE FIRST EDITION xxi

 In 2001, Steve Loughran and I began writing Java Development with Ant (Manning).
We took the idea of an image search engine application and generalized it as a docu-
ment search engine. This application example is used throughout the Ant book and
can be customized as an image search engine. The tie to Ant comes not only from a
simple compile-and-package build process but also from a custom Ant task, <index>,
we created that indexes files during the build process using Lucene. This Ant task now
lives in Lucene’s Sandbox and is described in section 8.4 of the first edition.

 This Ant task is in production use for my custom blogging system, which I call
BlogScene (http://www.blogscene.org/erik). I run an Ant build process, after creat-
ing a blog entry, which indexes new entries and uploads them to my server. My blog
server consists of a servlet, some Velocity templates, and a Lucene index, allowing for
rich queries, even syndication of queries. Compared to other blogging systems, Blog-
Scene is vastly inferior in features and finesse, but the full-text search capabilities are
very powerful.

 I’m now working with the Applied Research in Patacriticism group at the Univer-
sity of Virginia (http://www.patacriticism.org), where I’m putting my text analysis,
indexing, and searching expertise to the test and stretching my mind with discussions
of how quantum physics relates to literature. “Poets are the unacknowledged engi-
neers of the world.”

From Otis Gospodnetić
My interest in and passion for information retrieval and management began during
my student years at Middlebury College. At that time, I discovered an immense source
of information known as the Web. Although the Web was still in its infancy, the long-
term need for gathering, analyzing, indexing, and searching was evident. I became
obsessed with creating repositories of information pulled from the Web, began writing
web crawlers, and dreamed of ways to search the collected information. I viewed
search as the killer application in a largely uncharted territory. With that in the back
of my mind, I began the first in my series of projects that share a common denomina-
tor: gathering and searching information.

 In 1995, fellow student Marshall Levin and I created WebPh, an open-source pro-
gram used for collecting and retrieving personal contact information. In essence, it
was a simple electronic phone book with a web interface (CGI), one of the first of its
kind at that time. (In fact, it was cited as an example of prior art in a court case in the
late 1990s!) Universities and government institutions around the world have been the
primary adopters of this program, and many are still using it. In 1997, armed with my
WebPh experience, I proceeded to create Populus, a popular white pages at the time.
Even though the technology (similar to that of WebPh) was rudimentary, Populus car-
ried its weight and was a comparable match to the big players such as WhoWhere, Big-
foot, and Infospace.

 After two projects that focused on personal contact information, it was time to
explore new territory. I began my next venture, Infojump, which involved culling
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.blogscene.org/erik
http://www.patacriticism.org/
http://www.it-ebooks.info/

PREFACE TO THE FIRST EDITIONxxii

high-quality information from online newsletters, journals, newspapers, and maga-
zines. In addition to my own software, which consisted of large sets of Perl modules
and scripts, Infojump utilized a web crawler called Webinator and a full-text search
product called Texis. The service provided by Infojump in 1998 was much like that of
FindArticles.com today.

 Although WebPh, Populus, and Infojump served their purposes and were fully
functional, they all had technical limitations. The missing piece in each of them was a
powerful information-retrieval library that would allow full-text searches backed by
inverted indexes. Instead of trying to reinvent the wheel, I started looking for a solu-
tion that I suspected was out there. In early 2000, I found Lucene, the missing piece
I’d been looking for, and I fell in love with it.

 I joined the Lucene project early on when it still lived at SourceForge and, later, at
the Apache Software Foundation when Lucene migrated there in 2002. My devotion
to Lucene stems from its being a core component of many ideas that had queued up
in my mind over the years. One of those ideas was Simpy, my latest pet project. Simpy
is a feature-rich personal web service that lets users tag, index, search, and share infor-
mation found online. It makes heavy use of Lucene, with thousands of its indexes, and
is powered by Nutch, another project of Doug Cutting’s (see chapter 10 of the first
edition). My active participation in the Lucene project resulted in an offer from Man-
ning to co-author Lucene in Action with Erik Hatcher.

 Lucene in Action is the most comprehensive source of information about Lucene.
The information contained in the chapters encompasses all the knowledge you need
to create sophisticated applications built on top of Lucene. It’s the result of a very
smooth and agile collaboration process, much like that within the Lucene community.
Lucene and Lucene in Action exemplify what people can achieve when they have simi-
lar interests, the willingness to be flexible, and the desire to contribute to the global
knowledge pool, despite the fact that they have yet to meet in person.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://FindArticles.com/
http://www.it-ebooks.info/

acknowledgments
We are sincerely and humbly indebted to Doug Cutting. Without Doug’s generosity to
the world, there would be no Lucene. Without the other Lucene committers, Lucene
would have far fewer features, more bugs, and a much tougher time thriving with its
growing adoption. Many thanks to all the committers, past and present. Similarly, we
thank all those who contributed the case studies that appear in chapters 12, 13 and 14:
Michele Catasta, Renaud Delbru, Mikkel Kamstrup Erlandsen, Toke Eskildsen, Robert
Fuller, Grant Glouser, Ken Krugler, Jake Mannix, Nickolai Toupikov, Giovanni Tum-
marello, Mads Villadsen, and John Wang. We’d also like to thank Doug Cutting for
penning the foreword to the second edition.

 Our thanks to the staff at Manning, including Marjan Bace, Jeff Bleiel, Sebstian
Stirling, Karen Tegtmeyer, Liz Welch, Elizabeth Martin, Dottie Marsico, Mary Piergies,
and Marija Tudor. Manning rounded up a great set of reviewers, whom we thank for
improving our drafts into the book you now read. The reviewers include Chad Davis,
Dave Pawson, Rob Allen, Rick Wagner, Michele Galli, Robi Sen, Stuart Caborn, Jeremy
Flowers, Robert Hanson, Rodney Woodruff, Anton Mazkovoi, Ramarao Kanneganti,
Matt Payne, Curtis Miller, Nathan Levesque, Cos DiFazio, and Andy Dingley. Extra-
special thanks go to Shai Erera for his technical editing. Thank you to all our MEAP
readers who posted feedback on Manning’s forums.

Michael McCandless

Writing a book is not easy. Writing a book about something as technically rich as
Lucene is especially challenging. Writing a book about a successful, active, and fast
xxiii

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTSxxiv

moving open-source project is nearly impossible! Many things had to happen right for
me to start and finish this book.

 I would never have been part of this book without Doug having the initial itch,
technical strength, and generosity to open-source his idea, without a vibrant commu-
nity relentlessly pushing Lucene forward, without a forward-looking IBM supporting
my involvement with Lucene and this book, and without Erik and Otis writing the
first edition.

 My four kids—Mia, Kyra, Joel, Kyle—always inspire me, with everything they do.
Their boundless energy, free thinking, infinite series of insightful questions, amazing
happiness, insatiable curiosity, gentle persistence, free sense of humor, sheer passion,
temper tantrums, and sharp minds keep me very young at heart and inspire me to
tackle big projects like this. You should strive, always, to remain a child.

 I thank my wife, Jane, for convincing me to pursue this when Manning came
knocking, and for her unmatched skills in efficiently running our busy family.
Remarkably, she has made lots of time for me to work, write this book and still pursue
all my crazy hobbies, and I can see that this ability is very rare.

 My parents, all four of them, raised me with the courage to always stretch myself in
what I try to tackle, but also with the discipline and persistence to finish what I start.
They taught me integrity: if you commit to do something, you do it well. Always under-
promise and overdeliver. They also led by example, showing me that individuals can
do big things when they work hard. More importantly, they taught me that you should
spend your life doing the things you love. Life is far too short to do otherwise.

Erik Hatcher

First, and really only, heartfelt thanks go to none other than Mike McCandless. He has
pretty much single-handedly revised this book from its 1.0 release to the current spiffy
“3.0” state. Mike approaches Lucene, this book, and life in general enthusiastically,
with eagerness to tackle any task at hand. The first edition acknowledgments also very
much apply here, as these influences are timelessly felt.

 I personally thank Otis for his efforts with this book. Although we’ve yet to meet in
person, Otis has been a joy to work with. He and I have gotten along well and have
agreed on the structure and content on this book throughout. Thanks to Java Java in
Charlottesville, Virginia, for keeping me wired and wireless; thanks, also, to Green-
berry’s for staying open later than Java Java and keeping me out of trouble by not hav-
ing internet access (update: they now have wi-fi, much to the dismay of my
productivity). The people I’ve surrounded myself with enrich my life more than any-
thing. David Smith has been a life-long mentor, and his brilliance continues to chal-
lenge me; he gave me lots of food for thought regarding Lucene visualization (most of
which I’m still struggling to fully grasp, and I apologize that it didn’t make it into this
manuscript). Jay Zimmerman and the No Fluff, Just Stuff symposium circuit have
been dramatically influential for me. The regular NFJS speakers, including Dave
Thomas, Stuart Halloway, James Duncan Davidson, Jason Hunter, Ted Neward, Ben
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTS xxv

Galbraith, Glenn Vanderburg, Venkat Subramaniam, Craig Walls, and Bruce Tate,
have all been a great source of support and friendship. Rick Hightower and Nick
Lesiecki deserve special mention: they both were instrumental in pushing me beyond
the limits of my technical and communication abilities. Words do little to express the
tireless enthusiasm and encouragement Mike Clark has given me throughout writing
Lucene in Action. Technically, Mike contributed the JUnitPerf performance-testing
examples, but his energy, ambition, and friendship were far more pivotal. I extend
gratitude to Darden Solutions for working with me through my tiring book and travel
schedule and allowing me to keep a low-stress part-time day job. A Darden co-worker,
Dave Engler, provided the CellPhone skeleton Swing application that I’ve demon-
strated at NFJS sessions and JavaOne; thanks, Dave! Other Darden coworkers, Andrew
Shannon and Nick Skriloff, gave us insight into Verity, a competitive solution to using
Lucene. Amy Moore provided graphical insight. My great friend Davie Murray
patiently endured several revision requests for a figure he created. Daniel Steinberg is
a personal friend and mentor, and he allowed me to air Lucene ideas as articles at
java.net. Simon Galbraith, a great friend and now a search guru, and I had fun bounc-
ing search ideas around in email.

Otis Gospodnetić

I hate cheesy acknowledgments, but I really can’t thank Margaret enough for being
so supporting and patient with me. I owe her a lifetime supply of tea and rice. My
parents Sanja and Vito opened my eyes early in my childhood by showing me as
much of the world as they could, and that made a world of difference. They were also
the ones who suggested I write my first book, which eliminated the fear of book-
writing early in my life. Of course, I have to thank Doug Cutting, whose decision to
open-source Lucene made a huge impact in my life, and to Michael McCandless for
the amazing effort he has been putting into both Lucene in Action, Second Edition and
Lucene. I think Mike actually has a few clones of him working 24/7 in his basement.
No wonder I haven’t met him in person yet!
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

about this book
Lucene in Action, Second Edition delivers details, best practices, caveats, tips, and tricks
for using the best open-source search engine available.

 This book assumes the reader is familiar with basic Java programming. Lucene’s
core itself is a single Java Archive (JAR) file, less than 1MB and with no dependencies,
and integrates into the simplest Java stand-alone console program as well as the most
sophisticated enterprise application.

Roadmap
We organized part 1 of this book to cover the core Lucene Application Programming
Interface (API) in the order you’re likely to encounter it as you integrate Lucene into
your applications:

■ In chapter 1, you meet Lucene. We introduce basic information-retrieval termi-
nology and describe the components of modern search applications. Without
wasting any time, we immediately build simple indexing and searching applica-
tions that you can put right to use or adapt to your needs. This example applica-
tion opens the door for exploring the rest of Lucene’s capabilities.

■ Chapter 2 familiarizes you with Lucene’s indexing operations. We describe the
various field types and techniques for indexing numbers and dates. Tuning the
indexing process, optimizing an index, using near real-time search and han-
dling thread-safety are covered.

■ Chapter 3 takes you through basic searching, including details of how Lucene
ranks documents based on a query. We discuss the fundamental query types as
xxvi

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK xxvii

well as how they can be created through human-entered query expressions
using Lucene’s QueryParser.

■ Chapter 4 delves deep into the heart of Lucene’s indexing magic, the analysis
process. We cover the analyzer building blocks including tokens, token streams,
and token filters. Each of the built-in analyzers gets its share of attention and
detail. We build several custom analyzers, showcasing synonym injection and
metaphone (like soundex) replacement. Analysis of non-English languages is
covered, with specific examples of analyzing Chinese text.

■ Chapter 5 picks up where the searching chapter left off, with analysis now in
mind. We cover several advanced searching features, including sorting, filter-
ing, and term vectors. The advanced query types make their appearance,
including the spectacular SpanQuery family. Finally, we cover Lucene’s built-in
support for querying multiple indexes, even in parallel.

■ Chapter 6 goes well beyond advanced searching, showing you how to extend
Lucene’s searching capabilities. You’ll learn how to customize search results
sorting, extend query expression parsing, implement hit collecting, and tune
query performance. Whew!

Part 2 goes beyond Lucene’s built-in facilities and shows you what can be done around
and above Lucene:

■ In chapter 7, we show how to use Tika, another open-source project under the
same Apache Lucene umbrella, to parse documents in many formats, in order
to extract their text and metadata.

■ Chapter 8 shows the important and popular set of extensions and tools around
Lucene. Most of these are referred to as “contrib modules”, in reference to the
contrib subdirectory that houses them in Lucene’s source control system. We
start with Luke, an amazingly useful standalone tool for interacting with a
Lucene index, and then move on to contrib modules that enable highlighting
search terms and applying spelling correction, along with other goodies like
non-English-language analyzers and several new query types.

■ Chapter 9 covers additional functionality offered by Lucene’s contrib modules,
including chaining multiple filters together, storing an index in a Berkeley data-
base, and leveraging synonyms from WordNet. We show two fast options for
storing an index entirely in RAM, and then move on to xml-query-parser which
enables creating queries from XML. We see how to do spatial searching with
Lucene, and touch on a new modular QueryParser, plus a few odds and ends.

■ Chapter 10 demonstrates how to access Lucene functionality from various pro-
gramming languages, such as C++, C#, Python, Perl and Ruby.

■ Chapter 11 covers the administrative side of Lucene, including how to under-
stand disk, memory, and file descriptor usage. We see how to tune Lucene for
various metrics like indexing throughput and latency, show you to make a hot
backup of the index without pausing indexing, and how to easily take advan-

tage of multiple threads during indexing and searching.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOKxxviii

Part 3 (chapters 12, 13, and 14) brings all the technical details of Lucene back into
focus with case studies contributed by those who have built interesting, fast, and scal-
able applications with Lucene at their core.

What’s new in the second edition?
Much has changed in Lucene in the 5 years since this book was originally published.
As is often the case with a successful open-source project with a strong technical archi-
tecture, a robust community of users and developers has thrived over time, and from
all that energy has emerged a number of amazing improvements. Here’s a sampling of
the changes:

■ Using near real-time searching
■ Using Tika to extract text from documents
■ Indexing with NumericField and performing fast numeric range querying with

NumericRangeQuery
■ Updating and deleting documents using IndexWriter
■ Working with IndexWriter’s new transactional semantics (commit, rollback)
■ Improving search concurrency with read-only IndexReaders and NIOFS-

Directory
■ Enabling pure Boolean searching
■ Adding payloads to your index and using them with BoostingTermQuery
■ Using IndexReader.reopen to efficiently open a new reader from an

existing one
■ Understanding resource usage, like memory, disk, and file descriptors
■ Using Function queries
■ Tuning for performance metrics like indexing and searching throughput
■ Making a hot backup of your index without pausing indexing
■ Using new ports of Lucene to other programming languages
■ Measuring performance using the “benchmark” contrib package
■ Understanding the new reusable TokenStream API
■ Using threads to gain concurrency during indexing and searching
■ Using FieldSelector to speed up loading of stored fields
■ Using TermVectorMapper to customize how term vectors are loaded
■ Understanding simplifications to Lucene’s locking
■ Using custom LockFactory, DeletionPolicy, IndexDeletionPolicy, Merge-

Policy, and MergeScheduler implementations
■ Using new contrib modules, like XMLQueryParser and Local Lucene search
■ Debugging common problems

Entirely new case studies have been added, in Chapters 12, 13 and 14. A new chapter
(11) has been added to cover the administrative aspects of Lucene. Chapter 7, which

previously described a custom framework for parsing different document types, has

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK xxix

been rewritten entirely based on Tika. In addition all code samples have been
updated to Lucene’s 3.0.1 APIs. And of course lots of great feedback from our readers
has been folded in (thank you, and please keep it coming!).

Who should read this book?
Developers who need powerful search capabilities embedded in their applications
should read this book. Lucene in Action, Second Edition is also suitable for developers
who are curious about Lucene or indexing and search techniques, but who may not
have an immediate need to use it. Adding Lucene know-how to your toolbox is valu-
able for future projects—search is a hot topic and will continue to be in the future.

 This book primarily uses the Java version of Lucene (from Apache), and the major-
ity of the code examples use the Java language. Readers familiar with Java will be right
at home. Java expertise will be helpful; however, Lucene has been ported to a number
of other languages including C++, C#, Python, and Perl. The concepts, techniques,
and even the API itself are comparable between the Java and other language versions
of Lucene.

Code examples
The source code for this book is available from Manning’s website at http://
www.manning.com/LuceneinActionSecondEdition or http://www.manning.com/
hatcher3. Instructions for using this code are provided in the README file included
with the source-code package.

 The majority of the code shown in this book was written by us and is included in
the source-code package, licensed under the Apache Software License (http://
www.apache.org/licenses/LICENSE-2.0). Some code (particularly the case-study
code, and the examples from Lucene’s ports to other programming languages) isn’t
provided in our source-code package; the code snippets shown there are owned by the
contributors and are donated as is. In a couple of cases, we have included a small snip-
pet of code from Lucene’s codebase, which is also licensed under Apache Software
License 2.0.

 Code examples don’t include package and import statements, to conserve space;
refer to the actual source code for these details. Likewise, in the name of brevity and
keeping examples focused on Lucene’s code, there are numerous places where we
simply declare throws Exception, while for production code you should declare and
catch only specific exceptions and implement proper handling when exceptions
occur. In some cases there are fragments of code, inlined in the text, that are not full
standalone examples; these cases are included in source files named Fragments.java,
under each subdirectory.

Why JUnit?
We believe code examples in books should be top-notch quality and real-world appli-
cable. The typical “hello world” examples often insult our intelligence and generally

do little to help readers see how to really adapt to their environment.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.manning.com/LuceneinActionSecondEdition
http://www.manning.com/LuceneinActionSecondEdition
http://www.manning.com/hatcher3
http://www.manning.com/hatcher3
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.it-ebooks.info/

ABOUT THIS BOOKxxx

 We’ve taken a unique approach to the code examples in Lucene in Action, Second
Edition. Many of our examples are actual JUnit test cases (http://www.junit.org), ver-
sion 4.1. JUnit, the de facto Java unit-testing framework, easily allows code to assert
that a particular assumption works as expected in a repeatable fashion. It also cleanly
separates what we are trying to accomplish, by showing the small test case up front,
from how we accomplish it, by showing the source code behind the APIs invoked by
the test case. Automating JUnit test cases through an IDE or Ant allows one-step (or no
steps with continuous integration) confidence building. We chose to use JUnit in this
book because we use it daily in our other projects and want you to see how we really
code. Test Driven Development (TDD) is a development practice we strongly espouse.

 If you’re unfamiliar with JUnit, please read the JUnit primer section. We also sug-
gest that you read Pragmatic Unit Testing in Java with JUnit by Dave Thomas and Andy
Hunt, followed by Manning’s JUnit in Action by Vincent Massol and Ted Husted, a sec-
ond edition of which is in the works by Petar Tahchiev, Felipe Leme, Vincent Massol,
and Gary Gregory.

Code conventions and downloads
Source code in listings or in text is in a fixed width font to separate it from ordi-
nary text. Java method names, within text, generally won’t include the full method
signature.

 In order to accommodate the available page space, code has been formatted with a
limited width, including line continuation markers where appropriate.

 We don’t include import statements and rarely refer to fully qualified class
names—this gets in the way and takes up valuable space. Refer to Lucene’s Javadocs
for this information. All decent IDEs have excellent support for automatically adding
import statements; Erik blissfully codes without knowing fully qualified classnames
using IDEA IntelliJ, Otis and Mike both use XEmacs. Add the Lucene JAR to your proj-
ect’s classpath, and you’re all set. Also on the classpath issue (which is a notorious nui-
sance), we assume that the Lucene JAR and any other necessary JARs are available in
the classpath and don’t show it explicitly. The lib directory, with the source code,
includes JARs that the source code uses. When you run the ant targets, these JARs are
placed on the classpath for you.

 We’ve created a lot of examples for this book that are freely available to you. A .zip
file of all the code is available from Manning’s web site for Lucene in Action: http://
www.manning.com/LuceneinActionSecondEdition. Detailed instructions on run-
ning the sample code are provided in the main directory of the expanded archive as a
README file.

Our test data

Most of our book revolves around a common set of example data to provide consis-
tency and avoid having to grok an entirely new set of data for each section. This
example data consists of book details. Table 1 shows the data so that you can refer-
ence it and make sense of our examples.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.junit.org
http://www.manning.com/LuceneinActionSecondEdition
http://www.manning.com/LuceneinActionSecondEdition
http://www.it-ebooks.info/

ABOUT THIS BOOK xxxi

 The data, besides the fields shown in the table, includes fields for ISBN, URL, and
publication month. When you unzip the source code available for download at
www.manning.com/hatcher3, the books are represented as *.properties files under
the data sub-directory, and the command-line tool at src/lia/common/Create-
TestIndex.java is used to create the test index used throughout the book. The fields
for category and subject are our own subjective values, but the other information is
objectively factual about the books.

Table 1 Sample data used throughout this book

Title / Author Category Subject

A Modern Art of Education
Rudolf Steiner

/education/pedagogy education philosophy psychol-
ogy practice Waldorf

Lipitor, Thief of Memory
Duane Graveline, Kilmer S. McCully,
Jay S. Cohen

/health cholesterol,statin,lipitor

Nudge: Improving Decisions About
Health, Wealth, and Happiness
Richard H. Thaler, Cass R. Sunstein

/health information architecture,deci-
sions,choices

Imperial Secrets of Health
and Longevity
Bob Flaws

/health/alternative/Chinese diet chinese medicine qi gong
health herbs

Tao Te Ching 道德經

Stephen Mitchell
/philosophy/eastern taoism

Gödel, Escher, Bach:
an Eternal Golden Braid
Douglas Hofstadter

/technology/computers/ai artificial intelligence number the-
ory mathematics music

Mindstorms: Children, Computers,
And Powerful Ideas
Seymour Papert

/technology/computers/
programming/education

children computers powerful
ideas LOGO education

Ant in Action
Steve Loughran, Erik Hatcher

/technology/computers/
programming

apache ant build tool junit java
development

JUnit in Action, Second Edition
Petar Tahchiev, Felipe Leme, Vincent
Massol, Gary Gregory

/technology/computers/
programming

junit unit testing mock objects

Lucene in Action, Second Edition
Michael McCandless, Erik Hatcher,
Otis Gospodnetić

/technology/computers/
programming

lucene search java

Extreme Programming Explained
Kent Beck

/technology/computers/
programming/methodology

extreme programming agile test
driven development methodology

Tapestry in Action
Howard Lewis-Ship

/technology/computers/
programming

tapestry web user interface com-
ponents

The Pragmatic Programmer
Dave Thomas, Andy Hunt

/technology/computers/
programming

pragmatic agile methodology
developer tools
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

www.manning.com/hatcher3
http://www.it-ebooks.info/

ABOUT THIS BOOKxxxii

Author Online
The purchase of Lucene in Action, Second Edition includes free access to a web forum run
by Manning Publications, where you can discuss the book with the authors and other
readers. To access the forum and subscribe to it, point your web browser to http://
www.manning.com/LuceneinActionSecondEdition. This page provides information
on how to get on the forum once you are registered, what kind of help is available, and
the rules of conduct on the forum.

About the title
By combining introductions, overviews, and how-to examples, the In Action books are
designed to help learning and remembering. According to research in cognitive sci-
ence, the things people remember are things they discover during self-motivated
exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play, and,
interestingly, re-telling of what is being learned. People understand and remember
new things, which is to say they master them, only after actively exploring them.
Humans learn in action. An essential part of an In Action guide is that it is example-
driven. It encourages the reader to try things out, to play with new code, and explore
new ideas.

 There is another, more mundane, reason for the title of this book: our readers are
busy. They use books to do a job or solve a problem. They need books that allow them
to jump in and jump out easily and learn just what they want just when they want it.
They need books that aid them in action. The books in this series are designed for
such readers.

About the cover illustration
The figure on the cover of Lucene in Action, Second Edition is “An inhabitant of the coast
of Syria.” The illustration is taken from a collection of costumes of the Ottoman
Empire published on January 1, 1802, by William Miller of Old Bond Street, London.
The title page is missing from the collection and we have been unable to track it down
to date. The book’s table of contents identifies the figures in both English and French,
and each illustration bears the names of two artists who worked on it, both of whom
would no doubt be surprised to find their art gracing the front cover of a computer
programming book?two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for
the day. The Manning editor did not have on his person the substantial amount of
cash that was required for the purchase and a credit card and check were both politely
turned down.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.manning.com/LuceneinActionSecondEdition
http://www.manning.com/LuceneinActionSecondEdition
http://www.it-ebooks.info/

ABOUT THIS BOOK xxxiii

 With the seller flying back to Ankara that evening the situation was getting hope-
less. What was the solution? It turned out to be nothing more than an old-fashioned
verbal agreement sealed with a handshake. The seller simply proposed that the money
be transferred to him by wire and the editor walked out with the seller’s bank informa-
tion on a piece of paper and the portfolio of images under his arm. Needless to say, we
transferred the funds the next day, and we remain grateful and impressed by this
unknown person’s trust in one of us. It recalls something that might have happened a
long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear
on our covers, bring to life the richness and variety of dress customs of two centuries
ago. They recall the sense of isolation and distance of that period—and of every other
historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago—brought back to life by the pictures from this collection.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

JUnit primer
This section is a quick and admittedly incomplete introduction to JUnit. We’ll provide
the basics needed to understand our code examples. First, JUnit test cases extend
junit.framework.TestCase. Our concrete test classes adhere to a naming conven-
tion: we suffix class names with Test. For example, our QueryParser tests are in Query-
ParserTest.java.

 JUnit automatically executes all methods with the signature public void test-
XXX(), where XXX is an arbitrary but meaningful name. JUnit test methods should be
concise and clear, keeping good software design in mind (such as not repeating your-
self, creating reusable functionality, and so on).

Assertions

JUnit is built around a set of assert statements, freeing you to code tests clearly and
letting the JUnit framework handle failed assumptions and reporting the details. The
most frequently used assert statement is assertEquals; there are a number of over-
loaded variants of the assertEquals method signature for various data types. An
example test method looks like this:

public void testExample() {
 SomeObject obj = new SomeObject();
 assertEquals(10, obj.someMethod());
}

The assert methods throw a runtime exception if the expected value (10, in this
example) isn’t equal to the actual value (the result of calling someMethod on obj, in
this example). Besides assertEquals, there are several other assert methods for
xxxiv

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

JUNIT PRIMER xxxv

convenience. We also use assertTrue(expression), assertFalse(expression), and
assertNull(expression) statements. These test whether the expression is true, false,
and null, respectively.

 The assert statements have overloaded signatures that take an additional String
parameter as the first argument. This String argument is used entirely for reporting
purposes, giving the developer more information when a test fails. We use this String
message argument to be more descriptive (or sometimes comical).

 By coding our assumptions and expectations in JUnit test cases in this manner, we
free ourselves from the complexity of the large systems we build and can focus on
fewer details at a time. With a critical mass of test cases in place, we can remain confi-
dent and agile. This confidence comes from knowing that changing code, such as
optimizing algorithms, won’t break other parts of the system, because if it did, our
automated test suite would let us know long before the code made it to production.
Agility comes from being able to keep the codebase clean through refactoring. Refac-
toring is the art (or is it a science?) of changing the internal structure of the code so
that it accommodates evolving requirements without affecting the external interface
of a system.

JUnit in context

Let’s take what we’ve said so far about JUnit and frame it within the context of this
book. One of our test cases (from chapter 3) is shown here:

public class BasicSearchingTest extends TestCase {
 public void testTerm() throws Exception {
 IndexSearcher searcher;
 Directory dir = TestUtil.getBookIndexDirectory();
 searcher = new IndexSearcher(dir,
 true);

 Term t = new Term("subject", "ant");
 Query query = new TermQuery(t);
 TopDocs docs = searcher.search(query, 10);
 assertEquals("Ant in Action", 1, docs.totalHits);

 t = new Term("subject", "junit");
 docs = searcher.search(new TermQuery(t), 10);
 assertEquals(2, docs.totalHits);

 searcher.close();
 }
}

Of course, we’ll explain the Lucene API used in this test case later. Here we’ll focus on
the JUnit details. The TestUtil class, from lia/common/TestUtil.java, contains a few
utility methods used frequently throughout the book. Each time we use such a
method for the first time, we show its source code. Here’s getBookIndexDirectory:

public static String getBookIndexDirectory() {
 // The build.xml ant script sets this property for us:
 return System.getProperty("index.dir");

TestUtil provides
directory

Create IndexSearcher

One hit expected for
search for “ant”

Two hits expected
for “junit”
}

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

JUNIT PRIMERxxxvi

That method returns the path to where our sample data index resides in the filesys-
tem. While we don’t use it in this test, JUnit provides an initialization hook that
executes prior to every test method; this hook is a method with the public void
setUp() signature.

 If our first assert in testTerm fails, we see an exception like this:

junit.framework.AssertionFailedError:
 Ant in Action expected:<1> but was:<0>
 at lia.searching.BasicSearchingTest.testTerm(BasicSearchingTest.java:20)

This failure indicates our test data is different than what we expect.

Testing Lucene

The majority of the tests in this book test Lucene itself. In practice, is this realistic?
Isn’t the idea to write test cases that test our own code, not the libraries themselves?
There is an interesting twist to Test Driven Development used for learning an API: Test
Driven Learning. It’s immensely helpful to write tests directly to a new API in order to
learn how it works and what you can expect from it. This is precisely what we’ve done
in most of our code examples, so that tests are testing Lucene itself. Don’t throw these
learning tests away, though. Keep them around to ensure your expectations of the API
hold true when you upgrade to a new version of the API, and refactor them when the
inevitable API change is made.

Mock objects

In a couple of cases, we use mock objects for testing purposes. Mock objects are used
as probes sent into real business logic in order to assert that the business logic is work-
ing properly. For example, in chapter 4, we have a SynonymEngine interface (see sec-
tion 4.6). The real business logic that uses this interface is an analyzer. When we want
to test the analyzer itself, it’s unimportant what type of SynonymEngine is used, but we
want to use one that has well defined and predictable behavior. We created a
MockSynonymEngine, allowing us to reliably and predictably test our analyzer. Mock
objects help simplify test cases such that they test only a single facet of a system at a
time rather than having intertwined dependencies that lead to complexity in trouble-
shooting what really went wrong when a test fails. A nice effect of using mock objects
comes from the design changes it leads us to, such as separation of concerns and
designing using interfaces instead of direct concrete implementations.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

about the authors
MICHAEL MCCANDLESS has been building search engines for over a decade. In 1999,
with three other people, he founded iPhrase Technologies, a startup providing user-
centric enterprise search engine software, written in Python and C++. After IBM
acquired iPhrase in 2005, Michael became involved in Lucene and started contribut-
ing patches, becoming a committer in 2006 and PMC member in 2008. Michael
received his B.S., M.S and Ph.D. from MIT, and now lives in Lexington, MA along with
his wonderful wife, Jane, and four delightful kids, Mia, Kyra, Joel and Kyle. Michael’s
blog is at http://chbits.blogspot.com.

ERIK HATCHER codes, writes, and speaks on technical topics that he finds fun and chal-
lenging. He has written software for a number of diverse industries using many differ-
ent technologies and languages. Erik coauthored Java Development with Ant (Manning,
2002) with Steve Loughran, a book that has received industry acclaim. Since the
release of Erik’s first book, he has spoken at numerous venues including the No Fluff,
Just Stuff symposium circuit, JavaOne, O’Reilly’s Open Source Convention, JavaZone,
devoxx, user groups, and even sometimes webinars. As an Apache Software Founda-
tion member, he is an active contributor and committer on several Apache projects
including Lucene and Solr. Erik proudly presents his favorite technologies passion-
ately, recently notables are Solr, Solritas, Flare, Blacklight, and solr-ruby—preferring
to dabble at the intersection of user experiences and Solr. Erik cofounded Lucid
Imagination, where he helps carry the torch for open-source search goodness. Erik
keeps fit and serene in central Virginia.
xxxvii

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://chbits.blogspot.com
http://www.it-ebooks.info/

ABOUT THE AUTHORSxxxviii

OTIS GOSPODNETIĆ has been a Lucene developer since before Lucene became
Apache Lucene. He is the co-founder of Sematext, a company that focuses on provid-
ing services and products around search (focusing on Lucene, Solr, and Nutch) and
analytics (think BigData, Hadoop, etc.). Otis has given talks about Lucene and Solr
over the years and some of his previous technical publications include articles about
Lucene, published by O’Reilly Network and IBM developerWorks. Years ago, Otis also
wrote To Choose and Be Chosen: Pursuing Education in America, a guidebook for foreign-
ers wishing to study in the United States; it’s based on his own experience. Otis cur-
rently lives in New York City where he runs the NY Search & Discovery Meetup.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Part 1

Core Lucene

The first half of this book covers out-of-the-box (errr… out of the JAR)
Lucene. Chapter 1, “Meet Lucene,” provides a general overview, and you’ll
develop a complete indexing and searching application. Each successive chapter
systematically delves into specific areas. “Building a search index,” chapter 2,
and “Adding search to your application,” chapter 3, are the first steps to using
Lucene. Returning to a glossed-over indexing process, “Lucene’s analysis pro-
cess,” chapter 4, will round out your understanding of what happens to the text
indexed with Lucene.

 After those four chapters you’ll have a good sense of Lucene’s basic capabili-
ties. But searching is where Lucene really shines, and so this part concludes with
two additional chapters on searching: chapter 5, “Advanced search techniques,”
using only the built-in features, and “Extending search,” chapter 6, showcasing
Lucene’s extensibility for custom purposes.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Meet Lucene
Lucene is a powerful Java search library that lets you easily add search to any appli-
cation. In recent years Lucene has become exceptionally popular and is now the
most widely used information retrieval library: it powers the search features behind
many websites and desktop applications. Although it’s written in Java, thanks to its
popularity and the determination of zealous developers you now have at your dis-
posal a number of ports or integrations to other programming languages (C/C++,
C#, Ruby, Perl, Python, and PHP, among others).

 One of the key factors behind Lucene’s popularity is its simplicity, but don’t let
that fool you: under the hood sophisticated, state-of-the-art information retrieval
techniques are quietly at work. The careful exposure of its indexing and searching
API is a sign of the well-designed software. You don’t need in-depth knowledge
about how Lucene’s information indexing and retrieval work in order to start using
it. Moreover, Lucene’s straightforward API requires using only a handful of classes

This chapter covers
Learning about Lucene

Understanding the typical search application architecture

Using the basic indexing API

Working with the search API
3

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

4 CHAPTER 1 Meet Lucene

to get started. Finally, for those of you tired of bloatware, Lucene’s core JAR is refresh-
ingly tiny—only 1 MB—and it has no dependencies!

 In this chapter we cover the overall architecture of a typical search application and
where Lucene fits. It’s crucial to recognize that Lucene is simply a search library, and
you’ll need to handle the other components of a search application (crawling, docu-
ment filtering, runtime server, user interface, administration, etc.) as your application
requires. We show you how to perform basic indexing and searching with ready-to-use
code examples. We then briefly introduce all the core elements you need to know for
both of these processes. We start with the modern problem of information explosion,
to understand why we need powerful search functionality in the first place.

NOTE Lucene is an active open source project. By the time you read this, likely
Lucene’s APIs and features will have changed. This book is based on the
3.0.1 release of Lucene, and thanks to Lucene’s backward compatibility
policy, all code samples should compile and run fine for future 3.x
releases. If you encounter a problem, send an email to java-
user@lucene.apache.org and Lucene’s large, passionate, and responsive
community will surely help.

1.1 Dealing with information explosion
To make sense of the perceived complexity of the world, humans have invented cate-
gorizations, classifications, genuses, species, and other types of hierarchical organiza-
tional schemes. The Dewey decimal system for categorizing items in a library
collection is a classic example of a hierarchical categorization scheme.

 The explosion of the internet and digital repositories has brought large amounts of
information within our reach. With time, the amount of data available has become so
vast that we need alternate, more dynamic ways of finding information (see figure 1.1).
Although we can classify data, trawling through hundreds or thousands of categories
and subcategories of data is no longer an efficient method for finding information.

 The need to quickly locate certain information out of the sea of data isn’t limited
to the internet realm—desktop computers store increasingly more data on multi-tera-
byte hard drives. Changing directories and expanding and collapsing hierarchies of
folders isn’t an effective way to access stored documents. Furthermore, we no longer
use computers only for their raw computing abilities: they also serve as communica-
tion devices, multimedia players, and media storage devices. Those uses require the
ability to quickly find a specific piece of data; what’s more, we need to make rich
media—such as images, video, and audio files in various formats—easy to locate.

 With this abundance of information, and with time one of the most precious com-
modities for most people, we must be able to make flexible, free-form, ad hoc queries
that can quickly cut across rigid category boundaries and find exactly what we’re after
while requiring the least effort possible.

 To illustrate the pervasiveness of searching across the internet and the desktop, fig-
ure 1.1 shows a search for lucene at Google. Figure 1.2 shows the Apple Mac OS X
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

5Dealing with information explosion

Finder (the counterpart to Microsoft’s Explorer on Windows) and the search feature
embedded at the upper right. The Mac OS X music player, iTunes, also has embedded
search capabilities, as shown in figure 1.3.

Search is needed everywhere! All major operating systems have embedded searching.
The Spotlight feature in Mac OS X integrates indexing and searching across all file
types, including rich metadata specific to each type of file, such as emails, contacts,
and more.1

Figure 1.1 Searching the internet with Google

Figure 1.2 Mac OS X Finder with its embedded search capability

Figure 1.3 Apple’s iTunes intuitively embeds search functionality.
1 Erik and Mike freely admit to fondness of all things Apple.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

6 CHAPTER 1 Meet Lucene

 Different people are fighting the same problem—information overload—using
different approaches. Some have been working on novel user interfaces, some on
intelligent agents, and others on developing sophisticated search tools and libraries
like Lucene. Before we jump into action with code samples, we’ll give you a high-level
picture of what Lucene is, what it isn’t, and how it came to be.

1.2 What is Lucene?
Lucene is a high-performance, scalable information retrieval (IR) library. IR refers to
the process of searching for documents, information within documents, or metadata
about documents. Lucene lets you add searching capabilities to your applications. It’s
a mature, free, open source project implemented in Java, and a project in the Apache
Software Foundation, licensed under the liberal Apache Software License. As such,
Lucene is currently, and has been for quite a few years, the most popular free IR library.

NOTE Throughout the book, we’ll use the term information retrieval (or its acro-
nym IR) to describe search tools like Lucene. People often refer to IR
libraries as search engines, but you shouldn’t confuse IR libraries with web
search engines.

As you’ll soon discover, Lucene provides a simple yet powerful core API that requires
minimal understanding of full-text indexing and searching. You need to learn about
only a handful of its classes in order to start integrating Lucene into an application.
Because Lucene is a Java library, it doesn’t make assumptions about what it indexes
and searches, which gives it an advantage over a number of other search applications.
Its design is compact and simple, allowing Lucene to be easily embedded into desktop
applications.

 Beyond Lucene’s core JAR are a number of extensions modules that offer useful
add-on functionality. Some of these are vital to almost all applications, like the
spellchecker and highlighter modules. These modules are housed in a separate area
called contrib, and you’ll see us referring to such contrib modules throughout the
book. There are so many modules that we have two chapters, 8 and 9, to cover them!

 Lucene’s website, at http://lucene.apache.org/java, is a great place to learn more
about the current status of Lucene. There you’ll find the tutorial, Javadocs for
Lucene’s API for all recent releases, an issue-tracking system, links for downloading
releases, and Lucene’s wiki (http://wiki.apache.org/lucene-java), which contains
many community-created and -maintained pages.

 You’ve probably used Lucene without knowing it! Lucene is used in a surprisingly
diverse and growing number of places: NetFlix, Digg, MySpace, LinkedIn, Fedex,
Apple, Ticketmaster, SalesForce.com, the Encyclopedia Britannica CD-ROM/DVD, the
Eclipse IDE, the Mayo Clinic, New Scientist magazine, Atlassian (JIRA), Epiphany, MIT’s
OpenCourseWare and DSpace, the Hathi Trust Digital Library, and Akamai’s Edge-
Computing platform. Your name may be on this list soon, too! The “powered by”
Lucene page on Lucene’s wiki has even more examples.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://lucene.apache.org/java
http://wiki.apache.org/lucene-java
http://www.it-ebooks.info/

7What is Lucene?

1.2.1 What Lucene can do

People new to Lucene often mistake it for a ready-to-use application like a file-search
program, a web crawler, or a website search engine. That isn’t what Lucene is: Lucene
is a software library, a toolkit if you will, not a full-featured search application. It con-
cerns itself with text indexing and searching, and it does those things very well.
Lucene lets your application deal with business rules specific to its problem domain
while hiding the complexity of indexing and searching behind a simple-to-use API.
Lucene is the core that the application wraps around.

 A number of full-featured search applications have been built on top of Lucene. If
you’re looking for something prebuilt or a framework for crawling, document han-
dling, and searching, the “powered by” page on Lucene’s wiki lists some of these
options.

 Lucene allows you to add search capabilities to your application. Lucene can index
and make searchable any data that you can extract text from. Lucene doesn’t care
about the source of the data, its format, or even its language, as long as you can derive
text from it. This means you can index and search data stored in files: web pages on
remote web servers, documents stored in local file systems, simple text files, Microsoft
Word documents, XML or HTML or PDF files, or any other format from which you can
extract textual information.

 Similarly, with Lucene’s help you can index data stored in your databases, giving
your users rich, full-text search capabilities that many databases provide only on a lim-
ited basis. Once you integrate Lucene, users of your applications can perform
searches by entering queries like +George +Rice -eat -pudding, Apple -pie +Tiger,
animal:monkey AND food:banana, and so on. With Lucene, you can index and search
email messages, mailing-list archives, instant messenger chats, your wiki pages…the
list goes on. Let’s recap Lucene’s history.

1.2.2 History of Lucene

Lucene was written by Doug Cutting;2 it was initially available for download from its
home at the SourceForge website. It joined the Apache Software Foundation’s Jakarta
family of high-quality open source Java products in September 2001 and became its
own top-level Apache project in February 2005. It now has a number of subprojects,
which you can see at http://lucene.apache.org. This book is primarily about the Java
subproject, at http://lucene.apache.org/java, though many people refer to it simply
as “Lucene.”

 With each release, the project has enjoyed increased visibility, attracting more users
and developers. As of March 2010, the most recent release of Lucene is 3.0.1. Table 1.1
shows Lucene’s release history.
2 Lucene is Doug’s wife’s middle name; it’s also her maternal grandmother’s first name.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://lucene.apache.org
http://lucene.apache.org/java
http://www.it-ebooks.info/

8 CHAPTER 1 Meet Lucene

Table 1.1 Lucene’s release history

Version Release date Milestones

0.01 March 2000 First open source release (SourceForge)

1.0 October 2000

1.01b July 2001 Last SourceForge release

1.2 June 2002 First Apache Jakarta release

1.3 December 2003 Compound index format, QueryParser enhancements, remote
searching, token positioning, extensible scoring API

1.4 July 2004 Sorting, span queries, term vectors

1.4.1 August 2004 Bug fix for sorting performance

1.4.2 October 2004 IndexSearcher optimization and miscellaneous fixes

1.4.3 November 2004 Miscellaneous fixes

1.9.0 February 2006 Binary stored fields, DateTools, NumberTools, RangeFilter,
RegexQuery; requires Java 1.4

1.9.1 March 2006 Bug fix in BufferedIndexOutput

2.0 May 2006 Removed deprecated methods

2.1 February 2007 Delete/update document in IndexWriter, locking simplifications,
QueryParser improvements, benchmark contrib module

2.2 June 2007 Performance improvements, function queries, payloads, pre-ana-
lyzed fields, custom deletion policies

2.3.0 January 2008 Performance improvements, custom merge policies and merge
schedulers, background merges by default, tool to detect index cor-
ruption, IndexReader.reopen

2.3.1 February 2008 Bug fixes from 2.3.0

2.3.2 May 2008 Bug fixes from 2.3.1

2.4.0 October 2008 Further performance improvements, transactional semantics (roll-
back, commit), expungeDeletes method, delete by query in
IndexWriter

2.4.1 March 2009 Bug fixes from 2.4.0

2.9 September 2009 New per-segment Collector API, faster search performance, near
real-time search, attribute-based analysis

2.9.1 November 2009 Bug fixes from 2.9

2.9.2 February 2010 Bug fixes from 2.9.1

3.0.0 November 2009 Removed deprecated methods, fixed some bugs

3.0.1 February 2010 Bug fixes from 3.0.0
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

9Lucene and the components of a search application

NOTE Lucene’s creator, Doug Cutting, has significant theoretical and practical
experience in the field of IR. He’s published a number of research
papers on IR topics and has worked for companies such as Excite, Apple,
Grand Central and Yahoo!. In 2004, worried about the decreasing num-
ber of web search engines and a potential monopoly in that realm, he
created Nutch, the first open source World Wide Web search engine
(http://lucene.apache.org/nutch); it’s designed to handle crawling,
indexing, and searching of several billion frequently updated web pages.
Not surprisingly, Lucene is at the core of Nutch. Doug is also actively
involved in Hadoop (http://hadoop.apache.org), a project that spun out
of Nutch to provide tools for distributed storage and computation using
the map/reduce framework.

Doug Cutting remains a strong force behind Lucene, and many more developers have
joined the project with time. As of this writing, Lucene’s core team includes about half
a dozen active developers, three of whom are authors of this book. In addition to the
official project developers, Lucene has a fairly large and active technical user commu-
nity that frequently contributes patches, bug fixes, and new features.

 One way to judge the success of open source software is by the number of times it’s
been ported to other programming languages. Using this metric, Lucene is quite a
success! Although Lucene is written entirely in Java, as of this writing there are Lucene
ports and bindings in many other programming environments, including Perl,
Python, Ruby, C/C++, PHP, and C# (.NET). This is excellent news for developers who
need to access Lucene indices from applications written in diverse programming lan-
guages. You can learn more about many of these ports in chapter 10.

 To understand how Lucene fits into a search application, including what Lucene
can and can’t do, in the next rather large section we review the architecture of a “typi-
cal” modern search application.

1.3 Lucene and the components of a search application
It’s important to grasp the big picture so that you have a clear understanding of which
parts Lucene can handle and which parts your application must separately handle. A
common misconception is that Lucene is an entire search application, when in fact
it’s simply the core indexing and searching component.

 We’ll see that a search application starts with an indexing chain, which in turn
requires separate steps to retrieve the raw content; create documents from the con-
tent, possibly extracting text from binary documents; and index the documents. Once
the index is built, the components required for searching are equally diverse, includ-
ing a user interface, a means for building up a programmatic query, query execution
(to retrieve matching documents), and results rendering.

 Modern search applications have wonderful diversity. Some run quietly, as a small
component deeply embedded inside an existing tool, searching a specific set of con-
tent (local files, email messages, calendar entries, etc.). Others run on a remote web-

site, on a dedicated server infrastructure, interacting with many users via a web

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://lucene.apache.org/nutch
http://www.it-ebooks.info/

10 CHAPTER 1 Meet Lucene

browser or mobile device, perhaps searching a product catalog or a known and clearly
scoped set of documents. Some run inside a company’s intranet and search a massive
collection of documents visible inside the company. Still others index a large subset of
the entire web and must deal with unbelievable scale both in content and in simulta-
neous search traffic. Yet despite all this variety, search engines generally share a com-
mon overall architecture, as shown in figure 1.4.

 When designing your application, you clearly
have strong opinions on what features are neces-
sary and how they should work. Be forewarned:
modern popular web search engines (notably
Google) have pretty much set the baseline
requirements that all users will expect the first
time they interact with your search application. If
your search can’t meet this baseline, users will be
disappointed right from the start. Google’s spell
correction is amazing, the dynamic summaries
with highlighting under each result are accurate,
and the response time is well under a second.
When in doubt, look to Google for inspiration
and guidance on which basic features your search
application must provide. Imitation is the sincer-
est form of flattery!

 Let’s walk through a search application, one
component at a time. As you’re reading along,
think through what your application requires
from each of these components to understand
how you could use Lucene to achieve your search
goals. We’ll also clearly point out which compo-
nents Lucene can handle (the shaded boxes in
figure 1.4) and which will be up to your applica-
tion or other open source software. We’ll then
wrap up with a summary of Lucene’s role in your
search application.

 Starting from the bottom of figure 1.4 and
working up is the first part of all search engines, a
concept called indexing: processing the original
data into a highly efficient cross-reference lookup
in order to facilitate rapid searching.

A
dm

in
is

tr
at

io
n

 In
te

rf
ac

e

A
na

ly
tic

s
In

te
rf

ac
e

Analyze Document

Index Document

Run Query

Build
Query

Render
Results

Index

Acquire Content

Raw Content

Build Document

Search User Interface

Users

Figure 1.4 Typical components of
search application; the shaded
components show which parts Lucene
handles.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

11Lucene and the components of a search application

1.3.1 Components for indexing

 Suppose you need to search a large number of files, and you want to find files that
contain a certain word or a phrase. How would you go about writing a program to do
this? A naïve approach would be to sequentially scan each file for the given word or
phrase. Although this approach would work, it has a number of flaws, the most obvi-
ous of which is that it doesn’t scale to larger file sets or cases where files are very large.
Here’s where indexing comes in: to search large amounts of text quickly, you must
first index that text and convert it into a format that will let you search it rapidly, elim-
inating the slow sequential scanning process. This conversion process is called index-
ing, and its output is called an index.

 You can think of an index as a data structure that allows fast random access to
words stored inside it. The concept behind it is analogous to an index at the end of a
book, which lets you quickly locate pages that discuss certain topics. In the case of
Lucene, an index is a specially designed data structure, typically stored on the file sys-
tem as a set of index files. We cover the structure of separate index files in detail in
appendix B, but for now think of a Lucene index as a tool that allows quick word
lookup.

 When you take a closer look, you discover that indexing consists of a sequence of
logically distinct steps which we’ll explore next. First, you must gain access to the con-
tent you need to search.
ACQUIRE CONTENT

The first step, at the bottom of figure 1.4, is to acquire content. This process, which
involves using a crawler or spider, gathers and scopes the content that needs to be
indexed. That may be trivial, for example, if you’re indexing a set of XML files that
resides in a specific directory in the file system or if all your content resides in a well-
organized database. Alternatively, it may be horribly complex and messy if the content
is scattered in all sorts of places (file systems, content management systems, Microsoft
Exchange, Lotus Domino, various websites, databases, local XML files, CGI scripts run-
ning on intranet servers, and so forth).

 Using entitlements (which means allowing only specific authenticated users to see
certain documents) can complicate content acquisition, because it may require “supe-
ruser” access when acquiring the content. Furthermore, the access rights or access
control lists (ACLs) must be acquired along with the document’s content, and added
to the document as additional fields used during searching to properly enforce the
entitlements. We cover security filters during searching in section 5.6.7.

 For large content sets, it’s important that this component be efficiently incremen-
tal, so that it can visit only changed documents since it was last run. It may also be
“live,” meaning it’s a continuously running service, waiting for new or changed con-
tent to arrive and loading that content the moment it becomes available.

 Lucene, as a core search library, doesn’t provide any functionality to support
acquiring content. This is entirely up to your application, or a separate piece of soft-

ware. A number of open source crawlers are available, among them the following:

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

12 CHAPTER 1 Meet Lucene

Solr (http://lucene.apache.org/solr), a sister project under the Apache Lucene
umbrella, has support for natively ingesting relational databases and XML feeds,
as well as handling rich documents through Tika integration. (We cover Tika in
chapter 7.)
Nutch (http://lucene.apache.org/nutch), another sister project under the
Apache Lucene umbrella, has a high-scale crawler that’s suitable for discovering
content by crawling websites.
Grub (http://www.grub.org) is a popular open source web crawler.
Heritrix is Internet Archive’s open source crawler (http://crawler.archive.org).
Droids, another subproject under the Apache Lucene umbrella, is currently
under Apache incubation at http://incubator.apache.org/droids.
Aperture (http://aperture.sourceforge.net) has support for crawling websites,
file systems, and mail boxes and for extracting and indexing text.
The Google Enterprise Connector Manager project (http://code.google.com/
p/google-enterprise-connector-manager) provides connectors for a number of
nonweb repositories.

If your application has scattered content, it might make sense to use a preexisting
crawling tool. Such tools are typically designed to make it easy to load content stored
in various systems, and sometimes provide prebuilt connectors to common content
stores, such as websites, databases, popular content management systems, and file sys-
tems. If your content source doesn’t have a preexisting connector for the crawler, it’s
likely easy enough to build your own.

 The next step is to create bite-sized pieces, called documents, out of your content.
BUILD DOCUMENT

Once you have the raw content that needs to be indexed, you must translate the con-
tent into the units (usually called documents) used by the search engine. The document
typically consists of several separately named fields with values, such as title, body,
abstract, author, and url. You’ll have to carefully design how to divide the raw content
into documents and fields as well as how to compute the value for each of those fields.
Often the approach is obvious: one email message becomes one document, or one
PDF file or web page is one document. But sometimes it’s less clear: how should you
handle attachments on an email message? Should you glom together all text extracted
from the attachments into a single document, or make separate documents, somehow
linked back to the original email message, for each attachment?

 Once you’ve worked out this design, you’ll need to extract text from the original
raw content for each document. If your content is already textual in nature, with a
known standard encoding, your job is simple. But more often these days documents
are binary in nature (PDF, Microsoft Office, Open Office, Adobe Flash, streaming
video and audio multimedia files) or contain substantial markups that you must
remove before indexing (RDF, XML, HTML). You’ll need to run document filters to
extract text from such content before creating the search engine document.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://lucene.apache.org/solr
http://lucene.apache.org/nutch
http://www.grub.org
http://crawler.archive.org
http://incubator.apache.org/droids
http://aperture.sourceforge.net
http://code.google.com/p/google-enterprise-connector-manager
http://code.google.com/p/google-enterprise-connector-manager
http://www.it-ebooks.info/

13Lucene and the components of a search application

 Interesting business logic may also apply during this step to create additional
fields. For example, if you have a large “body text” field, you might run semantic ana-
lyzers to pull out proper names, places, dates, times, locations, and so forth into sepa-
rate fields in the document. Or perhaps you tie in content available in a separate store
(such as a database) and merge this for a single document to the search engine.

 Another common part of building the document is to inject boosts to individual
documents and fields that are deemed more or less important. Perhaps you’d like
your press releases to come out ahead of all other documents, all things being equal?
Perhaps recently modified documents are more important than older documents?
Boosting may be done statically (per document and field) at indexing time, which we
cover in detail in section 2.5, or dynamically during searching, which we cover in sec-
tion 5.7. Nearly all search engines, including Lucene, automatically statically boost
fields that are shorter over fields that are longer. Intuitively this makes sense: if you
match a word or two in a very long document, it’s quite a bit less relevant than match-
ing the same words in a document that’s, say, three or four words long.

 Lucene provides an API for building fields and documents, but it doesn’t provide
any logic to build a document because that’s entirely application specific. It also
doesn’t provide any document filters, although Lucene has a sister project at Apache,
Tika, which handles document filtering very well (see chapter 7). If your content
resides in a database, projects like DBSight, Hibernate Search, LuSQL, Compass, and
Oracle/Lucene integration make indexing and searching your tables simple by han-
dling the Acquire Content and Build Document steps seamlessly.

 The textual fields in a document can’t be indexed by the search engine just yet. In
order to do that, the text must first be analyzed.
ANALYZE DOCUMENT

No search engine indexes text directly: rather, the text must be broken into a series of
individual atomic elements called tokens. This is what happens during the Analyze
Document step. Each token corresponds roughly to a “word” in the language, and this
step determines how the textual fields in the document are divided into a series of
tokens. There are all sorts of interesting questions here: how do you handle com-
pound words? Should you apply spell correction (if your content itself has typos)?
Should you inject synonyms inlined with your original tokens, so that a search for “lap-
top” also returns products mentioning “notebook”? Should you collapse singular and
plural forms to the same token? Often a stemmer, such as Dr. Martin Porter’s Snowball
stemmer (covered in section 8.2.1) is used to derive roots from words (for example,
runs, running, and run, all map to the base form run). Should you preserve or destroy
differences in case? For non-Latin languages, how can you even determine what a
“word” is? This component is so important that we have a whole chapter, chapter 4,
describing it.

 Lucene provides an array of built-in analyzers that give you fine control over this
process. It’s also straightforward to build your own analyzer, or create arbitrary ana-
lyzer chains combining Lucene’s tokenizers and token filters, to customize how tokens

are created. The final step is to index the document.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

14 CHAPTER 1 Meet Lucene

INDEX DOCUMENT

During the indexing step, the document is added to the index. Lucene provides every-
thing necessary for this step, and works quite a bit of magic under a surprisingly sim-
ple API. Chapter 2 takes you through all the nitty-gritty steps for performing indexing.

 We’re done reviewing the typical indexing steps for a search application. It’s
important to remember that indexing is something of a necessary evil that you must
undertake in order to provide a good search experience: you should design and cus-
tomize your indexing process only to the extent that you improve your users’ search
experience. We’ll now visit the steps involved in searching.

1.3.2 Components for searching

Searching is the process of looking up words in an index to find documents where they
appear. The quality of a search is typically described using precision and recall metrics.
Recall measures how well the search system finds relevant documents; precision mea-
sures how well the system filters out the irrelevant documents. Appendix C describes
how to use Lucene’s benchmark contrib module to measure precision and recall of
your search application.

 You must consider a number of other factors when thinking about searching. We
already mentioned speed and the ability to quickly search large quantities of text. Sup-
port for single and multiterm queries, phrase queries, wildcards, fuzzy queries, result
ranking, and sorting are also important, as is a friendly syntax for entering those que-
ries. Lucene offers a number of search features, bells, and whistles—so many that we
had to spread our search coverage over three chapters (chapters 3, 5, and 6).

 Let’s work through the typical components of a search engine, this time working
top down in figure 1.4, starting with the search user interface.
SEARCH USER INTERFACE

The user interface is what users actually see, in the web browser, desktop application,
or mobile device, when they interact with your search application. The UI is the most
important part of your search application! You could have the greatest search engine
in the world under the hood, tuned with fabulous state-of-the-art functionality, but
with one silly mistake, the UI will lack consumability, thus confusing your precious and
fickle users who will then quietly move on to your competitors.

 Keep the interface simple: don’t present a lot of advanced options on the first
page. Provide a ubiquitous, prominent search box, visible everywhere, rather than
requiring a two-step process of first clicking a search link and then entering the search
text (this is a common mistake).

 Don’t underestimate the importance of result presentation. Simple details, like
failing to highlight matches in the titles and excerpts, or using a small font and cram-
ming too much text into the results, can quickly kill a user’s search experience. Be
sure the sort order is clearly called out and defaults to an appropriate starting point
(usually relevance). Be fully transparent: if your search application is doing something
“interesting,” such as expanding the search to include synonyms, using boosts to influ-
ence sort order, or automatically correcting spelling, say so clearly at the top of the

search results and make it easy for the user to turn it off.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

15Lucene and the components of a search application

NOTE The worst thing that can happen, and it happens quite easily, is to erode
the user’s trust in the search results. Once this happens, your users will
quietly move on and you may never again have the chance to earn back
that trust.

Most of all, eat your own dog food: use your own search application extensively. Enjoy
what’s good about it, but aggressively correct what’s bad. Almost certainly your search
interface should offer spell correction. Lucene has a contrib module, spellchecker,
covered in section 8.5, that you can use. Likewise, providing dynamic excerpts (some-
times called summaries) with hit highlighting under each search result is important,
and Lucene’s contrib directory offers two such modules, highlighter and fast vector
highlighter, covered in sections 8.3 and 8.4, to handle this.

 Lucene doesn’t provide any default search UI; it’s entirely up to your application to
build one. Once a user interacts with your search interface, she or he submits a search
request, which first must be translated into an appropriate Query object for the search
engine.
BUILD QUERY

When you manage to entice a user to use your search application, she or he issues a
search request, often as the result of an HTML form or Ajax request submitted by a
browser to your server. You must then translate the request into the search engine’s
Query object. We call this the Build Query step.

 Query objects can be simple or complex. Lucene provides a powerful package,
called QueryParser, to process the user’s text into a query object according to a com-
mon search syntax. We’ll cover QueryParser and its syntax in chapter 3, but it’s also
fully described at http://lucene.apache.org/java/3_0_0/queryparsersyntax.html. The
query may contain Boolean operations, phrase queries (in double quotes), or wild-
card terms. If your application has further controls on the search UI, or further inter-
esting constraints, you must implement logic to translate this into the equivalent
query. For example, if there are entitlement constraints that restrict which set of docu-
ments each user is allowed to search, you’ll need to set up filters on the query, which
we visit in section 5.6.

 Many applications will at this point also modify the search query so as to boost or
filter for important things, if the boosting wasn’t done during indexing. Often an
e-commerce site will boost categories of products that are more profitable, or filter
out products presently out of stock (so you don’t see that they’re out of stock and
then go elsewhere to buy them). Resist the temptation to heavily boost and filter the
search results: users will catch on and lose trust.

 Lucene’s default QueryParser is often sufficient for an application. Sometimes,
you’ll want to use the output of QueryParser but then add your own logic after-
ward to further refine the query object. Still other times you want to customize the
QueryParser’s syntax, or customize which Query instances it actually creates, which,
thanks to Lucene’s open source nature, is straightforward. We discuss customizing
QueryParser in section 6.3. Now, you’re ready to execute the search request to

retrieve results.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://lucene.apache.org/java/3_0_0/queryparsersyntax.html
http://www.it-ebooks.info/

16 CHAPTER 1 Meet Lucene

SEARCH QUERY

Search Query is the process of consulting the search index and retrieving the docu-
ments matching the Query, sorted in the requested sort order. This component covers
the complex inner workings of the search engine, and Lucene handles all of it for
you. Lucene is also wonderfully extensible at this point, so if you’d like to customize
how results are gathered, filtered, sorted, and so forth, it’s straightforward. See chap-
ter 6 for details.

 There are three common theoretical models of search:

Pure Boolean model—Documents either match or don’t match the provided
query, and no scoring is done. In this model there are no relevance scores asso-
ciated with matching documents, and the matching documents are unordered;
a query simply identifies a subset of the overall corpus as matching the query.
Vector space model—Both queries and documents are modeled as vectors in a
high dimensional space, where each unique term is a dimension. Relevance, or
similarity, between a query and a document is computed by a vector distance
measure between these vectors.
Probabilistic model—In this model, you compute the probability that a document
is a good match to a query using a full probabilistic approach.

Lucene’s approach combines the vector space and pure Boolean models, and offers
you controls to decide which model you’d like to use on a search-by-search basis.
Finally, Lucene returns documents that you next must render in a consumable way for
your users.
RENDER RESULTS

Once you have the raw set of documents that match the query, sorted in the right
order, you then render them to the user in an intuitive, consumable manner. The UI
should also offer a clear path for follow-on searches or actions, such as clicking to the
next page, refining the search, or finding documents similar to one of the matches, so
that the user never hits a dead end.

 We’ve finished reviewing the components of both the indexing and searching
paths in a search application, but we aren’t done. Search applications also often
require ongoing administration.

1.3.3 The rest of the search application

There’s still quite a bit more to a typical fully functional search engine, especially a
search engine running on a website. You must include administration, in order to
keep track of the application’s health, configure the different components, and start
and stop servers. You must also include analytics, allowing you to use different views to
see how your users are searching, thus giving you the necessary guidance on what’s
working and what’s not. Finally, for large search applications, scaling—so that your
application can handle larger and larger content sizes as well as higher and higher
numbers of simultaneous search queries—is a very important feature. Spanning the

left side of figure 1.4 is the administration interface.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

17Lucene and the components of a search application

ADMINISTRATION INTERFACE

A modern search engine is a complex piece of software and has numerous controls
that need configuration. If you’re using a crawler to discover your content, the admin-
istration interface should let you set the starting URLs, create rules to scope which
sites the crawler should visit or which document types it should load, set how quickly
it’s allowed to read documents, and so forth. Starting and stopping servers, managing
replication (if it’s a high-scale search, or if high availability failover is required), cull-
ing search logs, checking overall system health, and creating and restoring from back-
ups are all examples of what an administration interface might offer.

 Lucene has a number of configuration options that an administration interface
would expose. During indexing you may need to tune the size of the RAM buffer, how
many segments to merge at once, how often to commit changes, or when to optimize
and purge deletes from the index. We’ll cover these topics in detail in chapter 2.
Searching also has important administration options, such as how often to reopen the
reader. You’ll probably also want to expose some basic summary information of the
index, such as segment and pending deletion counts. If some documents failed to be
indexed properly, or queries hit exceptions while searching, your administration API
would detail them.

 Many search applications, such as desktop search, don’t require this component,
whereas a full enterprise search application may have a complex administration inter-
face. Often the interface is primarily web based, but it may also consist of additional
command-line tools. On the right side of figure 1.4 is the analytics interface.
ANALYTICS INTERFACE

Spanning the right side is the analytics interface, which is often a web-based UI, per-
haps running under a separate server hosting a reporting engine. Analytics is impor-
tant: you can gain a lot of intelligence about your users and why they do or do not buy
your widgets through your website, by looking for patterns in the search logs. Some
would say this is the most important reason to deploy a good search engine! If you run
an e-commerce website, incredibly powerful tools—that let you see how your users
run searches, which searches failed to produce satisfactory results, which results users
clicked on, and how often a purchase followed or did not follow a search—enable you
to optimize the buying experience of your users.

 Lucene-specific metrics that could feed the analytics interface include:

How often which kinds of queries (single term, phrase, Boolean queries, etc.)
are run
Queries that hit low relevance
Queries where the user didn’t click on any results (if your application tracks
click-throughs)
How often users are sorting by specified fields instead of relevance
The breakdown of Lucene’s search time

You may also want to see indexing metrics, such as documents indexed per second or

byte size of documents being indexed.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

18 CHAPTER 1 Meet Lucene

 Lucene, since it’s a search library, doesn’t provide any analytics tools. If your search
application is web based, Google Analytics is a fast way to create an analytics interface.
If that doesn’t fit your needs, you can also build your own custom charts based on
Google’s visualization API. The final topic we visit is scaling.
SCALING

One particularly tricky area is scaling of your search application. The vast majority of
search applications don’t have enough content or simultaneous search traffic to
require scaling beyond a single computer. Lucene indexing and searching through-
put allows for a sizable amount of content on a single modern computer. Still, such
applications may want to run two identical computers to ensure there’s no single
point of failure (no downtime) in the event of hardware failure. This approach also
enables you to pull one computer out of production to perform maintenance and
upgrades without affecting ongoing searches.

 There are two dimensions to scaling: net amount of content, and net query
throughput. If you have a tremendous amount of content, you must divide it into
shards, so that a separate computer searches each shard. A front-end server sends a
single incoming query to all shards, and then coalesces the results into a single result
set. If instead you have high search throughput during your peak traffic, you’ll have to
take the same index and replicate it across multiple computers. A front-end load bal-
ancer sends each incoming query to the least loaded back-end computer. If you
require both dimensions of scaling, as a web scale search engine will, you combine
both of these practices.

 A number of complexities are involved in building such an architecture. You’ll
need a reliable way of replicating the search index across computers. If a computer
has some downtime, planned or not, you need a way to bring it up-to-date before put-
ting it back into production. If there are transactional requirements, so that all search-
ers must “go live” on a new index commit simultaneously, that adds complexity. Error
recovery in a distributed setting can be complex. Finally, important functionality like
spell correction and highlighting, and even how term weights are computed for scor-
ing, are impacted by such a distributed architecture.

 Lucene provides no facilities for scaling. However, both Solr and Nutch, projects
under the Apache Lucene umbrella, provide support for index sharding and replica-
tion. The Katta open source project, hosted at http://katta.sourceforge.net and based
on Lucene, also provides this functionality. Elastic search, at http://www.elastic-
search.com, is another option that’s also open source and based on Lucene. Before
you build your own approach, it’s best to have a solid look at these existing solutions.

 We’ve finished reviewing the components of a modern search application. Now it’s
time to think about whether Lucene is a fit for your application.

1.3.4 Where Lucene fits into your application

As you’ve seen, a modern search application can require many components. Yet the
needs of a specific application from each of these components vary greatly. Lucene

covers many of these components well (the gray shaded ones from figure 1.4), but

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://katta.sourceforge.net
http://www.elasticsearch.com
http://www.elasticsearch.com
http://www.it-ebooks.info/

19Lucene in action: a sample application

other components are best covered by complementary open source software or by
your own custom application logic. It’s possible your application is specialized enough
to not require certain components. You should at this point have a good sense of what
we mean when we say Lucene is a search library, not a full application.

 If Lucene isn’t a direct fit, it’s likely one of the open source projects that comple-
ments or builds upon Lucene does fit. For example, Solr runs within an application
server and exposes an administration interface, both dimensions of scaling, the ability
to index content from a database, and important end-user functionality like faceted
navigation, all built on top of Lucene. Lucene is the search library whereas Solr pro-
vides most components of an entire search application.

 In addition, some web application frameworks also provide search plug-ins based
on Lucene. For example, there’s a searchable plug-in for Grails (http://
www.grails.org/Searchable+Plugin), based on the Compass Search Engine Frame-
work, which in turn uses Lucene under the hood.

 Now let’s see a concrete example of using Lucene for indexing and searching.

1.4 Lucene in action: a sample application
It’s time to see Lucene in action. To do that, recall the problem of indexing and
searching files, which we described in section 1.3. To show you Lucene’s indexing and
searching capabilities, we’ll use a pair of command-line applications: Indexer and
Searcher. First we’ll index files in a directory; then we’ll search the created index.

 These example applications will familiarize you with Lucene’s API, its ease of use,
and its power. The code listings are complete, ready-to-use command-line programs. If
file indexing/searching is the problem you need to solve, you can copy the code list-
ings and tweak them to suit your needs. In the chapters that follow, we’ll describe each
aspect of Lucene’s use in much greater detail.

 Before we can search with Lucene, we need to build an index, so we start with our
Indexer application.

1.4.1 Creating an index

In this section you’ll see a simple class called Indexer, which indexes all files in a
directory ending with the .txt extension. When Indexer completes execution, it leaves
behind a Lucene index for its sibling, Searcher (presented next in section 1.4.2).

 We don’t expect you to be familiar with the few Lucene classes and methods used
in this example—we’ll explain them shortly. After the annotated code listing, we show
you how to use Indexer; if it helps you to learn how Indexer is used before you see how
it’s coded, go directly to the usage discussion that follows the code.
USING INDEXER TO INDEX TEXT FILES

Listing 1.1 shows the Indexer command-line program, originally written for Erik’s
introductory Lucene article on java.net. It takes two arguments:

A path to a directory where we store the Lucene index
A path to a directory that contains the files we want to index
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.grails.org/Searchable+Plugin
http://www.grails.org/Searchable+Plugin
http://www.it-ebooks.info/

20 CHAPTER 1 Meet Lucene

public class Indexer {

 public static void main(String[] args) throws Exception {
 if (args.length != 2) {
 throw new IllegalArgumentException("Usage: java " +

 ➥Indexer.class.getName()
 + " <index dir> <data dir>");
 }
 String indexDir = args[0];
 String dataDir = args[1];

 long start = System.currentTimeMillis();
 Indexer indexer = new Indexer(indexDir);
 int numIndexed;
 try {
 numIndexed = indexer.index(dataDir, new TextFilesFilter());
 } finally {
 indexer.close();
 }
 long end = System.currentTimeMillis();

 System.out.println("Indexing " + numIndexed + " files took "
 + (end - start) + " milliseconds");
 }

 private IndexWriter writer;

 public Indexer(String indexDir) throws IOException {
 Directory dir = FSDirectory.open(new File(indexDir));
 writer = new IndexWriter(dir,
 new StandardAnalyzer(
 Version.LUCENE_30),
 true,
 IndexWriter.MaxFieldLength.UNLIMITED);
 }

 public void close() throws IOException {
 writer.close();
 }

 public int index(String dataDir, FileFilter filter)
 throws Exception {

 File[] files = new File(dataDir).listFiles();

 for (File f: files) {
 if (!f.isDirectory() &&
 !f.isHidden() &&
 f.exists() &&
 f.canRead() &&
 (filter == null || filter.accept(f))) {
 indexFile(f);
 }
 }

 return writer.numDocs();
 }

Listing 1.1 Indexer, which indexes .txt files

Create index in
this directory

B

Index *.txt files
from this directoryC

Create Lucene
IndexWriter

D

Close IndexWriterE

Return number of
documents indexed

F

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

21Lucene in action: a sample application

 private static class TextFilesFilter implements FileFilter {
 public boolean accept(File path) {
 return path.getName().toLowerCase()
 .endsWith(".txt");
 }
 }

 protected Document getDocument(File f) throws Exception {
 Document doc = new Document();
 doc.add(new Field("contents", new FileReader(f)));
 doc.add(new Field("filename", f.getName(),
 Field.Store.YES, Field.Index.NOT_ANALYZED));
 doc.add(new Field("fullpath", f.getCanonicalPath(),
 Field.Store.YES, Field.Index.NOT_ANALYZED));
 return doc;
 }

 private void indexFile(File f) throws Exception {
 System.out.println("Indexing " + f.getCanonicalPath());
 Document doc = getDocument(f);
 writer.addDocument(doc);
 }
}

Indexer is simple. The static main method parses B, C the incoming arguments, cre-
ates an Indexer instance, locates G *.txt in the provided data directory, and prints
how many documents were indexed and how much time was required. The code
involving the Lucene APIs includes creating D and closing E the IndexWriter, creat-
ing H, I, J the document, adding 1) the document to the index, and returning the
number of documents indexed F.

 This example intentionally focuses on plain text files with .txt extensions to keep
things simple, while demonstrating Lucene’s usage and power. In chapter 7, we’ll
show you how to index other common document types, such as Microsoft Word or
Adobe PDF, using the Tika framework. Before seeing how to run Indexer, let’s talk a bit
about the Version parameter you see as the first argument to StandardAnalyzer.
VERSION PARAMETER

As of version 2.9, a number of classes now accept a parameter of type Version (from
the org.apache.lucene.util package) during construction. This class defines enum
constants, such as LUCENE_24 and LUCENE_29, referencing Lucene’s minor releases.
When you pass one of these values, it instructs Lucene to match the settings and behav-
ior of that particular release. Lucene will also emulate bugs present in that release and
fixed in later releases, if the Lucene developers felt that fixing the bug would break
backward compatibility of existing indexes. For each class that accepts a Version
parameter, you’ll have to consult the Javadocs to see what settings and bugs are
changed across versions. All examples in this book use LUCENE_30.

 Although some may see the Version argument as polluting Lucene’s API, it is in
fact a demonstration of both Lucene’s maturity and how seriously the Lucene develop-
ers take backward compatibility. The Version parameter gives Lucene the freedom to

Index .txt files only,
using FileFilter

G

Index file
content

H

Index
filename

I

Index file
full pathJ

Add document
to Lucene index1)
fix bugs and improve default settings for new users, over time, while still achieving

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

22 CHAPTER 1 Meet Lucene

backward compatibility when it’s important. It also places the choice—latest and great-
est versus strict backward compatibility—in your hands.

 Let’s use Indexer to build our first Lucene search index!
RUNNING INDEXER

The simplest way to run Indexer is to use Apache Ant. You’ll first have to unpack the
zip file containing source code with this book, which you can download from Man-
ning’s site at http://www.manning.com/hatcher3, and change to the directory lia2e.
If you don’t see the file build.xml in your working directory, you’re not in the right
directory. If this is the first time you’ve run any targets, Ant will compile all the exam-
ple sources, build the test index, and finally run Indexer, first prompting you for the
index and document directory, in case you’d like to change the defaults. It’s also fine
to run Indexer using Java from the command line; just ensure your classpath includes
the JARs under the lib subdirectory as well as the build/classes directory.

 By default the index will be placed under the subdirectory indexes/MeetLucene,
and the sample documents under the directory src/lia/meetlucene/data will be
indexed. This directory contains a sampling of modern open source licenses.

 Go ahead and type ant Indexer, and you should see output like this:

% ant Indexer

Index *.txt files in a directory into a Lucene index.
Use the Searcher target to search this index.

Indexer is covered in the "Meet Lucene" chapter.

Press return to continue...

Directory for new Lucene index: [indexes/MeetLucene]

Directory with .txt files to index: [src/lia/meetlucene/data]

Overwrite indexes/MeetLucene? (y, n) y
Running lia.meetlucene.Indexer...
Indexing /Users/mike/lia2e/src/lia/meetlucene/data/apache1.0.txt
Indexing /Users/mike/lia2e/src/lia/meetlucene/data/apache1.1.txt
Indexing /Users/mike/lia2e/src/lia/meetlucene/data/apache2.0.txt
Indexing /Users/mike/lia2e/src/lia/meetlucene/data/cpl1.0.txt
Indexing /Users/mike/lia2e/src/lia/meetlucene/data/epl1.0.txt
Indexing /Users/mike/lia2e/src/lia/meetlucene/data/freebsd.txt
Indexing /Users/mike/lia2e/src/lia/meetlucene/data/gpl1.0.txt
Indexing /Users/mike/lia2e/src/lia/meetlucene/data/gpl2.0.txt
Indexing /Users/mike/lia2e/src/lia/meetlucene/data/gpl3.0.txt
Indexing /Users/mike/lia2e/src/lia/meetlucene/data/lgpl2.1.txt
Indexing /Users/mike/lia2e/src/lia/meetlucene/data/lgpl3.txt
Indexing /Users/mike/lia2e/src/lia/meetlucene/data/lpgl2.0.txt
Indexing /Users/mike/lia2e/src/lia/meetlucene/data/mit.txt
Indexing /Users/mike/lia2e/src/lia/meetlucene/data/mozilla1.1.txt
Indexing /Users/mike/lia2e/src/lia/meetlucene/data/

➥ mozilla_eula_firefox3.txt
Indexing /Users/mike/lia2e/src/lia/meetlucene/data/

➥ mozilla_eula_thunderbird2.txt
Indexing 16 files took 757 milliseconds
BUILD SUCCESSFUL

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.manning.com/hatcher3
http://www.it-ebooks.info/

23Lucene in action: a sample application

Indexer prints the names of files it indexes, so you can see that it indexes only files
with the .txt extension. When it completes indexing, Indexer prints the number of
files it indexed and the time it took to do so. Because the reported time includes both
file-directory listing and indexing, you shouldn’t consider it an official performance
measure. In our example, each of the indexed files was small, but roughly 0.8 seconds
to index a handful of text files is reasonably impressive. Indexing throughput is clearly
important, and we cover it extensively in chapter 11. But generally, searching is far
more important since an index is built once but searched many times.

1.4.2 Searching an index

Searching in Lucene is as fast and simple as indexing; the power of this functionality is
astonishing, as chapters 3, 5, and 6 will show you. For now, let’s look at Searcher, a
command-line program that we’ll use to search the index created by Indexer. Keep in
mind that our Searcher serves the purpose of demonstrating the use of Lucene’s
search API. Your search application could also take the form of a web or desktop appli-
cation with a GUI, a web application, and so on.

 In the previous section, we indexed a directory of text files. The index in this
example resides in a directory of its own on the file system. We instructed Indexer to
create a Lucene index in the indexes/MeetLucene directory, relative to the directory
from which we invoked Indexer. As you saw in listing 1.1, this index contains the
indexed contents of each file, along with the absolute path. Now we need to use
Lucene to search that index in order to find files that contain a specific piece of text.
For instance, we may want to find all files that contain the keyword patent or redistrib-
ute, or we may want to find files that include the phrase modified version. Let’s do some
searching now.
USING SEARCHER TO IMPLEMENT A SEARCH

The Searcher program, originally written for Erik’s introductory Lucene article on
java.net, complements Indexer and provides command-line searching capability. List-
ing 1.2 shows Searcher in its entirety. It takes two command-line arguments:

The path to the index created with Indexer
A query to use to search the index

public class Searcher {

 public static void main(String[] args) throws IllegalArgumentException,
 IOException, ParseException {
 if (args.length != 2) {
 throw new IllegalArgumentException("Usage: java " +

Searcher.class.getName()
 + " <index dir> <query>");
 }

 String indexDir = args[0];
 String q = args[1];

Listing 1.2 Searcher, which searches a Lucene index

Parse provided
index directory

B

Parse provided
query stringC

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 1 Meet Lucene

 search(indexDir, q);
 }

 public static void search(String indexDir, String q)
 throws IOException, ParseException {

 Directory dir = FSDirectory.open(new File(indexDir));
 IndexSearcher is = new IndexSearcher(dir);

 QueryParser parser = new QueryParser(Version.LUCENE_30,
 "contents",
 new StandardAnalyzer(
 Version.LUCENE_30));
 Query query = parser.parse(q);
 long start = System.currentTimeMillis();
 TopDocs hits = is.search(query, 10);
 long end = System.currentTimeMillis();

 System.err.println("Found " + hits.totalHits +
 " document(s) (in " + (end - start) +
 " milliseconds) that matched query '" +
 q + "':");

 for(ScoreDoc scoreDoc : hits.scoreDocs) {
 Document doc = is.doc(scoreDoc.doc);
 System.out.println(doc.get("fullpath"));
 }

 is.close();
 }
}

Searcher, like its Indexer sibling, is quite simple and has only a few lines of code deal-
ing with Lucene:

We parse command-line arguments (index directory, query string).

We use Lucene’s Directory and IndexSearcher classes to open our index for search-
ing.

We use QueryParser to parse a human-readable search text into Lucene’s Query class.

Searching returns hits in the form of a TopDocs object.

Print details on the search (how many hits were found and time taken)

Note that the TopDocs object contains only references to the underlying documents.
In other words, instead of being loaded immediately upon search, matches are loaded
from the index in a lazy fashion—only when requested with the Index-

Searcher.doc(int) call. That call returns a Document object from which we can then
retrieve individual field values.

Close the IndexSearcher when we’re done.

RUNNING SEARCHER

Let’s run Searcher and find documents in our index using the query 'patent':

% ant Searcher

Open
index

D

Parse
query

E

Search
index

F

Write
search
stats

G

Retrieve
matching document

H

Display
filenameI

Close
IndexSearcherJ

B C

 D

 E

 F

 G

H I

 J
Search an index built using Indexer.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

25Understanding the core indexing classes

Searcher is described in the "Meet Lucene" chapter.

Press return to continue...

Directory of existing Lucene index built by

➥ Indexer: [indexes/MeetLucene]

Query: [patent]

Running lia.meetlucene.Searcher...
Found 8 document(s) (in 11 milliseconds) that

➥ matched query 'patent':
/Users/mike/lia2e/src/lia/meetlucene/data/cpl1.0.txt
/Users/mike/lia2e/src/lia/meetlucene/data/mozilla1.1.txt
/Users/mike/lia2e/src/lia/meetlucene/data/epl1.0.txt
/Users/mike/lia2e/src/lia/meetlucene/data/gpl3.0.txt
/Users/mike/lia2e/src/lia/meetlucene/data/apache2.0.txt
/Users/mike/lia2e/src/lia/meetlucene/data/lpgl2.0.txt
/Users/mike/lia2e/src/lia/meetlucene/data/gpl2.0.txt
/Users/mike/lia2e/src/lia/meetlucene/data/lgpl2.1.txt

BUILD SUCCESSFUL
Total time: 4 seconds

The output shows that 8 of the 16 documents we indexed with Indexer contain the
word patent and that the search took a meager 11 milliseconds. Because Indexer stores
files’ absolute paths in the index, Searcher can print them. It’s worth noting that stor-
ing the file path as a field was our decision and appropriate in this case, but from
Lucene’s perspective, it’s arbitrary metadata included in the indexed documents.

 You can use more sophisticated queries, such as 'patent AND freedom' or 'patent
AND NOT apache' or '+copyright +developers', and so on. Chapters 3, 5, and 6 cover
various aspects of searching, including Lucene’s query syntax.

 Our example indexing and searching applications give you a taste of what Lucene
makes possible. Its API usage is simple and unobtrusive. The bulk of the code (and
this applies to all applications interacting with Lucene) is plumbing relating to the
business purpose—in this case, Indexer’s parsing of command-line arguments and
directory listings to look for text files and Searcher’s code that prints matched file-
names based on a query to the standard output. But don’t let this fact, or the concise-
ness of the examples, tempt you into complacence: there’s a lot going on under the
covers of Lucene.

 To effectively leverage Lucene, you must understand how it works and how to
extend it when the need arises. The remainder of this book is dedicated to giving you
these missing pieces.

 Next we’ll drill down into the core classes Lucene exposes for indexing and
searching.

1.5 Understanding the core indexing classes
As you saw in our Indexer class, you need the following classes to perform the sim-
plest indexing procedure:
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 1 Meet Lucene

IndexWriter

Directory

Analyzer

Document

Field

Figure 1.5 shows how these classes each participate in the indexing process. What fol-
lows is a brief overview of each of these classes, to give you a rough idea of their role in
Lucene. We’ll use these classes throughout this book.

1.5.1 IndexWriter

IndexWriter is the central component of the indexing process. This class creates a
new index or opens an existing one, and adds, removes, or updates documents in the
index. Think of IndexWriter as an object that gives you write access to the index but
doesn’t let you read or search it. IndexWriter needs somewhere to store its index, and
that’s what Directory is for.

1.5.2 Directory

The Directory class represents the location of a Lucene index. It’s an abstract class
that allows its subclasses to store the index as they see fit. In our Indexer example, we
used FSDirectory.open to get a suitable concrete FSDirectory implementation that
stores real files in a directory on the file system, and passed that in turn to Index-
Writer’s constructor.

 Lucene includes a number of interesting Directory implementations, covered in
section 2.10. IndexWriter can’t index text unless it’s first been broken into separate
words, using an analyzer.

1.5.3 Analyzer

Before text is indexed, it’s passed through an analyzer. The analyzer, specified in the
IndexWriter constructor, is in charge of extracting those tokens out of text that
should be indexed and eliminating the rest. If the content to be indexed isn’t plain
text, you should first extract plain text from it before indexing. Chapter 7 shows how
to use Tika to extract text from the most common rich-media document formats. Ana-
lyzer is an abstract class, but Lucene comes with several implementations of it. Some

Directory

Field

Field

Field

Field

Document

Analyzer IndexWriter

Figure 1.5 Classes used
when indexing documents
with Lucene
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

27Understanding the core indexing classes

of them deal with skipping stop words (frequently used words that don’t help distin-
guish one document from the other, such as a, an, the, in, and on); some deal with con-
version of tokens to lowercase letters, so that searches aren’t case sensitive; and so on.
Analyzers are an important part of Lucene and can be used for much more than sim-
ple input filtering. For a developer integrating Lucene into an application, the choice
of analyzer(s) is a critical element of application design. You’ll learn much more
about them in chapter 4.

 The analysis process requires a document, containing separate fields to be
indexed.

1.5.4 Document

The Document class represents a collection of fields. Think of it as a virtual docu-
ment—a chunk of data, such as a web page, an email message, or a text file—that you
want to make retrievable at a later time. Fields of a document represent the docu-
ment or metadata associated with that document. The original source (such as a data-
base record, a Microsoft Word document, a chapter from a book, and so on) of
document data is irrelevant to Lucene. It’s the text that you extract from such binary
documents, and add as a Field instance, that Lucene processes. The metadata (such
as author, title, subject and date modified) is indexed and stored separately as fields
of a document.

NOTE When we refer to a document in this book, we mean a Microsoft Word,
RTF, PDF, or other type of a document; we aren’t talking about Lucene’s
Document class. Note the distinction in the case and font.

Lucene only deals with text and numbers. Lucene’s core doesn’t itself handle any-
thing but java.lang.String, java.io.Reader, and native numeric types (such as int
or float). Although various types of documents can be indexed and made searchable,
processing them isn’t as straightforward as processing purely textual or numeric con-
tent. You’ll learn more about handling nontext documents in chapter 7.

 In our Indexer, we’re concerned with indexing text files. So, for each text file we
find, we create a new instance of the Document class, populate it with fields (described
next), and add that document to the index, effectively indexing the file. Similarly, in
your application, you must carefully design how a Lucene document and its fields will
be constructed to match specific needs of your content sources and application.

 A document is simply a container for multiple fields; Field is the class that holds
the textual content to be indexed.

1.5.5 Field

Each document in an index contains one or more named fields, embodied in a class
called Field. Each field has a name and corresponding value, and a bunch of options,
described in section 2.4, that control precisely how Lucene will index the field’s value.
A document may have more than one field with the same name. In this case, the val-

ues of the fields are appended, during indexing, in the order they were added to the

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 1 Meet Lucene

document. When searching, it’s exactly as if the text from all the fields were concate-
nated and treated as a single text field.

 You’ll apply this handful of classes most often when using Lucene for indexing. To
implement basic search functionality, you need to be familiar with an equally small
and simple set of Lucene search classes.

1.6 Understanding the core searching classes
The basic search interface that Lucene provides is as straightforward as the one for
indexing. Only a few classes are needed to perform the basic search operation:

IndexSearcher

Term

Query

TermQuery

TopDocs

The following sections provide a brief introduction to these classes. We’ll expand on
these explanations in the chapters that follow, before we dive into more advanced
topics.

1.6.1 IndexSearcher

IndexSearcher is to searching what IndexWriter is to indexing: the central link to the
index that exposes several search methods. You can think of IndexSearcher as a class
that opens an index in a read-only mode. It requires a Directory instance, holding
the previously created index, and then offers a number of search methods, some of
which are implemented in its abstract parent class Searcher; the simplest takes a
Query object and an int topN count as parameters and returns a TopDocs object. A
typical use of this method looks like this:

Directory dir = FSDirectory.open(new File("/tmp/index"));
IndexSearcher searcher = new IndexSearcher(dir);
Query q = new TermQuery(new Term("contents", "lucene"));
TopDocs hits = searcher.search(q, 10);
searcher.close();

We cover the details of IndexSearcher in chapter 3, along with more advanced infor-
mation in chapters 5 and 6. Now we’ll visit the fundamental unit of searching, Term.

1.6.2 Term

A Term is the basic unit for searching. Similar to the Field object, it consists of a pair
of string elements: the name of the field and the word (text value) of that field. Note
that Term objects are also involved in the indexing process. However, they’re created
by Lucene’s internals, so you typically don’t need to think about them while index-
ing. During searching, you may construct Term objects and use them together with
TermQuery:
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

29Summary

Query q = new TermQuery(new Term("contents", "lucene"));
TopDocs hits = searcher.search(q, 10);

This code instructs Lucene to find the top 10 documents that contain the word lucene
in a field named contents, sorting the documents by descending relevance. Because
the TermQuery object is derived from the abstract parent class Query, you can use the
Query type on the left side of the statement.

1.6.3 Query

Lucene comes with a number of concrete Query subclasses. So far in this chapter
we’ve mentioned only the most basic Lucene Query: TermQuery. Other Query types are
BooleanQuery, PhraseQuery, PrefixQuery, PhrasePrefixQuery, TermRangeQuery,
NumericRangeQuery, FilteredQuery, and SpanQuery. All of these are covered in chap-
ters 3 and 5. Query is the common, abstract parent class. It contains several utility
methods, the most interesting of which is setBoost(float), which enables you to tell
Lucene that certain subqueries should have a stronger contribution to the final rele-
vance score than other subqueries. The setBoost method is described in
section 3.5.12. Next we cover TermQuery, which is the building block for most com-
plex queries in Lucene.

1.6.4 TermQuery

TermQuery is the most basic type of query supported by Lucene, and it’s one of the
primitive query types. It’s used for matching documents that contain fields with spe-
cific values, as you’ve seen in the last few paragraphs. Finally, wrapping up our brief
tour of the core classes used for searching, we touch on TopDocs, which represents the
result set returned by searching.

1.6.5 TopDocs

The TopDocs class is a simple container of pointers to the top N ranked search
results—documents that match a given query. For each of the top N results, TopDocs
records the int docID (which you can use to retrieve the document) as well as the
float score. Chapter 3 describes TopDocs in more detail.

1.7 Summary
In this chapter, you’ve gained some healthy background knowledge on the architec-
ture of search applications, as well as some initial Lucene knowledge. You now know
that Lucene is an information retrieval library, not a ready-to-use standalone product,
and that it most certainly doesn’t contain a web crawler, document filters, or a search
user interface, as people new to Lucene sometimes think. However, as confirmation of
Lucene’s popularity, there are numerous projects that integrate with or build on
Lucene, and that could be a good fit for your application. In addition, you can choose
among numerous ways to access Lucene’s functionality from programming environ-
ments other than Java. You’ve also learned a bit about how Lucene came to be and

about the key people and the organization behind it.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

30 CHAPTER 1 Meet Lucene

 In the spirit of Manning’s in Action books, we showed you two real, standalone
applications, Indexer and Searcher, which are capable of indexing and searching text
files stored in a file system. We then briefly described each of the Lucene classes used
in these two applications.

 Search is everywhere, and chances are that if you’re reading this book, you’re inter-
ested in search becoming an integral part of your applications. Depending on your needs,
integrating Lucene may be trivial, or it may involve challenging architectural consid-
erations.

 We’ve organized the next couple of chapters as we did this chapter. The first thing
we need to do is index some documents; we discuss this process next in detail in
chapter 2.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Building a search index
So you want to search files stored on your hard disk, or perhaps search your email,
web pages, or even data stored in a database. Lucene can help you do that. But
before you can search something, you’ll have to index it, and Lucene will help you
do that as well, as you’ll learn in this chapter.

 In chapter 1, you saw a simple indexing example. This chapter goes further and
teaches you about index updates, parameters you can use to tune the indexing pro-
cess, and more advanced indexing techniques that will help you get the most out of
Lucene. Here you’ll also find information about the structure of a Lucene index,
important issues to keep in mind when accessing a Lucene index with multiple
threads and processes, the transactional semantics of Lucene’s indexing API, shar-
ing an index over remote file systems, and the locking mechanism that Lucene
employs to prevent concurrent index modification.

This chapter covers
Performing basic index operations

Boosting documents and fields during indexing

Indexing dates, numbers, and sortable fields

Advanced indexing topics
31

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

32 CHAPTER 2 Building a search index

 Despite the great detail we’ll go into, don’t forget the big picture: indexing is sim-
ply a means to an end. What matters is the search experience your applications pres-
ent to your users; indexing is “merely” the necessary evil you must go through in order
to enable a strong user search experience. So although there are fun details here
about indexing, your time is generally better spent working on how to improve the
search experience. In nearly every application, the search features are far more
important than the details of indexing. That being said, implementing search features
requires important corresponding steps during indexing, as you’ll see here.

 Be warned: this is a rather long chapter. The length is necessary because Lucene
exposes many details of indexing. The good news is that most applications don’t need
to use any of Lucene’s advanced indexing options. In fact, sections 2.1, 2.2, and 2.3
may be all that’s needed for many applications, or to simply get started. If you’re the
curious type, and you just won’t leave any stone unturned, or your application needs
to use all the bells and whistles, the rest of this chapter is for you!

 Let’s begin now with Lucene’s conceptual model for content.

2.1 How Lucene models content
Let’s first walk through its conceptual approach to modeling content. We’ll start with
Lucene’s fundamental units of indexing and searching, documents and fields, then
move on to important differences between Lucene and the more structured model of
modern databases.

2.1.1 Documents and fields

A document is Lucene’s atomic unit of indexing and searching. It’s a container that
holds one or more fields, which in turn contain the “real” content. Each field has a
name to identify it, a text or binary value, and a series of detailed options that describe
what Lucene should do with the field’s value when you add the document to the
index. To index your raw content sources, you must first translate it into Lucene’s doc-
uments and fields. Then, at search time, it’s the field values that are searched; for
example, users could search for “title:lucene” to find all documents whose title field
value contains the term lucene.

 At a high level, there are three things Lucene can do with each field:

The value may be indexed (or not). A field must be indexed if you intend to
search on it. Only text fields may be indexed (binary valued fields may only be
stored). When a field is indexed, tokens are first derived from its text value,
using a process called analysis, and then those tokens are enrolled into the
index. See section 2.4.1 for options that control how the field’s value is indexed.
If it’s indexed, the field may also optionally store term vectors, which are collec-
tively a miniature inverted index for that one field, allowing you to retrieve all
of its tokens. This enables certain advanced use cases, like searching for docu-
ments similar to an existing one (more uses are covered in section 5.7). See sec-

tion 2.4.3 for options that control how term vectors are indexed.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

33How Lucene models content

Separately, the field’s value may be stored, meaning a verbatim copy of the
unanalyzed value is written away in the index so that it can later be retrieved.
This is useful for fields you’d like to present unchanged to the user, such as the
document’s title or abstract. See section 2.4.2 for options that control how the
field’s values are stored.

How you factor your raw content sources into Lucene’s documents and fields is typi-
cally an iterative design process that’s application dependent. Lucene couldn’t care
less which fields you use, what their names are, and so forth. Documents usually have
quite a few fields, such as title, author, date, abstract, body text, URL, and keywords.
Sometimes a catchall field is used, combining all text into a single field for searching.
Once you’ve created your document, you add it to your index. Then, at search time,
you can retrieve the documents that match each query and use their stored fields to
present results to the end user.

 Lucene is often compared to a database, because both can store content and
retrieve it later. But there are important differences. The first one is Lucene’s flexible
schema.

NOTE When you retrieve a document from the index, only the stored fields will
be present. For example, fields that were indexed but not stored won’t be
in the document. This behavior is frequently a source of confusion.

2.1.2 Flexible schema

Unlike a database, Lucene has no notion of a fixed global schema. In other words,
each document you add to the index is a blank slate and can be completely different
from the document before it: it can have whatever fields you want, with any indexing
and storing and term vector options. It need not have the same fields as the previous
document you added. It can even have the same fields, with different options, than in
other documents.

 This feature is quite powerful: it allows you to take an iterative approach to build-
ing your index. You can jump right in and index documents without having to prede-
sign the schema. If you change your mind about your fields, start adding additional
fields later on and then go back and reindex previously added documents, or rebuild
the index.

 Lucene’s flexible schema also means a single index can hold documents that rep-
resent different entities. For instance, you could have documents that represent retail
products with fields such as name and price, and documents that represent people
with fields such as name, age, and gender. You could also include unsearchable
“meta” documents, which simply hold metadata about the index or your application
(such as what time the index was last updated or which product catalog was indexed)
but are never included in search results.

 The second major difference between Lucene and databases is that Lucene
requires you to flatten, or denormalize, your content when you index it.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

34 CHAPTER 2 Building a search index

2.1.3 Denormalization

One common challenge is resolving any “mismatch” between the structure of your
documents versus what Lucene can represent. For example, XML can describe a
recursive document structure by nesting tags within one another. A database can have
an arbitrary number of joins, via primary and secondary keys, relating tables to one
other. Microsoft’s Object Linking & Embedding (OLE) documents can reference
other documents for embedding. Yet Lucene documents are flat. Such recursion and
joins must be denormalized when creating your documents. Open source projects
that build on Lucene, like Hibernate Search, Compass, LuSQL, DBSight, Browse
Engine, and Oracle/Lucene integration, each has different and interesting
approaches for handling this denormalization.

 Now that you understand how Lucene models documents at a conceptual level, it’s
time to visit the steps of the indexing process at a high level.

2.2 Understanding the indexing process
As you saw in chapter 1, only a few meth-
ods of Lucene’s public API need to be
called in order to index a document. As
a result, from the outside, indexing with
Lucene looks like a deceptively simple
and monolithic operation. But behind
the simple API lies an interesting and rel-
atively complex set of operations that we
can break down into three major and
functionally distinct groups, as described
in the following sections and shown in
figure 2.1.

 During indexing, the text is first
extracted from the original content and
used to create an instance of Document,
containing Field instances to hold the
content. The text in the fields is then
analyzed to produce a stream of tokens.
Finally, those tokens are added to the
index in a segmented architecture. Let’s
talk about text extraction first.

2.2.1 Extracting text and creating the document

To index data with Lucene, you must extract plain text from it, the format that
Lucene can digest, and then create a Lucene document. In chapter 1, we limited our
examples to indexing and searching .txt files, which allowed us to easily slurp their
content and use it to populate Field instances. But things aren’t always that simple:

HTML PDF Microsoft
Word

Extract
Text

Analysis

Index

Extract
Text

Extract
Text

Figure 2.1 Indexing with Lucene breaks down into
three main operations: extracting text from source
documents, analyzing it, and saving it to the index.
the Build Document step from figure 1.4 has quite a bit of work hidden behind it.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

35Understanding the indexing process

 Suppose you need to index a set of manuals in PDF format. To prepare these man-
uals for indexing, you must first find a way to extract the textual information from the
PDF documents and use that extracted text to create Lucene documents and their
fields. No methods would accept a PDF Java type, even if such a type existed. You face
the same situation if you want to index Microsoft Word documents or any document
format other than plain text. Even when you’re dealing with XML or HTML docu-
ments, which use plain-text characters, you still need to be smart about preparing the
data for indexing, to avoid indexing the XML elements or HTML tags and index only
the real text.

 The details of text extraction are in chapter 7 where we describe the Tika frame-
work, which makes it almost too simple to extract text from documents in diverse for-
mats. Once you have the text you’d like to index, and you’ve created a document with
all fields you’d like to index, all text must then be analyzed.

2.2.2 Analysis

Once you’ve created Lucene documents populated with fields, you can call Index-
Writer’s addDocument method and hand your data off to Lucene to index. When you
do that, Lucene first analyzes the text, a process that splits the textual data into a
stream of tokens, and performs a number of optional operations on them. For
instance, the tokens could be lowercased before indexing, to make searches case
insensitive, using Lucene’s LowerCaseFilter. Typically it’s also desirable to remove all
stop words, which are frequent but meaningless tokens, from the input (for example
a, an, the, in, on, and so on, in English text) using StopFilter. Similarly, it’s common
to process input tokens to reduce them to their roots, for example by using Porter-
StemFilter for English text (similar classes exist in Lucene’s contrib analysis module,
for other languages). The combination of an original source of tokens, followed by
the series of filters that modify the tokens produced by that source, make up the ana-
lyzer. You are also free to build your own analyzer by chaining together Lucene’s
token sources and filters, or your own, in customized ways.

 This important step, covered under the Analyze Document step in figure 1.4, is
called analysis. The input to Lucene can be analyzed in so many interesting and useful
ways that we cover this process in detail in chapter 4. The analysis process produces a
stream of tokens that are then written into the files in the index.

2.2.3 Adding to the index

After the input has been analyzed, it’s ready to be added to the index. Lucene stores
the input in a data structure known as an inverted index. This data structure makes
efficient use of disk space while allowing quick keyword lookups. What makes this
structure inverted is that it uses tokens extracted from input documents as lookup keys
instead of treating documents as the central entities, much like the index of this book
references the page number(s) where a concept occurs. In other words, rather than
trying to answer the question “What words are contained in this document?” this struc-

ture is optimized for providing quick answers to “Which documents contain word X?”

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 2 Building a search index

 If you think about your favorite web search
engine and the format of your typical query, you’ll
see that this is exactly the query that you want to be as
quick as possible. The core of today’s web search
engines are inverted indexes.

 Lucene’s index directory has a unique seg-
mented architecture, which we describe next.
INDEX SEGMENTS

Lucene has a rich and detailed index file format that
has been carefully optimized with time. Although you
don’t need to know the details of this format in order
to use Lucene, it’s still helpful to have some basic understanding at a high level. If you
find yourself curious about all the details, see appendix B.

 Every Lucene index consists of one or more segments, as depicted in figure 2.2.
Each segment is a standalone index, holding a subset of all indexed documents. A
new segment is created whenever the writer flushes buffered added documents and
pending deletions into the directory. At search time, each segment is visited separately
and the results are combined.

 Each segment, in turn, consists of multiple files, of the form _X.<ext>, where X is
the segment’s name and <ext> is the extension that identifies which part of the index
that file corresponds to. There are separate files to hold the different parts of the
index (term vectors, stored fields, inverted index, and so on). If you’re using the com-
pound file format (which is enabled by default but you can change using Index-
Writer.setUseCompoundFile), then most of these index files are collapsed into a
single compound file: _X.cfs. This reduces the number of open file descriptors during
searching, at a small cost of searching and indexing performance. Chapter 11 covers
this trade-off in more detail.

 There’s one special file, referred to as the segments file and named segments_<N>,
that references all live segments. This file is important! Lucene first opens this file, and
then opens each segment referenced by it. The value <N>, called “the generation,” is
an integer that increases by one every time a change is committed to the index.

 Naturally, over time the index will accumulate many segments, especially if you
open and close your writer frequently. This is fine. Periodically, IndexWriter will
select segments and coalesce them by merging them into a single new segment and
then removing the old segments. The selection of segments to be merged is governed
by a separate MergePolicy. Once merges are selected, their execution is done by the
MergeScheduler. These classes are advanced topics, covered in section 2.13.6.

 Let’s now walk through the basic operations (add, update, delete) you do when
indexing.

2.3 Basic index operations
We’ve covered Lucene’s conceptual approach to modeling documents, and then we
described the logical steps of the indexing process. Now it’s time to look at some real

Segment 0

Segment 1

Segment 2

Segment 3

...

segments_N

Figure 2.2 Segmented structure
of a Lucene inverted index
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

37Basic index operations

code, using Lucene’s APIs to add, remove, and update documents. We start with add-
ing documents to an index since that’s the most frequent operation.

2.3.1 Adding documents to an index

Let’s look at how to create a new index and add documents to it. There are two meth-
ods for adding documents:

addDocument(Document)—Adds the document using the default analyzer,
which you specified when creating the IndexWriter, for tokenization.
addDocument(Document, Analyzer)—Adds the document using the provided
analyzer for tokenization. But be careful! In order for searches to work cor-
rectly, you need the analyzer used at search time to “match” the tokens pro-
duced by the analyzers at indexing time. See section 4.1.2 for more details.

Listing 2.1 shows all the steps necessary to create a new index and add two tiny docu-
ments. In this example, the content for the documents is contained entirely in the
source code as Strings, but in the real world the content for your documents would
typically come from an external source. The setUp() method is called by the JUnit
framework before every test.

public class IndexingTest extends TestCase {
 protected String[] ids = {"1", "2"};
 protected String[] unindexed = {"Netherlands", "Italy"};
 protected String[] unstored = {"Amsterdam has lots of bridges",
 "Venice has lots of canals"};
 protected String[] text = {"Amsterdam", "Venice"};

 private Directory directory;

 protected void setUp() throws Exception {
 directory = new RAMDirectory();

 IndexWriter writer = getWriter();

 for (int i = 0; i < ids.length; i++)
{

 Document doc = new Document();
 doc.add(new Field("id", ids[i],
 Field.Store.YES,
 Field.Index.NOT_ANALYZED));
 doc.add(new Field("country", unindexed[i],
 Field.Store.YES,
 Field.Index.NO));
 doc.add(new Field("contents", unstored[i],
 Field.Store.NO,
 Field.Index.ANALYZED));
 doc.add(new Field("city", text[i],
 Field.Store.YES,
 Field.Index.ANALYZED));
 writer.addDocument(doc);

Listing 2.1 Adding documents to an index

Run before every testB

Create
IndexWriter

C

Add documentsD
 }

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

E

38 CHAPTER 2 Building a search index

 writer.close();
 }

 private IndexWriter getWriter() throws IOException {
 return new IndexWriter(directory, new WhitespaceAnalyzer(),
 IndexWriter.MaxFieldLength.UNLIMITED);
 }

 protected int getHitCount(String fieldName, String searchString)
 throws IOException {
 IndexSearcher searcher = new IndexSearcher(directory);
 Term t = new Term(fieldName, searchString);
 Query query = new TermQuery(t);
 int hitCount = TestUtil.hitCount(searcher, query);
 searcher.close();
 return hitCount;
 }

 public void testIndexWriter() throws IOException {
 IndexWriter writer = getWriter();
 assertEquals(ids.length, writer.numDocs());
 writer.close();
 }

 public void testIndexReader() throws IOException {
 IndexReader reader = IndexReader.open(directory);
 assertEquals(ids.length, reader.maxDoc());
 assertEquals(ids.length, reader.numDocs());
 reader.close();
 }
}

The setUp() method first creates a new RAMDirectory, to hold the index.

Next, it creates an IndexWriter on this Directory. We created the getWriter conve-
nience method because we need to get the IndexWriter in many places.

Finally, setUp() iterates over our content, creating a Document and Fields, and then
adds the Document to the index.

We create the IndexSearcher and execute a basic single-term query with the specified
string, returning the number of documents that matched.

We verify the documents counts according to IndexReader and IndexWriter matches
how many documents we added.

The index contains two documents, each representing a country and a city in that
country, whose text is analyzed with WhitespaceAnalyzer. Because setUp() is called
before each test is executed, each test runs against a freshly created index.

 In the getWriter method, we create the IndexWriter with three arguments:

Directory, where the index is stored.
The analyzer to use when indexing tokenized fields (analysis is covered in chap-
ter 4).

Create IndexWriter C

ECreate new searcher

Build simple
single-term
queryF

GGet number of hits

Verify writer
document countH

Verify reader
document count

I

 B

 C

 D

 F G

H I
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

39Basic index operations

MaxFieldLength.UNLIMITED, a required argument that tells IndexWriter to
index all tokens in the document (section 2.7 describes this setting in more
detail).

IndexWriter will detect that there’s no prior index in this Directory and create a new
one. If there were an existing index, IndexWriter would simply add to it.

NOTE The IndexWriter constructors that don’t take an explicit boolean cre-
ate argument will first check whether an index already exists in the pro-
vided Directory. If one exists, IndexWriter will append to that index.
Otherwise, it will create a new index in the Directory.

There are numerous IndexWriter constructors. Some explicitly take a create argu-
ment, allowing you to force a new index to be created over an existing one. More
advanced constructors allow you to specify your own IndexDeletionPolicy or Index-
Commit for expert use cases, as described in section 2.13.

 Once the index is created, we construct each document using the for loop. It’s
quite simple: first we create a new empty Document, then one by one we add each
Field we’d like to have on the document. Each document gets four fields, each with
different options (Field options are described in section 2.4). Finally, we call
writer.addDocument to index the document. After the for loop, we close the writer,
which commits all changes to the directory. We could also have called commit(),
which would commit the changes to the directory but leave the writer open for fur-
ther changes.

 Notice how we use the static method TestUtil.getHitCount to get the number of
hits for a query. TestUtil is a utility class, included with the book’s source code, that
includes a small number of common methods that we reuse throughout the book. Its
methods are self-explanatory, and as we use each for the first time we’ll show you the
source code. For example, this is the one-line method hitCount:

public static int hitCount(IndexSearcher searcher, Query query)

➥ throws IOException {
 return searcher.search(query, 1).totalHits;
}

This method runs the search and returns the total number of hits that matched. Next
let’s look at the opposite of adding documents: deleting them.

2.3.2 Deleting documents from an index

Although most applications are more concerned with getting documents into a
Lucene index, some also need to remove them. For instance, a newspaper publisher
may want to keep only the last week’s worth of news in its searchable indexes. Other
applications may want to remove all documents that contain a certain term or replace
an old version of a document with a newer one whenever the original source of the
document has changed. IndexWriter provides various methods to remove documents
from an index:
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 2 Building a search index

deleteDocuments(Term) deletes all documents containing the provided term.
deleteDocuments(Term[])deletes all documents containing any of the terms in
the provided array.
deleteDocuments(Query) deletes all documents matching the provided query.
deleteDocuments(Query[])deletes all documents matching any of the queries
in the provided array.
deleteAll() deletes all documents in the index. This is exactly the same as
closing the writer and opening a new writer with create=true, without having
to close your writer.

If you intend to delete a single document by Term, you must ensure you’ve indexed a
Field on every document and that all field values are unique so that each document
can be singled out for deletion. This is the same concept as a primary key column in a
database table, but in no way is it enforced by Lucene. You can name this field any-
thing you want (ID is common). This field should be indexed as an unanalyzed field
(see section 2.4.1) to ensure the analyzer doesn’t break it up into separate tokens.
Then, use the field for document deletion like this:

writer.deleteDocuments(new Term("ID", documentID));

Be careful with these methods! If you accidentally specify the wrong Term (for exam-
ple, a Term from an ordinary indexed text field instead of your unique ID field), you
could easily and quickly delete a great many documents from your index. In each
case, the deletes aren’t done immediately. Instead, they’re buffered in memory, just
like the added documents, and periodically flushed to the directory. As with added
documents, you must call commit() or close() on your writer to commit the changes
to the index. Even once the deletes are flushed to the directory, the disk space con-
sumed by that document isn’t immediately freed. Rather, the documents are simply
marked as deleted. Section 2.13.2 describes this process in more detail.

 Let’s look at listing 2.2 to see deleteDocuments in action. We created two test cases
to show the deleteDocuments methods and to illustrate the effect of optimizing after
deletion.

public void testDeleteBeforeOptimize() throws IOException {
 IndexWriter writer = getWriter();
 assertEquals(2, writer.numDocs());
 writer.deleteDocuments(new Term("id", "1"));
 writer.commit();
 assertTrue(writer.hasDeletions());
 assertEquals(2, writer.maxDoc());
 assertEquals(1, writer.numDocs());
 writer.close();
}

public void testDeleteAfterOptimize() throws IOException {

Listing 2.2 Deleting documents from an index

Verify 2 docs in index

Delete first document

Verify index
contains deletions

B

Verify 1 indexed
doc, 1 deleted docC
 IndexWriter writer = getWriter();

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

41Basic index operations

 assertEquals(2, writer.numDocs());
 writer.deleteDocuments(new Term("id", "1"));
 writer.optimize();
 writer.commit();
 assertFalse(writer.hasDeletions());
 assertEquals(1, writer.maxDoc());
 assertEquals(1, writer.numDocs());
 writer.close();
}

This test demonstrates the use of the hasDeletions() method to check if an index
contains any documents marked for deletion.

This code shows the difference between two methods that are often mixed up: max-
Doc()and numDocs(). The former returns the total number of deleted or undeleted
documents in the index, whereas the latter returns the number of undeleted docu-
ments in an index. Because our index contains two documents, one of which is
deleted, numDocs() returns 1 and maxDocs() returns 2.

In the method testDeleteAfterOptimize(), we force Lucene to merge index seg-
ments, after deleting one document, by optimizing the index. Then, the maxDoc()
method returns 1 rather than 2, because after a delete and optimize, Lucene truly
removes the deleted document. Only one document remains in the index.

NOTE Users often confuse the maxDoc() and numDocs() methods in Index-
Writer and IndexReader. The first method, maxDoc() returns the total
number of deleted or undeleted documents in the index, whereas num-
Docs() returns only the number of undeleted documents.

We’ve finished adding and deleting documents; now we’ll visit updating documents.

2.3.3 Updating documents in the index

In many applications, after initially indexing a document you may still want to make
further changes to it, requiring you to reindex it. For example, if your documents are
crawled from a web server, one way to detect that the content has changed is to look
for a changed ETag HTTP header. If it’s different from when you last indexed the doc-
ument, that means changes have been made to the content and you should update
the document in the index.

 In some cases you may want to update only certain fields of the document. Perhaps
the title changed but the body was unchanged. Unfortunately, although this is a fre-
quently requested feature, Lucene can’t do that: instead, it deletes the entire previous
document and then adds a new document to the index. This requires that the new
document contains all fields, even unchanged ones, from the original document.
IndexWriter provides two convenience methods to replace a document in the index:

updateDocument(Term, Document) first deletes all documents containing the
provided term and then adds the new document using the writer’s default
analyzer.

Optimize to
compact deletions

D

Verify 1 indexed
doc, 0 deleted doc

 B

 C

 D
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

42 CHAPTER 2 Building a search index

updateDocument(Term, Document, Analyzer) does the same but uses the pro-
vided analyzer instead of the writer’s default analyzer.

The updateDocument methods are probably the most common way to handle deletion
because they’re typically used to replace a single document in the index that has
changed. Note that these methods are simply shorthand for first calling delete-
Documents(Term) and then addDocument. Use updateDocument like this:

writer.updateDocument(new Term("ID", documenteId), newDocument);

Because updateDocument uses deleteDocuments under the hood, the same caveat
applies: be sure the Term you pass in uniquely identifies the one document you intend
to update. Listing 2.3 is an example.

public void testUpdate() throws IOException {

 assertEquals(1, getHitCount("city", "Amsterdam"));

 IndexWriter writer = getWriter();

 Document doc = new Document();
 doc.add(new Field("id", "1",
 Field.Store.YES,
 Field.Index.NOT_ANALYZED));
 doc.add(new Field("country", "Netherlands",
 Field.Store.YES,
 Field.Index.NO));
 doc.add(new Field("contents",
 "Den Haag has a lot of museums",
 Field.Store.NO,
 Field.Index.ANALYZED));
 doc.add(new Field("city", "Den Haag",
 Field.Store.YES,
 Field.Index.ANALYZED));

 writer.updateDocument(new Term("id", "1"),
 doc);
 writer.close();

 assertEquals(0, getHitCount("city", "Amsterdam"));
 assertEquals(1, getHitCount("city", "Den Haag"));
}

We create a new document that will replace the original document with id 1. Then we
call updateDocument to replace the original one. We have effectively updated one of
the documents in the index.

 We’ve covered the basics on how to add, delete, and update documents. Now it’s
time to delve into all the interesting field-specific options available to you when you’re
creating a document.

Listing 2.3 Updating indexed Documents

Create new
document
for "Haag"

Replace with
new version

Verify old
document is gone

Verify new
document is indexed
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

43Field options

2.4 Field options
Field is perhaps the most important class when indexing documents: it’s the actual
class that holds each value to be indexed. When you create a field, you can specify
numerous options to control what Lucene should do with that field once you add the
document to the index. We touched on these options at a high level at the start of this
chapter; now it’s time to revisit this topic and enumerate each in more detail.

 The options break down into multiple independent categories, which we cover in
each subsection which follows: indexing, storing, and using term vectors. After
describing those options, we’ll see other values (besides String) that you can assign to
a field. Finally we’ll show the common combinations of field options.

 Let’s start with the options to control how the field’s value is added to the inverted
index.

2.4.1 Field options for indexing

The options for indexing (Field.Index.*) control how the text in the field will be
made searchable via the inverted index. Here are the choices:

Index.ANALYZED—Use the analyzer to break the field’s value into a stream of
separate tokens and make each token searchable. This option is useful for nor-
mal text fields (body, title, abstract, etc.).
Index.NOT_ANALYZED—Do index the field, but don’t analyze the String value.
Instead, treat the Field’s entire value as a single token and make that token
searchable. This option is useful for fields that you’d like to search on but that
shouldn’t be broken up, such as URLs, file system paths, dates, personal names,
Social Security numbers, and telephone numbers. This option is especially use-
ful for enabling “exact match” searching. We indexed the id field in listings 2.1
and 2.3 using this option.
Index.ANALYZED_NO_NORMS—A variant of Index.ANALYZED that doesn’t store
norms information in the index. Norms record index-time boost information in
the index but can be memory consuming when you’re searching. Section 2.5.3
describes norms in detail.
Index.NOT_ANALYZED_NO_NORMS—Just like Index.NOT_ANALYZED, but also
doesn’t store norms. This option is frequently used to save index space and
memory usage during searching, because single-token fields don’t need the
norms information unless they’re boosted.
Index.NO—Don’t make this field’s value available for searching.

When Lucene builds the inverted index, by default it stores all necessary information
to implement the Vector Space Model. This model requires the count of every term
that occurred in the document, as well as the positions of each occurrence (needed,
for example, by phrase searches). But sometimes you know the field will be used only
for pure Boolean searching and need not contribute to the relevance score. Fields
used only for filtering, such as entitlements or date filtering, are a common example.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

44 CHAPTER 2 Building a search index

In this case, you can tell Lucene to skip indexing the term frequency and positions by
calling Field.setOmitTermFreqAndPositions(true). This approach will save some
disk space in the index, and may also speed up searching and filtering, but will silently
prevent searches that require positional information, such as PhraseQuery and Span-
Query, from working. Let’s move on to controlling how Lucene stores a field’s value.

2.4.2 Field options for storing fields

The options for stored fields (Field.Store.*) determine whether the field’s exact
value should be stored away so that you can later retrieve it during searching:

Store.YES—Stores the value. When the value is stored, the original String in
its entirety is recorded in the index and may be retrieved by an IndexReader.
This option is useful for fields that you’d like to use when displaying the search
results (such as a URL, title, or database primary key). Try not to store very large
fields, if index size is a concern, as stored fields consume space in the index.
Store.NO—Doesn’t store the value. This option is often used along with
Index.ANALYZED to index a large text field that doesn’t need to be retrieved
in its original form, such as bodies of web pages, or any other type of text
document.

Lucene includes a helpful utility class, CompressionTools, that exposes static methods
to compress and decompress byte arrays. Under the hood it uses Java’s built-in
java.util.Zip classes. You can use CompressionTools to compress values before stor-
ing them in Lucene. Note that although doing so will save space in your index,
depending on how compressible the content is, it will also slow down indexing and
searching. You’re spending more CPU in exchange for less disk space used, which for
many applications isn’t a good trade-off. If the field values are small, compression is
rarely worthwhile.

 Let’s visit options for controlling how term vectors are indexed.

2.4.3 Field options for term vectors

Sometimes when you index a document you’d like to retrieve all its unique terms at
search time. One common use is to speed up highlighting the matched tokens in
stored fields. (Highlighting is covered more in sections 8.3 and 8.4.) Another use is to
enable a link, “Find similar documents,” that when clicked runs a new search using
the salient terms in an original document. Yet another example is automatic categori-
zation of documents. Section 5.9 shows concrete examples of using term vectors once
they’re in your index.

 But what exactly are term vectors? Term vectors are a mix between an indexed
field and a stored field. They’re similar to a stored field because you can quickly
retrieve all term vector fields for a given document: term vectors are keyed first by
document ID. But then, they’re keyed secondarily by term, meaning they store a min-
iature inverted index for that one document. Unlike a stored field, where the original
String content is stored verbatim, term vectors store the actual separate terms that
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

45Field options

were produced by the analyzer, allowing you to retrieve all terms for each field, and
the frequency of their occurrence within the document, sorted in lexicographic
order. Because the tokens coming out of an analyzer also have position and offset
information (see section 4.2.1), you can choose separately whether these details are
also stored in your term vectors by passing these constants as the fourth argument to
the Field constructor:

TermVector.YES—Records the unique terms that occurred, and their counts,
in each document, but doesn’t store any positions or offsets information
TermVector.WITH_POSITIONS—Records the unique terms and their counts,
and also the positions of each occurrence of every term, but no offsets
TermVector.WITH_OFFSETS—Records the unique terms and their counts, with
the offsets (start and end character position) of each occurrence of every term,
but no positions
TermVector.WITH_POSITIONS_OFFSETS—Stores unique terms and their counts,
along with positions and offsets
TermVector.NO—Doesn’t store any term vector information

Note that you can’t index term vectors unless you’ve also turned on indexing for the
field. Stated more directly: if Index.NO is specified for a field, you must also specify
TermVector.NO.

 We’re done with the detailed options to control indexing, storing, and term vec-
tors. Now let’s see how you can create a field with values other than String.

2.4.4 Reader, TokenStream, and byte[] field values

There are a few other constructors for the Field object that allow you to use values
other than String:

Field(String name, Reader value, TermVector termVector) uses a Reader
instead of a String to represent the value. In this case, the value can’t be stored
(the option is hardwired to Store.NO) and is always analyzed and indexed
(Index.ANALYZED). This can be useful when holding the full String in memory
might be too costly or inconvenient—for example, for very large values.
Field(String name, Reader value), like the previous value, uses a Reader
instead of a String to represent the value but defaults termVector to Term-
Vector.NO.
Field(String name, TokenStream tokenStream, TermVector termVector)
allows you to preanalyze the field value into a TokenStream. Likewise, such
fields aren’t stored and are always analyzed and indexed.
Field(String name, TokenStream tokenStream), like the previous value, allows
you to preanalyze the field value into a TokenStream but defaults termVector to
TermVector.NO.
Field(String name, byte[] value, Store store) is used to store a binary field.
Such fields are never indexed (Index.NO) and have no term vectors (Term-

Vector.NO). The store argument must be Store.YES.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

46 CHAPTER 2 Building a search index

Field(String name, byte[] value, int offset, int length, Store store),
like the previous value, indexes a binary field but allows you to reference a sub-
slice of the bytes starting at offset and running for length bytes.

It should be clear by now that Field is quite a rich class and exposes a number of
options to express to Lucene precisely how its value should be handled. Let’s see some
examples of how these options are typically combined in practice.

2.4.5 Field option combinations

You’ve now seen all the options for the three categories (indexing, storing, and term
vectors) you can use to control how Lucene handles a field. These options can nearly
be set independently, resulting in a number of possible combinations. Table 2.1 lists
commonly used options and their example usage, but remember you are free to set
the options however you’d like.

Next let’s see how to index fields we intend to sort on.

2.4.6 Field options for sorting

When returning documents that match a search, Lucene orders them by their score
by default. Sometimes, you need to order results using other criteria. For instance, if
you’re searching email messages, you may want to order results by sent or received
date, or perhaps by message size or sender. Section 5.2 describes sorting in more
detail, but in order to perform field sorting, you must first index the fields correctly.

 If the field is numeric, use NumericField, covered in section 2.6.1, when adding it
to the document, and sorting will work correctly. If the field is textual, such as the
sender’s name in an email message, you must add it as a Field that’s indexed but not
analyzed using Field.Index.NOT_ANALYZED. If you aren’t doing any boosting for the
field, you should index it without norms, to save disk space and memory, using
Field.Index.NOT_ANALYZED_NO_NORMS:

Table 2.1 A summary of various field characteristics, showing you how fields are created, along with
common usage examples

Index Store TermVector Example usage

NOT_ANALYZED_
NO_NORMS

YES NO Identifiers (filenames, primary keys),
telephone and Social Security num-
bers, URLs, personal names, dates,
and textual fields for sorting

ANALYZED YES WITH_POSITIONS_OFFSETS Document title, document abstract

ANALYZED NO WITH_POSITIONS_OFFSETS Document body

NO YES NO Document type, database primary key
(if not used for searching)

NOT_ANALYZED NO NO Hidden keywords
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

47Field options

new Field("author", "Arthur C. Clark", Field.Store.YES,
 Field.Index.NOT_ANALYZED_NO_NORMS);

NOTE Fields used for sorting must be indexed and must contain one token per
document. Typically this means using Field.Index.NOT_ANALYZED or
Field.Index.NOT_ANALYZED_NO_NORMS (if you’re not boosting docu-
ments or fields), but if your analyzer will always produce only one token,
such as KeywordAnalyzer (covered in section 4.7.3), Field.Index.
ANALYZED or Field.Index.ANALYZED_NO_NORMS will work as well.

Now that we’re done with the exhaustive indexing options for fields, let’s visit one
final field topic, multivalued fields.

2.4.7 Multivalued fields

Suppose your documents have an author field, but sometimes there’s more than one
author for a document. One way to handle this would be to loop through all the
authors, appending them into a single String, which you could then use to create a
Lucene field. Another, perhaps more elegant way is to keep adding the same Field
with different value, like this:

Document doc = new Document();
for (String author : authors) {
 doc.add(new Field("author", author,
 Field.Store.YES,
 Field.Index.ANALYZED));
}

This is perfectly acceptable and encouraged, as it’s a natural way to represent a field
that legitimately has multiple values. Internally, whenever multiple fields with the
same name appear in one document, both the inverted index and term vectors will
logically append the tokens of the field to one another, in the order the fields were
added. You can use advanced options during analysis that control certain important
details of this appending, notably how to prevent searches from matching across two
different field values; see section 4.7.1 for details. But, unlike indexing, when the
fields are stored they’re stored separately in order in the document, so that when you
retrieve the document at search time you’ll see multiple Field instances.

 We’re done with our coverage of Lucene’s field options. The wide variety of
options has evolved over time to accommodate the diverse application of Lucene. We
showed you the numerous specific options to control how a field is indexed, whether
a field is stored, and whether term vectors will be computed and stored. Besides
Strings, field values can also be binary values (for storing), a TokenStream value (for
preanalyzed fields), or a Reader (if holding the full String in memory is too costly or
inconvenient). Fields that will be used for sorting (covered more in section 5.2) must
be indexed properly. Finally, in this section we’ve seen that Lucene gracefully handles
fields with multiple values.

 Next we cover another field capability, boosting, that controls how important spe-
cific fields and documents are during Lucene’s scoring.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

48 CHAPTER 2 Building a search index

2.5 Boosting documents and fields
Not all documents and fields are created equal—or at least you can make sure that’s
the case by using boosting. Boosting may be done during indexing, as we describe
here, or during searching, as described in section 5.7. Search-time boosting is more
dynamic, because every search can separately choose to boost or not to boost with dif-
ferent factors, but also may be somewhat more CPU intensive. Because it’s so dynamic,
search-time boosting also allows you to expose the choice to the user, such as a check-
box that asks “Boost recently modified documents?”.

 Regardless of whether you boost during indexing or searching, take caution: too
much boosting, especially without corresponding transparency in the user interface
explaining that certain documents were boosted, can quickly and catastrophically
erode the user’s trust. Iterate carefully to choose appropriate boosting values and to
ensure you’re not doing so much boosting that your users are forced to browse irrele-
vant results. In this section we’ll show you how to selectively boost documents or fields
during indexing, then describe how boost information is recorded into the index
using norms.

2.5.1 Boosting documents

Imagine you have to write an application that indexes and searches corporate email.
Perhaps the requirement is to give company employees’ emails more importance than
other email messages when sorting search results. How would you go about doing
this?

 Document boosting is a feature that makes such a requirement simple to imple-
ment. By default, all documents have no boost—or, rather, they all have the same
boost factor of 1.0. By changing a document’s boost factor, you can instruct Lucene to
consider it more or less important with respect to other documents in the index when
computing relevance. The API for doing this consists of a single method, set-
Boost(float) , which can be used as shown in listing 2.4. (Note that certain methods,
like getSenderEmail and isImportant, aren’t defined in this fragment, but are
included in the full examples sources included with the book.)

 Document doc = new Document();
 String senderEmail = getSenderEmail();
 String senderName = getSenderName();
 String subject = getSubject();
 String body = getBody();
 doc.add(new Field("senderEmail", senderEmail,
 Field.Store.YES,
 Field.Index.NOT_ANALYZED));
 doc.add(new Field("senderName", senderName,
 Field.Store.YES,
 Field.Index.ANALYZED));
 doc.add(new Field("subject", subject,

Listing 2.4 Selectively boosting documents and fields
 Field.Store.YES,

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

49Boosting documents and fields

 Field.Index.ANALYZED));
 doc.add(new Field("body", body,
 Field.Store.NO,
 Field.Index.ANALYZED));
 String lowerDomain = getSenderDomain().toLowerCase();
 if (isImportant(lowerDomain)) {
 doc.setBoost(1.5F);
 } else if (isUnimportant(lowerDomain)) {
 doc.setBoost(0.1F);
 }
 writer.addDocument(doc);

In this example, we check the domain name of the email message sender to deter-
mine whether the sender is a company employee.

When we index messages sent by an important domain name (say, the company’s
employees), we set their boost factor to 1.5, which is greater than the default factor
of 1.0.

When we encounter messages from a sender associated with a fictional bad domain, as
checked by isUnimportant, we label them as nearly insignificant by lowering their
boost factor to 0.1.

During searching, Lucene will silently increase or decrease the scores of documents
according to their boost. Sometimes you need finer per-field boosting granularity,
which Lucene also makes possible.

2.5.2 Boosting fields

Just as you can boost documents, you can also boost individual fields. When you boost
a document, Lucene internally uses the same boost factor to boost each of its fields.
Imagine that another requirement for the email-indexing application is to consider
the subject field more important than the field with a sender’s name. In other words,
search matches made in the subject field should be more valuable than equivalent
matches in the senderName field in our earlier example. To achieve this behavior, we
use the setBoost(float) method of the Field class:

Field subjectField = new Field("subject", subject,
 Field.Store.YES,
 Field.Index.ANALYZED);
subjectField.setBoost(1.2F);

In this example, we arbitrarily picked a boost factor of 1.2, just as we arbitrarily picked
document boost factors of 1.5 and 0.1 earlier. The boost factor values you should use
depend on what you’re trying to achieve; you’ll need to do some experimentation and
tuning to achieve the desired effect. But remember when you want to change the
boost on a field or document, you’ll have to fully remove and then read the entire
document, or use the updateDocument method, which does the same thing.

 It’s worth noting that shorter fields have an implicit boost associated with them,
due to the way Lucene’s scoring algorithm works. While indexing, IndexWriter con-

Good domain
boost factor: 1.5

B

Bad domain
boost factor: 0.1C

 B

 C
sults the Similarity.lengthNorm method to perform this computation. To override

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 2 Building a search index

this logic, you can implement your own Similarity class and tell IndexWriter to use
it by calling its setSimilarity method. Boosting is, in general, an advanced feature
that many applications can work well without, so tread carefully!

 Document and field boosting come into play at search time, as you’ll learn in sec-
tion 3.3.1. Lucene’s search results are ranked according to how closely each docu-
ment matches the query, and each matching document is assigned a score. Lucene’s
scoring formula consists of a number of factors, and the boost factor is one of them.

 How does Lucene record these boost factors in the index? This is what norms
are for.

2.5.3 Norms

During indexing, all sources of index-time boosts are combined into a single floating-
point number for each indexed field in the document. The document may have its
own boost; each field may have a boost; and Lucene computes an automatic boost
based on the number of tokens in the field (shorter fields have a higher boost). These
boosts are combined and then compactly encoded (quantized) into a single byte,
which is stored per field per document. During searching, norms for any field being
searched are loaded into memory, decoded back into a floating-point number, and
used when computing the relevance score.

 Even though norms are initially computed during indexing, it’s also possible to
change them later using IndexReader’s setNorm method. setNorm is an advanced
method that requires you to recompute your own norm factor, but it’s a potentially
powerful way to factor in highly dynamic boost factors, such as document recency or
click-through popularity.

 One problem often encountered with norms is their high memory usage at search
time. This is because the full array of norms, which requires one byte per document
per separate field searched, is loaded into RAM. For a large index with many fields per
document, this can quickly add up to a lot of RAM. Fortunately, you can easily turn
norms off by either using one of the NO_NORMS indexing options in Field.Index or by
calling Field.setOmitNorms(true) before indexing the document containing that
field. Doing so will potentially affect scoring, because no index-time boost informa-
tion will be used during searching, but it’s possible the effect is trivial, especially when
the fields tend to be roughly the same length and you’re not doing any boosting on
your own.

 Beware: if you decide partway through indexing to turn norms off, you must
rebuild the entire index because if even a single document has that field indexed with
norms enabled, then through segment merging this will “spread” so that all docu-
ments consume one byte even if they’d disabled norms. This happens because Lucene
doesn’t use sparse storage for norms.

 We explore how to index numbers, dates, and times next.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

51Indexing numbers, dates, and times

2.6 Indexing numbers, dates, and times
Although most content is textual in nature, in many cases handling numeric or date/
time values is crucial. In a commerce setting, the product’s price, and perhaps other
numeric attributes like weight and height, are clearly important. A video search
engine may index the duration of each video. Press releases and articles have a time-
stamp. These are just a few examples of important numeric attributes that modern
search applications face.

 In this section we’ll show you how to handle such numbers with Lucene. There are
two very different situations where applications need to handle numbers, and you’ll
learn how Lucene supports both. When Lucene indexes a number, it’s actually build-
ing up a rich data structure in the index, which we’ll touch on. Finally, we’ll explore
several approaches for handling dates and times.

2.6.1 Indexing numbers

There are two common scenarios in which indexing numbers is important. In one sce-
nario, numbers are embedded in the text to be indexed, and you want to make sure
those numbers are preserved and indexed as their own tokens so that you can use
them later as ordinary tokens in searches. For instance, your documents may contain
sentences like “Be sure to include Form 1099 in your tax return”: you want to be able
to search for the number 1099 just as you can search for the phrase “tax return” and
retrieve the document that contains the exact number.

 To enable this, simply pick an analyzer that doesn’t discard numbers. As we discuss
in section 4.2.3, WhitespaceAnalyzer and StandardAnalyzer are two possible candi-
dates. If you feed them the “Be sure to include Form 1099 in your tax return” sen-
tence, they’ll extract 1099 as a token and pass it on for indexing, allowing you to later
search for 1099 directly. On the other hand, SimpleAnalyzer and StopAnalyzer dis-
card numbers from the token stream, which means the search for 1099 won’t match
any documents. If in doubt, use Luke, which is a wonderful tool for inspecting all
details of a Lucene index, to check whether numbers survived your analyzer and were
added to the index. Luke is described in more detail in section 8.1.

 In the other scenario, you have a field that contains a single number and you want
to index it as a numeric value and then use it for precise (equals) matching, range
searching, and/or sorting. For example, you might be indexing products in a retail
catalog, where each product has a numeric price and you must enable your users to be
able to restrict a search by price range.

 In past releases, Lucene could only operate on textual terms. This required careful
preprocessing of numbers, such as zero-padding or advanced number-to-text encod-
ings, to turn them into Strings so that sorting and range searching by the textual
terms worked properly. Fortunately, as of version 2.9, Lucene includes easy-to-use built-
in support for numeric fields, starting with the new NumericField class. You simply cre-
ate a NumericField, use one of its set<Type>Value methods (accepting types int, long,
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

52 CHAPTER 2 Building a search index

float, and double, and then returning itself) to record the value, and then add the
NumericField to your document just like any other Field. Here’s an example:

doc.add(new NumericField("price").setDoubleValue(19.99));

Under the hood, Lucene works some serious magic to ensure numeric values are
indexed to allow for efficient range searching and numeric sorting. Each numeric
value is indexed using a trie structure, which logically assigns a single numeric value to
larger and larger predefined brackets. Each bracket is assigned a unique term in the
index, so that retrieving all documents within a single bracket is fast. At search time,
the requested range is translated into an equivalent union of these brackets, resulting
in a high-performance range search or filter.

 Although each NumericField instance accepts only a single numeric value, you’re
allowed to add multiple instances, with the same field name, to the document. The
resulting NumericRangeQuery and NumericRangeFilter will logically “or” together all
the values. But the effect on sorting is undefined. If you require sorting by the field,
you’ll have to index a separate NumericField that has only one occurrence for that
field name.

 An advanced parameter, precisionStep, lets you control the gap (in bits) between
each successive bracket. The default value is 4 bits. Smaller values result in more trie
brackets, thus increasing the size of the index (usually by a minor amount) but allow-
ing for potentially faster range searching. The Javadocs provide full details of these
trade-offs, but likely the default value is sufficient for most applications. Section 3.5.4
describes how to search numeric fields.

 NumericField can also easily handle dates and times by converting them to equiva-
lent ints or longs.

2.6.2 Indexing dates and times

Email messages include sent and received dates, files have several timestamps associ-
ated with them, and HTTP responses have a Last-Modified header that includes the
date of the requested page’s last modification. Chances are, like many other Lucene
users, you’ll need to index dates and times. Such values are easily handled by first con-
verting them to an equivalent int or long value, and then indexing that value as a
number. The simplest approach is to use Date.getTime to get the equivalent value, in
millisecond precision, for a Java Date object:

doc.add(new NumericField("timestamp")

➥ .setLongValue(new Date().getTime()));

Alternatively, if you don’t require full millisecond resolution for your dates, you can
simply quantize them. If you need to quantize down to seconds, minutes, hours, or
days, it’s straight division:

doc.add(new NumericField("day")

➥ .setIntValue((int) (new Date().getTime()/24/3600)));
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

53Field truncation

If you need to quantize further, to month or year, or perhaps you’d like to index hour
of day or day of week or month, you’ll have to create a Calendar instance and get
fields from it:

Calendar cal = Calendar.getInstance();
cal.setTime(date);
doc.add(new NumericField("dayOfMonth")

➥ .setIntValue(cal.get(Calendar.DAY_OF_MONTH)));

As you’ve seen, Lucene makes it trivial to index numeric fields. You’ve seen several
approaches for converting dates and times into equivalent numeric values for index-
ing. Now let’s visit one final topic related to fields: truncation.

2.7 Field truncation
Some applications index documents whose sizes aren’t known in advance. As a safety
mechanism to control the amount of RAM and hard disk space used, you may want to
limit the amount of input they are allowed index per field. It’s also possible that a large
binary document is accidentally misclassified as a text document, or contains binary
content embedded in it that your document filter failed to process, which quickly adds
many absurd binary terms to your index, much to your horror. Other applications deal
with documents of known size but you’d like to index only a portion of each. For exam-
ple, you may want to index only the first 200 words of each document.

 To support these diverse cases, IndexWriter allows you to truncate per-Field
indexing so that only the first N terms are indexed for an analyzed field. When you
instantiate IndexWriter, you must pass in a MaxFieldLength instance expressing this
limit. MaxFieldLength provides two convenient default instances: MaxField-

Length.UNLIMITED, which means no truncation will take place, and MaxField-
Length.LIMITED, which means fields are truncated at 10,000 terms. You can also
instantiate MaxFieldLength with your own limit.

 After creating IndexWriter, you may alter the limit at any time by calling setMax-
FieldLength or retrieve the limit with getMaxFieldLength. However, any documents
already indexed will have been truncated at the previous value: changes to maxField-
Length aren’t retroactive. If multiple Field instances with the same name exist, the
truncation applies separately to each of them, meaning each field has its first N terms
indexed. If you’re curious about how often the truncation is kicking in, call Index-
Writer.setInfoStream(System.out) and search for any lines that say "maxField-
Length reached for field X, ignoring following tokens". (Note that the
infoStream also receives many other diagnostic details, useful in their own right.)

 Please think carefully before using any field truncation! It means that only the first
N terms are available for searching, and any text beyond the Nth term is completely
ignored. Searches that would’ve matched a document after the Nth term will silently
fail to match the document. Eventually users will notice that your search engine fails
to find certain documents in certain situations and will assume it’s buggy. Many times
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

54 CHAPTER 2 Building a search index

someone asks the Lucene users list, “Why doesn’t this search find this document?” and
the answer is inevitably, “You’ll have to increase your maxFieldLength.”

NOTE Use maxFieldLength sparingly! Because truncation means some docu-
ments’ text will be completely ignored, and thus unavailable for search-
ing, your users will eventually discover that your search fails to find some
documents. This will quickly erode their trust in your application (“What
else can’t it find?”), which can be catastrophic to your user base and per-
haps your whole business if search is its core. User trust is the most
important thing to protect in your business.

We’re done visiting all the interesting things you can do with fields. As you’ve seen,
Lucene’s Field class includes a rich array of options to support the many ways that a
value can be handled. Next, we explore how to minimize the turnaround time
between adding a document and then being able to search it.

2.8 Near-real-time search
New in Lucene 2.9 is an important feature called near-real-time search, which
addresses a frequent challenge for all search engines: the ability to search on docu-
ments quickly after indexing them. Many applications have such a requirement, but
it’s a challenge for search engines to implement. Fortunately, Lucene now makes this
simple, by providing this method in IndexWriter:

IndexReader getReader()

This method immediately flushes any buffered added or deleted documents, and then
creates a new read-only IndexReader that includes those documents. We’ll see how
IndexReader is used for searching in the next chapter, but for now, just trust us!
Under the hood, the newly opened reader is instantiated in an efficient manner, so
that any old segments in common with the previously opened reader are shared.
Thus, if only a few documents have been added, the turnaround time will generally be
fast. Note that calling getReader necessarily slows down your indexing throughput
because it causes the IndexWriter to immediately flush a new segment instead of wait-
ing until its RAM buffer is full. Section 3.2.5 shows an example of searching using a
near-real-time reader.

 Next we describe the optimization process.

2.9 Optimizing an index
When you index documents, especially many documents or using multiple sessions
with IndexWriter, you’ll invariably create an index that has many separate segments.
When you search the index, Lucene must search each segment separately and then
combine the results. Although this works flawlessly, applications that handle large
indexes will see search performance improvements by optimizing the index, which
merges many segments down to one or a few segments. An optimized index also con-
sumes fewer file descriptors during searching. After describing the optimization pro-
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

55Optimizing an index

cess and the available methods, we’ll talk about disk space consumed during
optimization.

NOTE Optimizing only improves searching speed, not indexing speed.

It’s entirely possible that you get excellent search throughput without optimizing, so
be sure to first test whether you need to consider optimizing. IndexWriter exposes
four methods to optimize:

optimize() reduces the index to a single segment, not returning until the
operation is finished.
optimize(int maxNumSegments), also known as partial optimize, reduces the
index to at most maxNumSegments segments. Because the final merge down to
one segment is the most costly, optimizing to, say, five segments should be quite
a bit faster than optimizing down to one segment, allowing you to trade less
optimization time for slower search speed.
optimize(boolean doWait) is just like optimize, except if doWait is false then
the call returns immediately while the necessary merges take place in the back-
ground. Note that doWait=false only works for a merge scheduler that runs
merges in background threads, such as the default ConcurrentMergeSched-
uler. Section 2.13.6 describes merge schedulers in more detail.
optimize(int maxNumSegments, boolean doWait) is a partial optimize that
runs in the background if doWait is false.

Remember that index optimization consumes substantial CPU and input/output (I/O)
resources, so use it judiciously. It is a trade-off of a large onetime cost for faster search-
ing. If you update your index only rarely, and do lots of searching between updates,
this trade-off is worthwhile. If a single computer is doing both indexing and searching,
consider scheduling optimize after hours or over the weekend so that it doesn’t inter-
fere with ongoing searching.

 Another important cost to be aware of is that optimizing requires substantial tem-
porary disk space. Because Lucene must merge segments together, while the merge is
running temporary disk space is used to hold the files for the new segment. But the
old segments can’t be removed until the merge is complete and the changes are com-
mitted, either by calling IndexWriter.commit or by closing the IndexWriter. This
means you should expect the size of your index to roughly triple (temporarily) during
optimization. Once optimization completes, and once you call commit(), disk usage
will fall back to a lower level than the starting size. Any open readers on the index will
also potentially impact the transient disk usage. Section 11.3.1 describes overall disk
usage of Lucene in more detail.

NOTE During optimization, the index will require substantial temporary disk
space, up to three times its starting size. After optimization completes,
the index will consume less disk space than at the start.

Let’s now look at some Directory implementations other than FSDirectory.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

56 CHAPTER 2 Building a search index

2.10 Other directory implementations
Recall from chapter 1 that the purpose of Lucene’s abstract Directory class is to pres-
ent a simple file-like storage API, hiding away the details of what underlying mecha-
nism is performing the storage. Whenever Lucene needs to write to or read from files
in the index, it uses the Directory methods to do so. Table 2.2 lists the five core
Directory implementations available in Lucene 3.0.

 Of these classes, three are concrete Directory implementations to read and write
files from the file system. They’re all subclasses of the abstract FSDirectory base class.
Unfortunately, there’s no single best FSDirectory implementation. Each has poten-
tially serious limitations in certain situations:

SimpleFSDirectory uses java.io.* APIs for access. Unfortunately, this Direc-
tory implementation doesn’t scale during reading when multiple threads are
in use because it must do internal locking to work around the lack of positional
reads in java.io.*.
NIOFSDirectory uses positional reads in java.nio.* APIs, and thus has no inter-
nal locking and scales very well with many threads when reading. Unfortunately,
due to a longstanding Windows-only issue on Sun’s JREs, NIOFSDirectory will
perform badly, perhaps worse than SimpleFSDirectory, on Windows.
MMapDirectory uses memory-mapped I/O when reading and also doesn’t have
any locking, so it scales well with threads. But because memory-mapped I/O
consumes process address space equal to the size of your index, it’s best to use it
only on a 64-bit JRE, or on a 32-bit JRE if you’re absolutely certain that your
index size is very small relative to the actual portion of 32-bit address space
available to your process (typically 2–3 GB, depending on the OS). Java doesn’t
provide a way to cleanly “unmap” memory-mapped sections of a file, which
means it’s only when garbage collection happens that the underlying file is
closed and memory is freed. This means you could easily have many leftover
maps, consuming large chunks of process address space and leaving the under-
lying index files open far longer than you’d expect. Furthermore, on 32-bit
JREs, you may hit false OutOfMemoryError due to fragmentation issues. MMap-
Directory provides the setMaxChunkSize method to work around this.

All of these Directory implementations share the same code (from SimpleFS-
Directory, using java.io.*) for writing.

 So which implementation should you use? One good approach is to use the static
FSDirectory.open method. This method attempts to pick the best default FSDirec-
tory implementation given your current OS and platform, and may improve its deci-
sion making with each Lucene release (though note that as of Lucene 3.0, it won’t
ever return an MMapDirectory). Alternatively, you can directly instantiate the precise
class that you want, as long as you understand the previous issues (be sure to read the
Javadocs for all the latest details!).
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

57Other directory implementations

Lucene also provides RAMDirectory, which is a Directory implementation that stores
all “files” in memory instead of on disk. This makes reading and writing exceptionally
fast, and is useful in cases where the index is small enough to fit in available memory
and where the index is easily and quickly regenerated from the source documents.
But if the computer has enough RAM, most OSs will use free RAM as an I/O cache.
This means, after warming up, the FSDirectory will be about as fast as the RAM-
Directory for searching. Lucene’s unit tests make extensive use of RAMDirectory to
create short-lived indexes for testing. To build a new index in RAMDirectory, instanti-
ate your writer like this:

Directory ramDir = new RAMDirectory();
IndexWriter writer = new IndexWriter(ramDir, analyzer,
 IndexWriter.MaxFieldLength.UNLIMITED);

You can then use the writer as you normally would to add, delete, or update docu-
ments. Just remember that once the Java Virtual Machine (JVM) exits, your index is
gone!

 Alternatively, you can copy the contents of another Directory otherDir into RAM-
Directory like this:

Directory ramDir = new RAMDirectory(otherDir);

This is typically used to speed up searching of an existing on-disk index when it’s small
enough, though modern OSs do a good job of caching recently used bytes in the I/O
cache so it’s likely the gains in practice are minimal. A more general API is this static
method, to copy all files between any two Directory instances:

Directory.copy(Directory sourceDir,
 Directory destDir,
 boolean closeDirSrc);

Table 2.2 Lucene’s several core Directory implementations

Directory Description

SimpleFSDirectory A simplistic Directory that stores files in the file system, using
java.io.* APIs. It doesn’t scale well with many threads.

NIOFSDirectory A Directory that stores files in the file system, using java.nio.*
APIs. This does scale well with threads on all platforms except Microsoft
Windows, due to a longstanding issue with Sun’s Java Runtime Environ-
ment (JRE).

MMapDirectory A Directory that uses memory-mapped I/O to access files. This is a
good choice on 64-bit JREs, or on 32-bit JREs where the size of the index
is relatively small.

RAMDirectory A Directory that stores all files in RAM.

FileSwitchDirectory A Directory that takes two directories in, and switches between these
directories based on file extension.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

58 CHAPTER 2 Building a search index

But be aware that this blindly replaces any existing files in destDir, and you must
ensure no IndexWriter is open on the source directory because the copy method
doesn’t do any locking. If the destDir already has an index present and you’d like to
add in all documents from srcDir, keeping all documents already indexed in
otherDir, use IndexWriter.addIndexesNoOptimize instead:

IndexWriter writer = new IndexWriter(otherDir, analyzer,
 IndexWriter.MaxFieldLength.UNLIMITED);
writer.addIndexesNoOptimize(new Directory[] {ramDir});

There are other addIndexes methods in IndexWriter, but each of them does its own
optimize, which likely you don’t need or want.

 In past versions of Lucene, it was beneficial to control memory buffering by first
batch-indexing into a RAMDirectory and then periodically adding the index into an
index stored on disk. But as of Lucene 2.3, IndexWriter makes efficient use of mem-
ory for buffering changes to the index and this is no longer a win. See section 11.1.4
for other ways to improve indexing throughput.

 The final Directory implementation, FileSwitchDirectory, switches between
two Directory implementations you provide, based on the extension of the file. This
implementation could be used to store certain index files in a RAMDirectory and oth-
ers in a backing MMapDirectory, for example. But realize this is an advanced use and
you must rely on the extensions of the current Lucene index file format, which is free
to change between releases.

 Let’s discuss the complex topic of concurrency next.

2.11 Concurrency, thread safety, and locking issues
In this section, we cover three closely related topics: accessing an index from multiple
JVMs, thread safety of IndexReader and IndexWriter, and the locking mechanism that
Lucene uses to enforce these rules. A thorough understanding of these topics is essen-
tial, because it will eliminate surprises that can
result when your indexing application starts serving
multiple users simultaneously or when it scales up
by parallelizing some of its operations.

2.11.1 Thread and multi-JVM safety

Lucene’s concurrency rules are simple:

Any number of read-only IndexReaders may
be open at once on a single index. It doesn’t
matter if these readers are in the same JVM or
multiple JVMs, or on the same computer or
multiple computers. Remember, that within a
single JVM it’s best for resource utilization
and performance reasons to share a single

Index

T1 T3T2

shared
IndexWriter

Figure 2.3 A single IndexWriter can
be shared by multiple threads.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

59Concurrency, thread safety, and locking issues

IndexReader instance for a given index using multiple threads. For instance,
multiple threads or processes may search the same index in parallel.
Only a single writer may be open on an index at once. Lucene uses a write lock
file to enforce this (described in detail in section 2.11.3). As soon as an Index-
Writer is created, a write lock is obtained. Only when that IndexWriter is
closed is the write lock released. Note that if you use IndexReader to make
changes to the index—for example, to change norms (section 2.5.3) or delete
documents (section 2.13.1)—then that IndexReader acts as a writer: it must
successfully obtain the write lock before making the first change, only releasing
it once closed.
IndexReaders may be open even while an IndexWriter is making changes to
the index. Each IndexReader will always show the index as of the point in time
that it was opened. It won’t see any changes being done by the IndexWriter
until the writer commits and the reader is reopened. It’s even fine to open a
new IndexWriter with create=true while an IndexReader is already open: that
IndexReader will continue searching its point-in-time view of the index.
Any number of threads can share a single instance of IndexReader or Index-
Writer. These classes are not only thread safe but also thread friendly, meaning
they generally scale well as you add threads (assuming your hardware has con-
currency, because the amount of synchronized code inside these classes is kept
to a minimum). Figure 2.3 depicts such a scenario. Sections 11.2.1 and 11.2.2
describe issues related to using multiple threads for indexing and searching.

As you can see, Lucene works well with multiple threads and multiple JVMs. But there
are interesting challenges if you need to share an index over a remote file system.

2.11.2 Accessing an index over a remote file system

If you intend to have multiple JVMs, on different computers, accessing the same
index, you’ll have to expose access to that index over a remote file system. One com-
mon configuration is to have a single dedicated computer that writes to the index
stored in a file system local to that computer, and then multiple computers that per-
form searching of that index via a remote file system. Such a configuration can be
made to work, but the performance will usually be far worse than searching an index
stored on a local file system (see table 2.3). It’s possible to gain some performance
back by mounting the remote file system as read-only, but to maximize performance
it’s best to replicate a copy of the index onto the local file system of each computer
that will do searching. Solr, the enterprise search server built on top of Lucene, sup-
ports replication out of the box.

 If you still intend to access the index over a remote file system, it’s important to be
aware of the possible limitations. Unfortunately, certain popular remote file systems
are known to be problematic, as summarized in table 2.3. NFS, AFP, and Samba/CIFS
2.0 are known to have intermittent problems when opening or reopening an index
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

60 CHAPTER 2 Building a search index

due to incoherent client-side caching. The problem only occurs when the writer has
just committed changes to an index, and then on another computer a reader or
another writer is opened or reopened. Thus you’re more likely to encounter this if
you frequently try to reopen your readers and writer and often commit changes to the
index. When you do encounter the issue, you’ll see an unexpected FileNotFound-
Exception inside the open or reopen methods. Fortunately, the workaround is quite
simple: retry a bit later, because typically the client-side caches will correct themselves
after a certain amount of time.

 NFS in particular presents a further challenge because of how it handles deletion
of files that are still held open on other computers. Most file systems protect open files
from deletion. For example, Windows simply disallows deletion of an open file,
whereas most native Unix file systems allow the deletion to proceed but the actual
bytes of the file remain allocated on disk until all open file handles are closed (this is
called “delete on last close” semantics). In both approaches, an open file handle can
still be used to read all bytes in the file after the file deletion is attempted. NFS does
neither of these, and simply removes the file, so that the next I/O operation
attempted by a computer with an open file handle will encounter the much-dreaded
“Stale NFS file handle” IOException.

 To prevent this error from hitting your searchers, you must create your own
IndexDeletionPolicy class to control deletion of previous commit points until all
searchers on the index have reopened to the newer commit point. For example, a com-
mon approach is to remove an index commit only if it’s older than, say, 4 hours, as long
as you can ensure that every IndexReader reading the index reopens itself less than 4
hours after a commit. Alternatively, on hitting the “Stale NFS file handle” during
searching, you could at that moment reopen your searcher and then redo the search.
This is a viable approach only if reopening a searcher is not too time consuming. Oth-
erwise, the unlucky query that hit the error will take unacceptably long to get results.

Table 2.3 Issues related to accessing a Lucene index across remote file systems

Remote file system Notes

Samba/CIFS 1.0 The standard remote file system for Windows computers. Sharing a
Lucene index works fine.

Samba/CIFS 2.0 The new version of Samba/CIFS that’s the default for Windows Server
2007 and Windows Vista. Lucene has trouble due to incoherent cli-
ent-side caches.

Networked File System (NFS) The standard remote file systems for most Unix OSs. Lucene has
trouble due to both incoherent client-side caches as well as how NFS
handles deletion of files that are held open by another computer.

Apple File Protocol (AFP) Apple’s standard remote file system protocol. Lucene has trouble due
to incoherent client-side caches.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

61Concurrency, thread safety, and locking issues

 As you’ve seen, Lucene allows highly concurrent access to an index. Many readers
can share an index, many threads can share an IndexWriter and IndexReader, and so
forth. The only strong concurrency limitation is that no more than one writer may be
open at once. We’ll now describe how Lucene enforces this, and how you can control
it, using Lucene’s locking implementations. In general, locking is a complex topic, and
even Lucene’s simple exposure of locking options is no exception. So we spend even
more time enumerating the choices than we did on all of Lucene’s concurrency rules!

2.11.3 Index locking

To enforce a single writer at a time, which means an IndexWriter or an IndexReader
doing deletions or changing norms, Lucene uses a file-based lock: if the lock file
(write.lock by default) exists in your index directory, a writer currently has the index
open. Any attempt to create another writer on the same index will hit a LockObtain-
FailedException. This is a vital protection mechanism, because if two writers are acci-
dentally created on a single index, that would quickly lead to index corruption.

 Lucene allows you to change your locking implementation: any subclass of Lock-
Factory can be set as your locking implementation by calling Directory.setLock-
Factory. Be sure to call this before opening an IndexWriter on that Directory
instance. Normally you don’t need to worry about which locking implementation
you’re using. It’s usually only those advanced applications that have multiple comput-
ers or JVMs that take turns performing indexing that may need to customize the locking
implementation. Table 2.4 lists the core locking implementations provided with
Lucene.

Table 2.4 Locking implementations provided by Lucene

Locking class name Description

NativeFSLockFactory This is the default locking for FSDirectory, using java.nio
native OS locking, which will never leave leftover lock files when
the JVM exits. But this locking implementation may not work cor-
rectly over certain shared file systems, notably NFS.

SimpleFSLockFactory Uses Java’s File.createNewFile API, which may be more
portable across different file systems than
NativeFSLockFactory. Be aware that if the JVM crashes or
IndexWriter isn’t closed before the JVM exits, this may leave
a leftover write.lock file, which you must manually remove.

SingleInstanceLockFactory Creates a lock entirely in memory. This is the default locking
implementation for RAMDirectory. Use this when you know all
IndexWriters will be instantiated in a single JVM.

NoLockFactory Disables locking entirely. Be careful! Only use this when you are
absolutely certain that Lucene’s normal locking safeguard isn’t
necessary—for example, when using a private RAMDirectory
with a single IndexWriter instance.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

62 CHAPTER 2 Building a search index

Note that none of these locking implementations are “fair.” For example, if a lock is
already held by an existing writer, the new writer will simply retry, every one second by
default, to obtain the lock. There’s no queue that would allow the new writer to get
the lock as soon as the old one releases it. If you have an application that requires
such fairness, it’s best to implement your own locking.

 If you do choose to create your own locking implementation, be certain it works
correctly. There’s a simple but useful debugging tool, LockStressTest, which can be
used in conjunction with LockVerifyServer and VerifyingLockFactory to verify that
a given locking implementation is functioning properly. These classes are in the
org.apache.lucene.store package; see their Javadocs for how to use them. If you
aren’t sure whether your new lock factory is working properly, use LockStressTest to
find out.

 You should be aware of two additional methods related to locking:

IndexWriter’s isLocked(Directory)—Tells you whether the index specified in
its argument is locked. This method can be handy when an application needs to
check whether the index is locked before attempting to create an IndexWriter.
IndexWriter’s unlock(Directory)—Does exactly what its name implies.
Although this method gives you power to unlock any Lucene index at any time,
using it is dangerous. Lucene creates locks for a good reason, and unlocking an
index while it’s being modified will quickly result in a corrupted and unusable
index.

Although you now know about Lucene’s write lock, you should resist touching this file
directly. Instead, always rely on Lucene’s API to manipulate it. If you don’t, your code
may break if Lucene starts using a different locking mechanism in the future, or even
if it changes the name or location of its lock files.

 To demonstrate locking, listing 2.6 shows how the write lock prevents more than
one writer from accessing an index simultaneously. In the testWriteLock() method,
Lucene blocks the second IndexWriter from opening an index that has already been
opened by another IndexWriter. This is an example of write.lock in action.

public class LockTest extends TestCase {

 private Directory dir;

 protected void setUp() throws IOException {
 String indexDir =
 System.getProperty("java.io.tmpdir", "tmp") +
 System.getProperty("file.separator") + "index";
 dir = FSDirectory.open(new File(indexDir));
 }

 public void testWriteLock() throws IOException {

 IndexWriter writer1 = new IndexWriter(dir, new SimpleAnalyzer(),
 IndexWriter.MaxFieldLength.UNLIMITED);

Listing 2.5 Using file-based locks to enforce a single writer at a time
 IndexWriter writer2 = null;

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

63Debugging indexing

 try {
 writer2 = new IndexWriter(dir, new SimpleAnalyzer(),
 IndexWriter.MaxFieldLength.UNLIMITED);
 fail("We should never reach this point");
 }
 catch (LockObtainFailedException e) {
 e.printStackTrace();
 }
 finally {
 writer1.close();
 assertNull(writer2);
 }
 }
}

When we run the code in listing 2.5, we see an exception stack trace caused by the
locked index, which resembles the following stack trace:

org.apache.lucene.store.LockObtainFailedException: Lock obtain timed out:

 ➥ NativeFSLock@/var/tmp/index/write.lock
 at org.apache.lucene.store.Lock.obtain(Lock.java:84)
 at org.apache.lucene.index.IndexWriter.init(IndexWriter.java:1041)

As we mentioned earlier, new users of Lucene sometimes don’t have a good under-
standing of the concurrency issues described in this section and consequently run into
locking issues, such as the one shown in the previous stack trace. If you see similar
exceptions in your applications, please don’t disregard them if the consistency of your
indexes is at all important to you. Lock-related exceptions are typically a sign of a mis-
use of the Lucene API; if they occur in your application, you should scrutinize your
code to resolve them promptly.

 Our next topic shows you how to gain insight into the internal operations Index-
Writer is doing.

2.12 Debugging indexing
If you ever need to debug Lucene’s index-writing process, remember that you can get
Lucene to output information about its indexing operations by calling IndexWriter’s
setInfoStream method, passing in a PrintStream such as System.out:

IndexWriter writer = new IndexWriter(dir, analyzer,
 IndexWriter.MaxFieldLength.UNLIMITED);
writer.setInfoStream(System.out);

This reveals detailed diagnostic information about segment flushes and merges, as
shown here, and may help you tune indexing parameters described earlier in the
chapter. If you’re experiencing an issue during indexing, something you may believe
to be a bug in Lucene, and you take your issue to the Lucene user’s list at Apache, the
first request you’ll get back is someone asking you to post the output from setting
infoStream. It will look something like this:

flush postings as segment _9 numDocs=1095
 oldRAMSize=16842752 newFlushedSize=5319835 docs/MB=215.832 new/old=31.585%

Handle expected
exception
IFD [main]: now checkpoint "segments_1" [10 segments ; isCommit = false]

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 2 Building a search index

IW 0 [main]: LMP: findMerges: 10 segments
IW 0 [main]: LMP: level 6.2247195 to 6.745619: 10 segments
IW 0 [main]: LMP: 0 to 10: add this merge
IW 0 [main]: add merge to pendingMerges: _0:C1010->_0 _1:C1118->_0

➥ _2:C968->_0 _3:C1201->_0 _4:C947->_0 _5:C1084->_0 _6:C1028->_0
➥ _7:C954->_0 _8:C990->_0 _9:C1095->_0 [total 1 pending]
IW 0 [main]: CMS: now merge
IW 0 [main]: CMS: index: _0:C1010->_0 _1:C1118->_0 _2:C968->_0

➥ _3:C1201->_0 _4:C947->_0 _5:C1084->_0 _6:C1028->_0 _7:C954->_0
➥ _8:C990->_0 _9:C1095->_0 IW 0 [main]: CMS: consider merge
➥ _0:C1010->_0 _1:C1118->_0 _2:C968->_0 _3:C1201->_0 _4:C947->_0
➥ _5:C1084->_0 _6:C1028->_0 _7:C954->_0 _8:C990->_0 _9:C1095->_0 into _a
IW 0 [main]: CMS: launch new thread [Lucene Merge Thread #0]
IW 0 [main]: CMS: no more merges pending; now return
IW 0 [Lucene Merge Thread #0]: CMS: merge thread: start
IW 0 [Lucene Merge Thread #0]: now merge
 merge=_0:C1010->_0 _1:C1118->_0 _2:C968->_0 _3:C1201->_0 _4:C947->_0

➥ _5:C1084->_0 _6:C1028->_0 _7:C954->_0 _8:C990->_0 _9:C1095->_0 into _a
 index=_0:C1010->_0 _1:C1118->_0 _2:C968->_0 _3:C1201->_0 _4:C947->_0

➥ _5:C1084->_0 _6:C1028->_0 _7:C954->_0 _8:C990->_0 _9:C1095->_0
IW 0 [Lucene Merge Thread #0]: merging _0:C1010->_0 _1:C1118->_0

➥ _2:C968->_0 _3:C1201->_0 _4:C947->_0 _5:C1084->_0 _6:C1028->_0
➥ _7:C954->_0 _8:C990->_0 _9:C1095->_0 into _a
IW 0 [Lucene Merge Thread #0]: merge: total 10395 docs

In addition, if you need to peek inside your index once it’s built, you can use Luke, a
handy third-party tool that we discuss in section 8.1. Our final section covers some
advanced indexing topics.

2.13 Advanced indexing concepts
We’ve covered many interesting topics in this chapter—you should be proud for get-
ting this far. You’ve seen how Lucene models content, the steps for indexing at a high
level, and the basics of how to add, delete, and update documents in an index. You
understand all the field options that tell Lucene precisely what to do with each field’s
value, and you now know how to handle interesting cases like multivalued fields, field
truncation, document/field boosting, and numeric and date/time values. We’ve cov-
ered why and how to optimize and index, and the liberal thread safety and locking
customizability that Lucene supports. Very likely you can stop here and move on to
the next chapter. But if you’re still curious, read on.

 We’ll now drill down into the advanced topics in Lucene’s indexing, including the
surprising ability to use IndexReader for performing deletions, how Lucene decides
when to create a new segment, and Lucene’s transactional semantics. We’ll show you
how to eliminate wasted disk space consumed by deleted documents. Although these
are undoubtedly advanced topics, and you could happily perform indexing without
understanding these concepts, you may someday find yourself wondering exactly when
and how changes made by IndexWriter become visible to new readers on the index.
Let’s begin by seeing when you may want to use IndexReader to perform deletions.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

65Advanced indexing concepts

2.13.1 Deleting documents with IndexReader

IndexReader also exposes methods to delete documents. Why would you want two
ways to do the same thing? Well, there are some interesting differences:

IndexReader is able to delete by document number. This means you could do a
search, step through matching document numbers, perhaps apply some appli-
cation logic, then pick and choose which document numbers to delete.
Although frequently requested, IndexWriter can’t expose such a method
because document numbers may change suddenly due to merging (see
section 2.13.6).
IndexReader can delete by Term, just like IndexWriter. But IndexReader
returns the number of documents deleted; IndexWriter doesn’t. This is due to
a difference in the implementation: IndexReader determines immediately
which documents were deleted, and is therefore able to count up the affected
documents; IndexWriter simply buffers the deleted Term and applies it later.
IndexReader’s deletions take effect immediately, if you use that same reader for
searching. This means you can do deletion and immediately run a search, and
the deleted documents will no longer appear in the search results. With Index-
Writer, the deletions aren’t visible until you open a new reader.
IndexWriter is able to delete by Query, but IndexReader isn’t (though it’s not
hard to run your own Query and simply delete every document number that was
returned).
IndexReader exposes a sometimes useful method, undeleteAll, which as you
might infer reverses all pending deletions in the index. Note that this only
reverses deletions that haven’t been merged yet. This is possible because Index-
Writer simply marks the document as deleted, but does not in fact remove the
document from the index until the segment containing the document is
merged, as described in the next section.

If you’re tempted to use IndexReader for deletion, remember that Lucene allows only
one “writer” to be open at once. Confusingly, an IndexReader that’s performing dele-
tions counts as a “writer.” This means you are forced to close any open IndexWriter
before doing deletions with IndexReader, and vice versa. If you find that you are
quickly interleaving added and deleted documents, this will slow down your indexing
throughput substantially. It’s better to batch up your additions and deletions, using
IndexWriter, to get better performance.

 Generally, unless one of these differences is compelling for your application, it’s
best to simply use IndexWriter for all deletions. Let’s look at the disk space consumed
by deleted documents.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 2 Building a search index

2.13.2 Reclaiming disk space used by deleted documents

Lucene uses a simple approach to record deleted documents in the index: the docu-
ment is marked as deleted in a bit array, which is a quick operation, but the data
corresponding to that document still consumes disk space in the index. This tech-
nique is necessary because in an inverted index, a given document’s terms are scat-
tered all over the place, and it’d be impractical to try to reclaim that space when the
document is deleted. It’s not until segments are merged, either by normal merging
over time or by an explicit call to optimize, that these bytes are reclaimed. Section
2.13.6 describes how and when Lucene merges segments.

 You can also call expungeDeletes to explicitly reclaim all disk space consumed by
deleted documents. This call merges any segments that have pending deletions.
Although this will generally be a lower-cost operation than optimizing, it’s still quite
costly and is likely only worthwhile when you know you’ve finished doing deletions for
quite a while. In the worst case, if your deletions are scattered all over the segments so
that all segments have deletions, then expungeDeletes does exactly the same thing as
optimize: it merges all segments down to one. Let’s see next how IndexWriter
chooses to make a new segment.

2.13.3 Buffering and flushing

As shown in figure 2.4, when new documents are added to a Lucene index, or dele-
tions are pending, they’re initially buffered in memory instead of being immediately
written to the disk. This buffering is done for performance reasons to minimize disk
I/O. Periodically, these changes are flushed to the index Directory as a new segment.

 IndexWriter triggers a flush according to three possible criteria, which are con-
trolled by the application:

To flush when the buffer has consumed more than a preset amount of RAM, use
setRAMBufferSizeMB. The RAM buffer size shouldn’t be taken as an exact maxi-
mum of memory usage because you should consider many other factors when
measuring overall JVM memory usage. Furthermore, IndexWriter doesn’t
account for all of its RAM usage, such as the memory required by segment merg-
ing. Section 11.3.3 describes ideas to minimize overall JVM memory usage.
It’s also possible to flush after a specific number of documents have been added
by calling setMaxBufferedDocs.
You can trigger flushing whenever the total number of buffered deleted terms
and queries exceeds a specified count by calling setMaxBufferedDeleteTerms.

Flushing happens whenever one of these triggers is hit, whichever comes first. There’s
a constant IndexWriter.DISABLE_ AUTO_FLUSH, which you can pass to any of these
methods to prevent flushing by that criterion. By default, IndexWriter flushes only
when RAM usage is 16 MB.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

67Advanced indexing concepts

 When a flush occurs, the writer creates
new segment and deletion files in the
Directory. However, these files are nei-
ther visible nor usable to a newly opened
IndexReader until the writer commits the
changes and the reader is reopened. It’s
important to understand this difference.
Flushing is done to free up memory con-
sumed by buffered changes to the index.
Committing is done to make all changes
(buffered or already flushed) persistent
and visible in the index. This means
IndexReader always sees the starting state
of the index (when IndexWriter was
opened), until the writer commits.

NOTE While an IndexWriter is making changes to the index, a newly opened
IndexReader won’t see any of these changes until commit() or close() is
called and the reader is reopened. This even applies to opening a new
IndexWriter with create=true. But a newly opened near-real-time
reader (see section 2.8) is able to see the changes without requiring a
commit() or close().

Let’s drill down to understand more about index commits.

2.13.4 Index commits

A new index commit is created whenever you invoke one of IndexWriter’s commit
methods. There are two such methods: commit() creates a new index commit, and
commit(Map<String,String> commitUserData) records the provided string map as
opaque metadata into the commit for later retrieval. Closing the writer also calls
commit(). Note that a newly opened or reopened IndexReader or IndexSearcher
will only see the index as of the last commit, and all changes made by IndexWriter
in between calls to commit are invisible to readers. The one exception to this is the
near-real-time search functionality, covered in section 2.8, which is able to search
changes made with the IndexWriter without first committing those changes to disk.

 Note that commit can be a costly operation, and doing so frequently will slow
down your indexing throughput. If for some reason you decide that you want to dis-
card all changes, you can call rollback() to remove all changes in the current Index-
Writer session since the last commit to the index. Here are the steps IndexWriter
takes during commit:

1 Flush any buffered documents and deletions.
2 Sync all newly created files, including newly flushed files as well as any files pro-

duced by merges that have finished since commit was last called or since the

RAM

DocumentDocument

Lucene
Buffer

Used by Other Apps Free

Index

Document

Figure 2.4 An in-memory
document buffer helps
improve Lucene’s indexing
performance.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

68 CHAPTER 2 Building a search index

IndexWriter was opened. IndexWriter calls Directory.sync to achieve this,
which doesn’t return until all pending writes in the specified file have been writ-
ten to stable storage on the underlying I/O system. This is usually a costly oper-
ation as it forces the OS to flush any pending writes. Different file systems also
show wide variance in the cost of this operation.

3 Write and sync the next segments_N file. Once this completes, IndexReaders
will suddenly see all changes done since the last commit.

4 Remove old commits by calling on IndexDeletionPolicy to remove old com-
mits. You can create your own implementation of this class to customize which
commits are deleted, and when.

Because old index files referenced only by the last commit aren’t removed until a new
commit is completed, waiting a long time between commits will necessarily consume
more disk space than performing more frequent commits. If your Lucene index is
interacting with an external transactional resource, such as a database, you may be
interested in the advanced APIs that Lucene exposes to enable a two-phase commit.
TWO-PHASE COMMIT

For applications that need to commit a transaction involving a Lucene index and
other external resources, such as a database, Lucene exposes the prepareCommit()
and prepareCommit(Map<String,String> commitUserData) methods. Each method
does steps 1 and 2 in our list, as well as most of step 3, but it stops short of making the
new segments_N file visible to a reader. After prepareCommit() is called, you should
either call rollback() to abort the commit or commit() to complete it. Commit() is a
fast call if prepareCommit() was already called. If an error will be hit, such as “disk
full,” most likely prepareCommit() will hit the error, not commit(). The separation of
these two phases of committing allows you to build a distributed two-phase commit
protocol involving Lucene.

 By default, after creating a new commit, IndexWriter removes all prior commits.
But you can override this behavior by creating a custom IndexDeletionPolicy.
INDEXDELETIONPOLICY

IndexDeletionPolicy is the class that tells IndexWriter when it’s safe to remove old
commits. The default policy is KeepOnlyLastCommitDeletionPolicy, which always
removes all prior commits whenever a new commit is complete. Most of the time you
should use this default. But for some advanced applications where you’d like to keep
an old point-in-time snapshot around even though further changes have been com-
mitted to the index, you may implement your own policy.

 For example, when you’re sharing an index over NFS, it may be necessary to cus-
tomize the deletion policy so that a commit isn’t deleted until all readers using the
index have switched to the most recent commit, based on application specific logic
(see section 2.11.2 for details). Another example is a retail company that would like to
keep the last N versions of its catalog available for searching. Note that whenever your
policy chooses to keep a commit around, that commit will necessarily consume addi-

tional disk space in the index.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

69Advanced indexing concepts

 If you keep multiple commits in your index, there are some useful APIs to help you
tell them apart.
MANAGING MULTIPLE INDEX COMMITS

Normally, a Lucene index will have only a single commit present, which is the last
commit. But by implementing a custom deletion policy, you can easily accumulate
many commits in the index. You can use the static IndexReader.listCommits()
method to retrieve all commits present in an index. Then, you can step through each
and gather whatever details you need. For example, if you previously called Index-
Writer.commit(Map<String,String> commitUserData), then that string map is avail-
able from each commit by calling its getUserData() method. This string map may
store something meaningful to your application, enabling you to pick out a particular
commit of interest.

 Once you’ve found a commit, you can open an IndexReader on it: several of the
static open methods accept an IndexCommit. You could use this to explicitly search a
previous version of the index.

 Using the same logic, you can also open an IndexWriter on a prior commit, but
the use case is different: it allows you to roll back to a previous commit and start index-
ing new documents from that point, effectively undoing all changes to the index that
had happened after that commit. This is similar to IndexWriter’s rollback method,
except that method only rolls back changes done within the current IndexWriter ses-
sion, whereas opening on a prior commit lets you roll back changes that were already
committed to the index, perhaps long ago.

 Next we’ll see that Lucene supports a simplified ACID transactional model.

2.13.5 ACID transactions and index consistency

Lucene implements the ACID transactional model, with the restriction that only one
transaction (writer) may be open at once. Here’s what ACID stands for, along with
details about how Lucene meets it:

Atomic—All changes done with the writer are either committed to the index, or
none are; there is nothing in-between.
Consistency—The index will also be consistent; for example, you’ll never see a
delete without the corresponding addDocument from updateDocument; you’ll
always see all or none of the indexes added from an addIndexes call.
Isolation—While you are making changes with IndexWriter, no changes are vis-
ible to a newly opened IndexReader until you successfully commit. This even
includes passing create=true to a newly opened IndexWriter. The
IndexReader only sees the last successful commit.
Durability—If your application hits an unhandled exception, the JVM crashes,
the OS crashes, or the computer suddenly loses power, the index will remain
consistent and will contain all changes included in the last successful commit.
Changes done after that will be lost. Note that if your hard drive develops

errors, or your RAM or CPU flips bits, that can easily corrupt your index.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 2 Building a search index

NOTE If your application, the JVM, the OS, or the machine crashes, the index
won’t be corrupted and will automatically roll back to the last successful
commit. But Lucene relies on the OS and I/O system that holds the index
to properly implement the fsync system call by flushing any OS or I/O
write caches to the actual underlying stable storage. In some cases, it may
be necessary to disable write caching on the underlying I/O devices.

Next we describe how Lucene merges segments, and what you can do to control this
process.

2.13.6 Merging

When an index has too many segments, IndexWriter selects some of the segments
and merges them into a single, large segment. Merging has a couple of important
benefits:

It reduces the number of segments in the index because once the merge com-
pletes, all of the old segments are removed and a single large segment is added
in their place. This makes searching faster since there are fewer segments to
search, and also prevents hitting the file descriptor limit enforced by the OS.
It reduces the size of the index. For example, if there were deletes pending on
the merged segments, the merging process frees up the bytes consumed by
deleted documents. Even if there are no pending deletions, a single merged
segment will generally use fewer bytes to represent exactly the same set of
indexed documents.

So when exactly is a merge necessary? What specifically does “too many segments”
mean? That’s decided by the MergePolicy. But MergePolicy only decides which
merges should be done; it’s up to MergeScheduler to carry out these merges. Let’s
first drill into MergePolicy.
MERGEPOLICY

IndexWriter relies on a subclass of the abstract MergePolicy base class to decide
when a merge should be done. Whenever new segments are flushed, or a previously
selected merge has completed, the MergePolicy is consulted to determine if a merge
is now necessary, and if so, precisely which segments will be merged. Besides picking
“normal” segment merges to do, the MergePolicy also selects merges necessary to
optimize the index and to run expungeDeletes.

 Lucene provides two core merge policies, both subclassing from LogMergePolicy.
The first, which is the default used by IndexWriter, is LogByteSizeMergePolicy. This
policy measures the size of a segment as the total size in bytes of all files for that seg-
ment. The second one, LogDocMergePolicy, makes the same merging decisions
except it measures size of a segment by the document count of the segment. Note that
neither merge policy takes deletions into account. If you have mixed document sizes,
it’s best to use LogByteSizeMergePolicy because it’s a more accurate measure of seg-
ment size.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

71Advanced indexing concepts

 If the core merge policies don’t suit your application, you can subclass Merge-
Policy to implement your own. For example, you could implement a time-dependent
policy that defers large merges until off-peak hours, to ensure merging doesn’t con-
flict with ongoing searches. Or perhaps you’d like a policy that tries harder to select
segments with many pending deletions, so as to reclaim disk space sooner in the
index.

 Table 2.5 shows the parameters that control how LogByteSizeMergePolicy
chooses merges. Some of these are also exposed as convenience methods in Index-
Writer.

 To understand these parameters we first must understand how both of these poli-
cies select merges. For each segment, its level is computed using this formula:

 (int) log(max(minMergeMB, size))/log(mergeFactor)

This effectively groups the segments of roughly equal size (in log space) into the same
level. Tiny segments, less than minMergeMB, are always forced into the lowest level to pre-
vent too many tiny segments in the index. Each level contains segments that are up to
mergeFactor times larger than the previous level. For example, when using LogByte-
SizeMergePolicy, level 0 segments are up to mergeFactor bytes in size; level 1 seg-
ments are up to mergeFactor^2 bytes in size, level 2 segments are up to mergeFactor^3
bytes in size, and so on. When using LogDocMergePolicy, the same progression holds
but the size is measured as number of documents in each segment, not byte size.

 Once a given level has mergeFactor or more segments, they are merged. Thus,
mergeFactor controls not only how segments are assigned to levels based on size, and
thus when to trigger a merge, but also how many segments are merged at once. The
larger this setting is, the more segments will exist in your index and the less frequently
merges will be done, for a given number of documents in the index. Larger values
generally result in faster indexing throughput, but may result in too many open file

Table 2.5 Parameters that control merge selection with the default MergePolicy,
 LogByteSizeMergePolicy

IndexWriter
method

LogByteSizeMergePolicy
Method

Default
value

Description

setMergeFactor setMergeFactor 10 Controls segment merge
frequency and size

setMinMergeMB 1.6 MB Sets a floor on the smallest
segment level

setMaxMergeMB Long.MAX_VALUE Limits the size in bytes of a
segment to be merged

setMaxMergeDocs setMaxMergeDocs Integer.MAX_VALUE Limits the number of docu-
ments for a segment to be
merged
descriptors (see section 11.3.2 for details on controlling file descriptor usage). It’s

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

72 CHAPTER 2 Building a search index

probably best to leave this at its default value (10) unless you see strong gains when
testing different values. When the merge completes, a new segment at the next higher
level replaces the merged segments. To prevent merges of large segments, set max-
MergeMB or maxMergeDocs. If ever a segment is over maxMergeMB in byte size, or max-
MergeDocs in its document count, that segment will never be merged. By setting
maxMergeDocs you can force extremely large segments to remain separate forever in
your index.

 Besides selecting merges for normal ongoing maintenance of the index, Merge-
Policy is responsible for selecting merges when optimize or expungeDeletes is
called. In fact, it’s up to the MergePolicy to define what these methods mean. For
example, maybe during optimization you want to skip segments larger than a certain
size. Or perhaps for expungeDeletes you only want to merge a segment if it has more
than 10 percent of its documents deleted. These examples can be easily achieved by
creating your own MergePolicy that subclasses LogByteSizeMergePolicy.

 Over time, LogByteSizeMergePolicy produces an index with a logarithmic stair-
case structure: you have a few very large segments, a few segments mergeFactor
smaller, and so on. The number of segments in your index is proportional to the loga-
rithm of the net size, in bytes or number of documents, of your index. This generally
does a good job of keeping segment count low while minimizing the net merge cost.
But some of these settings can be tuned to improve indexing throughput, as described
in section 11.1.4.
MERGESCHEDULER

Selection of a merge is only the first step. The next step is the actual merging. Index-
Writer relies on a subclass of MergeScheduler to achieve this. By default,
IndexWriter uses ConcurrentMergeScheduler, which merges segments using back-
ground threads. There’s also SerialMergeScheduler, which always merges segments
using the caller’s thread, which means you could suddenly see methods like addDocu-
ment and deleteDocuments take a long time while it executes a merge. You could also
implement your own MergeScheduler.

 Generally, customizing MergePolicy settings, or implementing your own Merge-
Policy or MergeScheduler, are extremely advanced use cases. For most applications,
Lucene’s default settings work very well. If you’re curious about when IndexWriter is
flushing and merging, you can call its setInfoStream method, as described in
section 2.12. Finally, if for some reason you need to wait for all merges to finish, call
IndexWriter’s waitForMerges method.

2.14 Summary
We’ve covered a lot of good ground in this chapter! Fear not: all of your hard work
learning these juicy details of Lucene’s indexing will shortly pay off, once you build
search functionality on top of your index. You now have a solid understanding of how
to make changes to a Lucene index. You saw Lucene’s conceptual model for docu-
ments and fields, including a flexible but flat schema (when compared to a database).
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

73Summary

We saw that the indexing process consists of gathering content, extracting text, creat-
ing documents and fields, analyzing the text into a token stream, and then handing it
off to IndexWriter for addition to an index. We also briefly discussed the interesting
segmented structure of an index.

 You now know how to add, delete, and update documents. We delved into a great
many interesting options for controlling how a field is indexed, including how the
value is added to the inverted index, stored fields, and term vectors, and how a field
can hold certain values other than a String. We described variations like multivalued
fields, field and document boosting, and value truncation. You now know how to
index dates, times, and numbers, as well as fields for sorting.

 We discussed segment-level changes, like optimizing an index and using expunge-
Deletes to reclaim disk space consumed by deleted documents. You now know of all
the Directory implementations you could use to hold an index, such as RAMDirectory
and NIOFSDirectory. We discussed Lucene’s concurrency rules, and the locking it uses
to protect an index from more than one writer.

 Finally we covered a number of advanced topics: how and why to delete docu-
ments using IndexReader instead of IndexWriter; buffering, flushing, and commit-
ting; IndexWriter’s support for transactions; merging and the classes available for
customizing it; using an index over remote file systems; and turning on Index-
Writer’s infoStream to see details on the steps it’s taking internally.

 Much of this advanced functionality won’t be needed by the vast majority of search
applications; in fact, a few of IndexWriter’s APIs are enough to build a solid search
application. By now you should be dying to learn how to search with Lucene, and
that’s what you’ll read about in the next chapter.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Adding search to
your application
The previous chapter showed you in great detail how to build a search index in
preparation for searching. As fun as indexing is, it’s just a means to an end, a neces-
sary evil, and its value only becomes clear once you enable searching on top of it. In
this chapter, we’ll show you how to capitalize on all your indexing efforts. For exam-
ple, consider this scenario:

Give me a list of all books published in the last 12 months on the subject of “Java”
where “open source” or “Jakarta” is mentioned in the contents. Restrict the results to
only books that are on special. Oh, and under the covers, also ensure that books men-
tioning “Apache” are picked up, because we explicitly specified “Jakarta.” And make
it snappy, on the order of milliseconds for response time.

This chapter covers
Querying a Lucene index

Using Lucene’s diverse built-in queries

Working with search results

Understanding Lucene scoring

Parsing human-entered query expressions
74

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

75

Such scenarios are easily handled with Lucene, even when your content source consists
of millions of documents, but it’ll take us three search chapters to see the necessary
functionality in Lucene to achieve this example in full. We start with the frequently
used search APIs, described in this chapter. Indeed, the majority of applications using
Lucene can provide excellent search functionality using only what’s covered in this
chapter. But a search engine is only as good as its search capabilities, and it’s here
where Lucene shines. After visiting analysis in chapter 4—important because it’s used
during both indexing and searching—we’ll return to search in chapter 5, delving into
Lucene’s more advanced search capabilities, as well as in chapter 6, elaborating on
ways to extend Lucene’s classes for even greater, customized searching power.

 In this chapter we begin with a simple example showing that the code you write to
implement search is generally no more than a few lines long. Next we illustrate the
scoring formula, providing a deep look into one of Lucene’s most special attributes.
With this example and a high-level understanding of how Lucene ranks search results,
we’ll spend most of the chapter exploring the diversity of Lucene’s built-in search que-
ries, including searching by specific term, by range (numeric or textual), by prefix or
wildcard, by phrase, or by fuzzy term matching. We show how the powerful Boolean-
Query can join any number of clauses together, including arbitrarily nested clauses,
using Boolean constraints. Finally we show how simple it is to create a complex search
query from a text search expression entered by the end user using Lucene’s built-in
QueryParser.

 This is our first of three chapters about Lucene’s search APIs, so we’ll limit our dis-
cussion for now to the primary classes that you’ll typically use for search integration,
shown in table 3.1.

 When you’re querying a Lucene index, a TopDocs instance, containing an ordered
array of ScoreDoc, is returned. The array is ordered by score by default. Lucene com-
putes a score (a numeric value of relevance) for each document, given a query. The
ScoreDocs themselves aren’t the actual matching documents, but rather references, via
an integer document ID, to the documents matched. In most applications that display

Table 3.1 Lucene’s primary searching API

Class Purpose

IndexSearcher Gateway to searching an index. All searches come through an
IndexSearcher instance using any of the several overloaded search meth-
ods.

Query (and
subclasses)

Concrete subclasses encapsulate logic for a particular query type. Instances of
Query are passed to an IndexSearcher’s search method.

QueryParser Processes a human-entered (and readable) expression into a concrete Query
object.

TopDocs Holds the top scoring documents, returned by IndexSearcher.search.

ScoreDoc Provides access to each search result in TopDocs.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

76 CHAPTER 3 Adding search to your application

search results, users access only the first few documents, so it isn’t necessary to retrieve
the full document for all results; you need to retrieve for the current page only the doc-
uments that will be presented to the user. In fact, for very large indexes, it often
wouldn’t even be possible, or would take far too long, to collect all matching docu-
ments into available physical computer memory.

 Let’s see how easy it is to search with Lucene.

3.1 Implementing a simple search feature
Suppose you’re tasked with adding search to an application. You’ve tackled getting the
data indexed, using the APIs we covered in the last chapter, but now it’s time to expose
the full-text searching to the end users. It’s hard to imagine that adding search could
be any simpler than it is with Lucene. Obtaining search results requires only a few lines
of code—literally. Lucene provides easy and highly efficient access to those search
results, too, freeing you to focus on your application logic and UI around those results.

 When you search with Lucene, you’ll have a choice of either programmatically
constructing your query or using Lucene’s QueryParser to translate text entered by
the user into the equivalent Query. The first approach gives you ultimate power, in
that your application can expose whatever UI it wants, and your logic translates inter-
actions from that UI into a Query. But the second approach is wonderfully easy to use,
and offers a standard search syntax that all users are familiar with. In this section we’ll
show you how to make the simplest programmatic query, searching for a single term,
and then we’ll see how to use QueryParser to accept textual queries. In the sections
that follow, we’ll take this simple example further by detailing all the query types built
into Lucene. We begin with the simplest search of all: searching for all documents that
contain a single term.

3.1.1 Searching for a specific term

IndexSearcher is the central class used to search for documents in an index. It has
several overloaded search methods. You can search for a specific term using the most
commonly used search method. A term is a String value that’s paired with its contain-
ing field name—in our example, subject.

NOTE The original text may have been normalized into terms by the analyzer,
which may eliminate terms (such as stop words), convert terms to lower-
case, convert terms to base word forms (stemming), or insert additional
terms (synonym processing). It’s crucial that the terms passed to Index-
Searcher be consistent with the terms produced by analysis of the
source documents during indexing. Chapter 4 discusses the analysis pro-
cess in detail.

Using our example book data index, which is stored in the build/index subdirectory
with the book’s source code, we’ll query for the words ant and junit, which are words
we know were indexed. Listing 3.1 creates the term query, performs the search and
asserts that the single expected document is found. Lucene provides several built-in

Query types (see section 3.4), TermQuery being the most basic.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

77Implementing a simple search feature

public class BasicSearchingTest extends TestCase {
 public void testTerm() throws Exception {
 Directory dir = TestUtil.getBookIndexDirectory();
 IndexSearcher searcher = new IndexSearcher(dir);

 Term t = new Term("subject", "ant");
 Query query = new TermQuery(t);
 TopDocs docs = searcher.search(query, 10);
 assertEquals("Ant in Action",
 1, docs.totalHits);
 t = new Term("subject", "junit");
 docs = searcher.search(new TermQuery(t), 10);
 assertEquals("Ant in Action, " +
 "JUnit in Action, Second Edition",
 2, docs.totalHits);
 searcher.close();
 dir.close();
 }
}

This is our first time seeing the TestUtil.getBookIndexDirectory method; it’s quite
simple:
public static Directory getBookIndexDirectory() throws IOException {
 return FSDirectory.open(new File(System.getProperty("index.dir")));
}

The index.dir property defaults to “build/index” in the build.xml ant script, so that
when you run the tests using Ant from the command line, the index directory is set cor-
rectly. That index is built from the books under the data directory, using the Create-
TestIndex tool (under the src/lia/common subdirectory). We use this method in
many tests to retrieve the directory containing the index built from our test book data.

 A TopDocs object is returned from our search. In a real application we’d step
through the individual ScoreDocs representing the hits, but for this test we were only
interested in checking that the proper number of documents were found.

 Note that we close the searcher, and then the directory, after we are done. In gen-
eral it’s best to keep these open and share a single searcher for all queries that need to
run. Opening a new searcher can be a costly operation because it must load and pop-
ulate internal data structures from the index.

 This example created a simple query (a single term). Next, we discuss how to trans-
form a user-entered query expression into a Query object.

3.1.2 Parsing a user-entered query expression: QueryParser

Lucene’s search methods require a Query object. Parsing a query expression is the act
of turning a user-entered textual query such as “mock OR junit” into an appropriate
Query object instance; in this case, the Query object would be an instance of Boolean-
Query with two optional clauses, one for each term. The process is illustrated in
figure 3.1. The code in listing 3.2 parses two query expressions and asserts that they

Listing 3.1 Simple searching with TermQuery

Obtain directory
from TestUtil

Create IndexSearcher

Confirm one
hit for "ant"

Confirm two
hits for "junit"
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

78 CHAPTER 3 Adding search to your application

worked as expected. After returning the hits, we retrieve the title from the first docu-
ment found.

NOTE Query expressions are similar to SQL expressions used to query a data-
base in that the expression must be parsed into something at a lower
level that the database server can understand directly.

public void testQueryParser() throws Exception {
 Directory dir = TestUtil.getBookIndexDirectory();
 IndexSearcher searcher = new IndexSearcher(dir);

 QueryParser parser = new QueryParser(Version.LUCENE_30,
 "contents",
 new SimpleAnalyzer());

 Query query = parser.parse("+JUNIT +ANT -MOCK");
 TopDocs docs = searcher.search(query, 10);
 assertEquals(1, docs.totalHits);
 Document d = searcher.doc(docs.scoreDocs[0].doc);
 assertEquals("Ant in Action", d.get("title"));

 query = parser.parse("mock OR junit");
 docs = searcher.search(query, 10);
 assertEquals("Ant in Action, " +
 "JUnit in Action, Second Edition",
 2, docs.totalHits);

 searcher.close();
 dir.close();
}

Lucene includes an interesting built-in feature that parses query expressions, available
through the QueryParser class. It parses rich expressions such as the two shown
("+JUNIT +ANT -MOCK" and "mock OR junit") into one of the Query implementations.
The resulting Query instances can be very rich and complex! Dealing with human-
entered queries is the primary purpose of the QueryParser. Once you have the Query
object returned by QueryParser, the rest of the searching is identical to how you’d
search programmatically.

 As you can see in figure 3.1, QueryParser requires an analyzer to break pieces of the
query text into terms. In the first expression, the query was entirely uppercased. The
terms of the contents field, however, were lowercased when indexed. QueryParser, in

Listing 3.2 QueryParser, which makes it trivial to translate search text into a Query

Expression QueryParser

Analyzer

Query Object
IndexSearcher

Text Fragments

Figure 3.1 QueryParser translates a
textual expression from the end user into an
arbitrarily complex query for searching.

Create
QueryParser

Parse
user’s
text
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

79Implementing a simple search feature

this example, uses SimpleAnalyzer, which lowercases the terms before constructing a
Query object. (Analysis is covered in great detail in the next chapter, but it’s intimately
intertwined with indexing text and searching with QueryParser.) The main point
regarding analysis to consider in this chapter is that you need to be sure to query on
the actual terms indexed. QueryParser is the only searching piece that uses an ana-
lyzer. Querying through the API using TermQuery and the others discussed in
section 3.4 doesn’t require an analyzer but does rely on matching terms to what was
indexed. Therefore, if you construct queries entirely programmatically you must
ensure the terms included in all of your queries match the tokens produced by the ana-
lyzer used during indexing. In section 4.1.2, we talk more about the interactions of
QueryParser and the analysis process.

 Equipped with the examples shown thus far, you’re more than ready to begin
searching your indexes. There are, of course, many more details to know about search-
ing. In particular, QueryParser requires additional explanation. Next is an overview of
how to use QueryParser, which we return to in greater detail later in this chapter.
USING QUERYPARSER

Before diving into the details of QueryParser (which we do in section 3.5), let’s first
look at how it’s used in a general sense. QueryParser is instantiated with match-
Version (Version), a field name (String), and an analyzer, which it uses to break the
incoming search text into Terms:

QueryParser parser = new QueryParser(Version matchVersion,
 String field,
 Analyzer analyzer)

The matchVersion parameter instructs Lucene which release it should use for match-
ing defaults and settings, in order to preserve backward compatibility. Note that in
some cases, Lucene will emulate bugs from past releases. Section 1.4.1 describes Ver-
sion in more detail.

 The field name is the default field against which all terms will be searched, unless
the search text explicitly requests matches against a different field name using the syn-
tax “field:text” (more on this in section 3.5.11). Then, the QueryParser instance has a
parse() method to allow for the simplest use:

public Query parse(String query) throws ParseException

The query String is the expression to be parsed, such as +cat +dog.
 If the expression fails to parse, a ParseException is thrown, a condition that your

application should handle in a graceful manner. ParseException’s message gives a
reasonable indication of why the parsing failed; however, this description may be too
technical for end users.

 The parse() method is quick and convenient to use, but it may not be sufficient.
There are various settings that can be controlled on a QueryParser instance, such as
the default operator when multiple terms are used (which defaults to OR). These set-
tings also include locale (for date parsing), default phrase slop (described in
section 3.4.6), the minimum similarity and prefix length for fuzzy queries, the date res-

olution, whether to lowercase wildcard queries, and various other advanced settings.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

80 CHAPTER 3 Adding search to your application

HANDLING BASIC QUERY EXPRESSIONS WITH QUERYPARSER

QueryParser translates query expressions into one of Lucene’s built-in query types.
We’ll cover each query type in section 3.4; for now, take in the bigger picture provided
by table 3.2, which shows some examples of expressions and their translation.

With this broad picture of Lucene’s search capabilities, you’re ready to dive into
details. We’ll revisit QueryParser in section 3.5, after we cover the more foundational
pieces. Let’s take a closer look at Lucene’s IndexSearcher class.

3.2 Using IndexSearcher
Searching with Lucene is a surprisingly simple affair. You first create an instance of
IndexSearcher, which opens the search index, and then use the search methods on

Table 3.2 Expression examples that QueryParser handles

Query expression Matches documents that…

java Contain the term java in the default field

java junit

java OR junit

Contain the term java or junit, or both, in the default fielda

+java +junit

java AND junit

Contain both java and junit in the default field

title:ant Contain the term ant in the title field

title:extreme
–subject:sports

title:extreme
AND NOT subject:sports

Contain extreme in the title field and don’t have sports in the subject
field

(agile OR extreme) AND
methodology

Contain methodology and must also contain agile and/or extreme, all
in the default field

title:"junit in
action"

Contain the exact phrase “junit in action” in the title field

title:"junit action"~5 Contain the terms junit and action within five positions of one another,
in the title field

java* Contain terms that begin with java, like javaspaces, javaserver, java.net,
and the exact tem java itself.

java~ Contain terms that are close to the word java, such as lava

lastmodified:
[1/1/09 TO 12/31/09]

Have lastmodified field values between the dates January 1, 2009
and December 31, 2009

a. The default operator is OR. It can be set to AND (see section 3.5.6).
that class to perform all searching. The returned TopDocs class represents the top

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

81Using IndexSearcher

results, and you use that to present results to the user. Next we discuss how to handle
pagination, and finally we show how to use Lucene’s new (as of version 2.9) near-real-
time search capability for fast turnaround on recently indexed documents. Let’s begin
with the creation of an IndexSearcher.

3.2.1 Creating an IndexSearcher

Like the rest of Lucene’s primary API, IndexSearcher is simple to use. The classes
involved are shown in figure 3.2. First, as with indexing, we’ll need a directory. Most
often you’re searching an index in the file system:

Directory dir = FSDirectory.open(new File("/path/to/index"));

Section 2.10 describes alternate Directory implementations. Next we create an
IndexReader:

IndexReader reader = IndexReader.open(dir);

Finally, we create the IndexSearcher:

IndexSearcher searcher = new IndexSearcher(reader);

Directory, which we’ve already seen in the
context of indexing, provides the abstract
file-like API. IndexReader uses that API to
interact with the index files stored during
indexing, and exposes the low-level API that
IndexSearcher uses for searching. Index-
Searcher’s APIs accept Query objects, for
searching, and return TopDocs objects rep-
resenting the results, as we discussed in sec-
tion 3.2.3.

 Note that it’s IndexReader that does all
the heavy lifting to open all index files and
expose a low-level reader API, while Index-
Searcher is a rather thin veneer. Because
it’s costly to open an IndexReader, it’s best
to reuse a single instance for all of your
searches, and open a new one only when necessary.

NOTE Opening an IndexReader is costly, so you should reuse a single instance
for all of your searching when possible, and limit how often you open a
new one.

It’s also possible to directly create the IndexSearcher from a directory, which creates
its own private IndexReader under the hood, as we saw in chapter 1. If you go this
route, you can retrieve the underlying IndexReader by calling IndexSearcher’s get-
IndexReader method, but remember that if you close the searcher it will also close

Directory

IndexReader

IndexSearcherQuery TopDocs

Figure 3.2 The relationship between the
common classes used for searching
this IndexReader because it had opened it.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

82 CHAPTER 3 Adding search to your application

 IndexReader always searches a point-in-time snapshot of the index as it existed
when the IndexReader was created. If you need to search changes to the index, you’ll
have to open a new reader. Fortunately, the IndexReader.reopen method is a
resource-efficient means of obtaining a new IndexReader that covers all changes to
the index but shares resources with the current reader when possible. Use it like this:

IndexReader newReader = reader.reopen();
if (reader != newReader) {
 reader.close();
 reader = newReader;
 searcher = new IndexSearcher(reader);
}

The reopen method only returns a new reader if there were changes in the index, in
which case it’s your responsibility to close the old reader and create a new Index-
Searcher. In a real application, where multiple threads may still be searching using
the old reader, you’ll have to protect this code to make it thread safe. Section 11.2.2
provides a useful drop-in class that does this for you. Section 3.2.5 shows how to obtain
a near-real-time IndexReader from an IndexWriter, which is even more resource effi-
cient in cases where you have access to the IndexWriter making changes to the index.
Now that we have an IndexSearcher, let’s see how to search!

NOTE An IndexSearcher instance searches only the index as it existed at the
time the IndexSearcher was instantiated. If indexing is occurring concur-
rently with searching, newer documents indexed won’t be visible to
searches. In order to see the new documents, you should open a new
reader.

3.2.2 Performing searches

Once you have an IndexSearcher, simply call one of its search methods to perform a
search. Under the hood, the search method does a tremendous amount of work, very
quickly. It visits every single document that’s a candidate for matching the search, only
accepting the ones that pass every constraint on the query. Finally, it gathers the top
results and returns them to you.

 The main search methods available to an IndexSearcher instance are shown in
table 3.3. In this chapter we only make use of the search(Query, int) method
because many applications won’t need to use the more advanced methods. The other
search method signatures, including the filtering and sorting variants, are covered in
chapter 5. Chapter 6 covers the customizable search methods that accept a Collector
for gathering results.

 Most of IndexSearcher’s search methods return TopDocs, which we cover next, to
represent the returned results.

3.2.3 Working with TopDocs

Now that we’ve called search, we have a TopDocs object at our disposal that we can

use for efficient access to the search results. Typically, you’ll use one of the search

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

83Using IndexSearcher

methods that return a TopDocs object, as shown in table 3.3. Results are ordered by
relevance—in other words, by how well each document matches the query (sorting
results in other ways is discussed in section 5.2).

 The TopDocs class exposes a small number of methods and attributes for retrieving
the search results; they’re listed in table 3.4. The attribute TopDocs.totalHits returns
the number of matching documents. The matches, by default, are sorted in decreas-
ing score order. The TopDocs.scoreDocs attribute is an array containing the
requested number of top matches. Each ScoreDoc instance has a float score, which is
the relevance score, and an int doc, which is the document ID that can be used to
retrieve the stored fields for that document by calling IndexSearcher.document
(doc). Finally, TopDocs.getMaxScore() returns the best score across all matches;
when you sort by relevance (the default), that will always be the score of the first
result. But if you sort by other criteria and enable scoring for the search, as described
in section 5.2, it will be the maximum score of all matching documents even when the
best scoring document isn’t in the top results by your sort criteria.

Table 3.3 Primary IndexSearcher search methods

IndexSearcher.search method signature When to use

TopDocs search(Query query, int n) Straightforward searches. The int n parameter
specifies how many top-scoring documents to
return.

TopDocs search(Query query, Filter
filter, int n)

Searches constrained to a subset of available docu-
ments, based on filter criteria.

TopFieldDocs search(Query query,
Filter filter, int n, Sort sort)

Searches constrained to a subset of available docu-
ments based on filter criteria, and sorted by a cus-
tom Sort object

void search(Query query, Collector
results)

Used when you have custom logic to implement for
each document visited, or you’d like to collect a dif-
ferent subset of documents than the top N by the
sort criteria.

void search(Query query, Filter
filter, Collector results)

Same as previous, except documents are only
accepted if they pass the filter criteria.

Table 3.4 TopDocs methods for efficiently accessing search results03_Ch03.fm

TopDocs method
or attribute

Return value

totalHits Number of documents that matched the search

scoreDocs Array of ScoreDoc instances that contains the results

getMaxScore() Returns best score of all matches, if scoring was done while
searching (when sorting by field, you separately control whether
scores are computed)
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

84 CHAPTER 3 Adding search to your application

3.2.4 Paging through results

Presenting search results to end users most often involves displaying only the first 10
to 20 most relevant documents. Paging through ScoreDocs is a common requirement,
although if you find users are frequently doing a lot of paging you should revisit your
design: ideally the user almost always finds the result on the first page. That said, pagi-
nation is still typically needed. You can choose from a couple of implementation
approaches:

Gather multiple pages’ worth of results on the initial search and keep the
resulting ScoreDocs and IndexSearcher instances available while the user is
navigating the search results.
Requery each time the user navigates to a new page.

Requerying is most often the better solution. Requerying eliminates the need to store
per-user state, which in a web application can be costly, especially with a large number
of users. Requerying at first glance seems a waste, but Lucene’s blazing speed more
than compensates. Also, thanks to the I/O caching in modern operating systems,
requerying will typically be fast because the necessary bits from disk will already be
cached in RAM. Frequently users don’t click past the first page of results anyway.

 In order to requery, the original search is reexecuted, with a larger number of
requested matches, and the results are displayed beginning on the desired page. How
the original query is kept depends on your application architecture. In a web applica-
tion where the user types in an expression that’s parsed with QueryParser, the original
expression could be made part of the links for navigating the pages and reparsed for
each request, or the expression could be kept in a hidden HTML field or as a cookie.

 Don’t prematurely optimize your paging implementations with caching or persis-
tence. First implement your paging feature with a straightforward requery approach;
chances are you’ll find this sufficient for your needs. Let’s see an example of near-real-
time search next.

3.2.5 Near-real-time search

One of the new features in Lucene’s 2.9 release is near-real-time search, which enables
you to rapidly search changes made to the index with an open IndexWriter, without
having to first close or commit changes to that writer. Many applications make ongo-
ing changes with an always open IndexWriter and require that subsequent searches
quickly reflect these changes. If that IndexWriter instance is in the same JVM that’s
doing searching, you can use near-real-time search, as shown in listing 3.3.

 This capability is referred to as near-real-time search, and not simply real-time
search, because it’s not possible to make strict guarantees about the turnaround time,
in the same sense as a “hard” real-time OS is able to do. Lucene’s near-real-time search
is more like a “soft” real-time OS. For example, if Java decides to run a major garbage
collection cycle, or if a large segment merge has just completed, or if your machine is
struggling because there’s not enough RAM, the turnaround time of the near-real-
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

85Using IndexSearcher

time reader can be much longer. But in practice the turnaround time can be very fast
(tens of milliseconds or less), depending on your indexing and searching throughput,
and how frequently you obtain a new near-real-time reader.

 In the past, without this feature, you’d have to call commit on the writer, and then
reopen on your reader, but this can be time consuming since commit must sync all new
files in the index, an operation that’s often costly on certain operating systems and file
systems because it usually means the underlying I/O device must physically write all
buffered bytes to stable storage. Near-real-time search enables you to search segments
that are newly created but not yet committed. Section 11.1.3 gives some tips for fur-
ther reducing the index-to-search turnaround time.

public class NearRealTimeTest extends TestCase {
 public void testNearRealTime() throws Exception {
 Directory dir = new RAMDirectory();
 IndexWriter writer = new IndexWriter(dir, new

StandardAnalyzer(Version.LUCENE_30),
IndexWriter.MaxFieldLength.UNLIMITED);

 for(int i=0;i<10;i++) {
 Document doc = new Document();
 doc.add(new Field("id", ""+i, Field.Store.NO,

Field.Index.NOT_ANALYZED_NO_NORMS));
 doc.add(new Field("text", "aaa", Field.Store.NO,

Field.Index.ANALYZED));
 writer.addDocument(doc);
 }
 IndexReader reader = writer.getReader();
 IndexSearcher searcher = new IndexSearcher(reader);

 Query query = new TermQuery(new Term("text", "aaa"));
 TopDocs docs = searcher.search(query, 1);
 assertEquals(10, docs.totalHits);

 writer.deleteDocuments(new Term("id", "7"));

 Document doc = new Document();
 doc.add(new Field("id",
 "11",
 Field.Store.NO,
 Field.Index.NOT_ANALYZED_NO_NORMS));
 doc.add(new Field("text",
 "bbb",
 Field.Store.NO,
 Field.Index.ANALYZED));
 writer.addDocument(doc);

 IndexReader newReader = reader.reopen();
 assertFalse(reader == newReader);
 reader.close();
 searcher = new IndexSearcher(newReader);

 TopDocs hits = searcher.search(query, 10);

Listing 3.3 Near-real-time search

Create near-real-
time reader

B

Wrap reader in
IndexSearcher

Search returns 10 hits

Delete 1 documentC

Add 1
document

D

Reopen readerE

Confirm reader is newF

Close old readerG

Verify 9 hits nowH

 assertEquals(9, hits.totalHits);

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

E

86 CHAPTER 3 Adding search to your application

 query = new TermQuery(new Term("text", "bbb"));
 hits = searcher.search(query, 1);
 assertEquals(1, hits.totalHits);

 newReader.close();
 writer.close();
 }
}

IndexWriter returns a reader that’s able to search all previously committed changes
to the index, plus any uncommitted changes. The returned reader is always read-only.

We make changes to the index but don’t commit them.

We ask the reader to reopen. Note that this simply calls writer.getReader again
under the hood. Because we made changes, the newReader will be different from the
old one so we must close the old one.

The changes made with the writer are reflected in new searches.

The important method is IndexWriter.getReader. This method flushes any buffered
changes to the directory, and then creates a new IndexReader that includes the
changes. If further changes are made through the IndexWriter, you use the reopen
method in the IndexReader to get a new reader. If there are changes, a new reader is
returned, and you should then close the old reader. The reopen method is very effi-
cient: for any unchanged parts of the index, it shares the open files and caches with
the previous reader. Only newly created files since the last open or reopen will be
opened. This results in very fast, often subsecond, turnaround. Section 11.2.2 pro-
vides further examples of how to use the reopen method with a near-real-time reader.

 Next we look at how Lucene scores each document that matches the search.

3.3 Understanding Lucene scoring
Every time a document matches during search, it’s assigned a score that reflects how
good the match is. This score computes how similar the document is to the query,
with higher scores reflecting stronger similarity and thus stronger matches. We chose
to discuss this complex topic early in this chapter so you’ll have a general sense of the
various factors that go into Lucene scoring as you continue to read. We’ll start with
details on Lucene’s scoring formula, and then show how you can see the full explana-
tion of how a certain document arrived at its score.

3.3.1 How Lucene scores

Without further ado, meet Lucene’s similarity scoring formula, shown in figure 3.3.
It’s called the similarity scoring formula because its purpose is to measure the similar-
ity between a query and each document that matches the query. The score is com-
puted for each document (d) matching each term (t) in a query (q).

Confirm new
document
matched

I

 B

C D

 F G

H I

t in qΣ (t f (t in d) idf (t) boost(t.field in d) lengthNorm(t.field in d)) coord(q,d) queryNorm(q)2
Figure 3.3 Lucene uses this formula to determine a document score based on a query.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

87Understanding Lucene scoring

NOTE If this equation or the thought of mathematical computations scares you,
you may safely skip this section. Lucene’s scoring is top-notch as is, and a
detailed understanding of what makes it tick isn’t necessary to take
advantage of Lucene’s capabilities.

This score is the raw score, which is a floating-point number >= 0.0. Typically, if an
application presents the score to the end user, it’s best to first normalize the scores by
dividing all scores by the maximum score for the query. The larger the similarity
score, the better the match of the document to the query. By default Lucene returns
documents reverse-sorted by this score, meaning the top documents are the best
matching ones. Table 3.5 describes each of the factors in the scoring formula.

 Boost factors are built into the equation to let you affect a query or field’s influence
on score. Field boosts come in explicitly in the equation as the boost(t.field in d)
factor, set at indexing time. The default value of field boosts, logically, is 1.0. During
indexing, a document can be assigned a boost, too. A document boost factor implicitly
sets the starting field boost of all fields to the specified value. Field-specific boosts are
multiplied by the starting value, giving the final value of the field boost factor. It’s pos-
sible to add the same named field to a document multiple times, and in such situations
the field boost is computed as all the boosts specified for that field and document mul-
tiplied together. Section 2.5 discusses index-time boosting in more detail.

 In addition to the explicit factors in this equation, other factors can be computed
on a per-query basis as part of the queryNorm factor. Queries themselves can have an

Table 3.5 Factors in the scoring formula

Factor Description

tf(t in d) Term frequency factor for the term (t) in the document (d)—how
many times the term t occurs in the document.

idf(t) Inverse document frequency of the term: a measure of how
“unique” the term is. Very common terms have a low idf; very rare
terms have a high idf.

boost(t.field in d) Field and document boost, as set during indexing (see section 2.5).
You may use this to statically boost certain fields and certain docu-
ments over others.

lengthNorm(t.field in d) Normalization value of a field, given the number of terms within the
field. This value is computed during indexing and stored in the index
norms. Shorter fields (fewer tokens) get a bigger boost from this
factor.

coord(q, d) Coordination factor, based on the number of query terms the
document contains. The coordination factor gives an AND-like boost
to documents that contain more of the search terms than other
documents.

queryNorm(q) Normalization value for a query, given the sum of the squared
weights of each of the query terms.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

88 CHAPTER 3 Adding search to your application

impact on the document score. Boosting a Query instance is sensible only in a multi-
ple-clause query; if only a single term is used for searching, changing its boost would
impact all matched documents equally. In a multiple-clause Boolean query, some doc-
uments may match one clause but not another, enabling the boost factor to discrimi-
nate between matching documents. Queries also default to a 1.0 boost factor.

 Most of these scoring formula factors are controlled and implemented as a sub-
class of the abstract Similarity class. DefaultSimilarity is the implementation used
unless otherwise specified. More computations are performed under the covers of
DefaultSimilarity; for example, the term frequency factor is the square root of the
actual frequency. Because this is an “in action” book, it’s beyond the book’s scope to
delve into the inner workings of these calculations. In practice, it’s extremely rare to
need a change in these factors. Should you need to change them, please refer to Sim-
ilarity’s Javadocs, and be prepared with a solid understanding of these factors and
the effect your changes will have.

 It’s important to note that a change in index-time boosts or the Similarity meth-
ods used during indexing, such as lengthNorm, require that the index be rebuilt for
all factors to be in sync.

 Let’s say you’re baffled as to why a certain document got a good score to your
Query. Lucene offers a nice feature to help provide the answer.

3.3.2 Using explain() to understand hit scoring

Whew! The scoring formula seems daunting—and it is. We’re talking about factors
that rank one document higher than another based on a query; that in and of itself
deserves the sophistication going on. If you want to see how all these factors play out,
Lucene provides a helpful feature called Explanation. IndexSearcher has an
explain method, which requires a Query and a document ID and returns an Explana-
tion object.

 The Explanation object internally contains all the gory details that factor into the
score calculation. Each detail can be accessed individually if you like; but generally,
dumping out the explanation in its entirety is desired. The .toString() method
dumps a nicely formatted text representation of the Explanation. We wrote a simple
program to dump Explanations, shown in listing 3.4.

public class Explainer {
 public static void main(String[] args) throws Exception {
 if (args.length != 2) {
 System.err.println("Usage: Explainer <index dir> <query>");
 System.exit(1);
 }

 String indexDir = args[0];
 String queryExpression = args[1];

Listing 3.4 The explain() method
 Directory directory = FSDirectory.open(new File(indexDir));

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

89Understanding Lucene scoring

 QueryParser parser = new QueryParser(Version.LUCENE_30,
 "contents", new SimpleAnalyzer());
 Query query = parser.parse(queryExpression);

 System.out.println("Query: " + queryExpression);

 IndexSearcher searcher = new IndexSearcher(directory);
 TopDocs topDocs = searcher.search(query, 10);

 for (ScoreDoc match : topDocs.scoreDocs) {
 Explanation explanation
 = searcher.explain(query, match.doc);

 System.out.println("----------");
 Document doc = searcher.doc(match.doc);
 System.out.println(doc.get("title"));
 System.out.println(explanation.toString());
 }
 searcher.close();
 directory.close();
 }
}

Using the query junit against our sample index produced the following output;
notice that the most relevant title scored best:

Query: junit

JUnit in Action, Second Edition
0.7629841 = (MATCH) fieldWeight(contents:junit in 11), product of:
 1.4142135 = tf(termFreq(contents:junit)=2)
 2.466337 = idf(docFreq=2, maxDocs=13)
 0.21875 = fieldNorm(field=contents, doc=11)

Ant in Action
0.61658424 = (MATCH) fieldWeight(contents:junit in 9), product of:
 1.0 = tf(termFreq(contents:junit)=1)
 2.466337 = idf(docFreq=2, maxDocs=13)
 0.25 = fieldNorm(field=contents, doc=9)

JUnit in Action, Second Edition has the term junit twice in its contents field. The contents
field in our index is a catchall field, aggregating all textual fields to allow a single field
for searching.

Ant in Action has the term junit only once in its contents field.

There’s also a .toHtml() method that outputs the same hierarchical structure,
except as nested HTML elements suitable for outputting in a web browser. In
fact, the Explanation feature is a core part of the Nutch project, allowing for trans-
parent ranking.

 Explanations are handy to see the inner workings of the score calculation, but
they expend the same amount of effort as a query. So, be sure not to use extraneous
Explanation generation.

Generate
Explanation

Output
Explanation

B

C

 B

 C
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

90 CHAPTER 3 Adding search to your application

 By now you have a strong foundation for getting your search application off the
ground: we showed the most important ways of performing searches with Lucene.
Now, it’s time to drill down into detail on the numerous types of queries Lucene offers.

3.4 Lucene’s diverse queries
As you saw in section 3.2, querying Lucene ultimately requires a call to one of Index-
Searcher’s search methods, using an instance of Query. Query subclasses can be
instantiated directly, or, as we discussed in section 3.1.2, a Query can be constructed
through the use of QueryParser, a front end that converts free text into each of the
Query types we describe here. In each case we’ll show you how to programmatically
instantiate each Query, and also what QueryParser syntax to use to create the query.

 Even if you’re using QueryParser, combining a parsed query expression with an
API-created Query is a common technique to augment, refine, or constrain a human-
entered query. For example, you may want to restrict free-form parsed expressions to
a subset of the index, like documents only within a category. Depending on your
search’s UI, you may have date pickers to select a date range, drop-downs for selecting
a category, and a free-form search box. Each of these clauses can be stitched together
using a combination of QueryParser and programmatically constructed queries.

 Yet another way to create Query objects is by using the XML Query Parser package,
contained in Lucene’s contrib modules and described in section 9.5. This package
allows you to express arbitrary queries directly as XML strings, which the package
then converts into a Query instance. The XML could be created in any way, but one
simple approach is to apply a transform to name-value pairs provided by an advanced
search UI.

 This section covers each of Lucene’s built-in Query types, TermQuery, TermRange-
Query, NumericRangeQuery, PrefixQuery, BooleanQuery, PhraseQuery, Wildcard-
Query, FuzzyQuery, and the unusual yet aptly named MatchAllDocsQuery. We’ll see
how these queries match documents, and how to create them programmatically.
There are still more queries under Lucene’s contrib area, described in section 8.6. In
section 3.5 we’ll show how you can create each of these query types using QueryParser
instead. We begin with TermQuery.

3.4.1 Searching by term: TermQuery

The most elementary way to search an index is for a specific term. A term is the small-
est indexed piece, consisting of a field name and a text-value pair. Listing 3.1 provided
an example of searching for a specific term. This code constructs a Term object
instance:

Term t = new Term("contents", "java");

A TermQuery accepts a single Term:

Query query = new TermQuery(t);

All documents that have the word java in a contents field are returned from searches

using this TermQuery. Note that the value is case sensitive, so be sure to match the case

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

91Lucene’s diverse queries

of terms indexed; this may not be the exact case in the original document text,
because an analyzer (see chapter 4) may have indexed things differently.

 TermQuerys are especially useful for retrieving documents by a key. If documents
were indexed using Field.Index.NOT_ANALYZED, the same value can be used to
retrieve these documents. For example, given our book test data, the following code
retrieves the single document matching the ISBN provided:

public void testKeyword() throws Exception {
 Directory dir = TestUtil.getBookIndexDirectory();
 IndexSearcher searcher = new IndexSearcher(dir);

 Term t = new Term("isbn", "9781935182023");
 Query query = new TermQuery(t);
 TopDocs docs = searcher.search(query, 10);
 assertEquals("JUnit in Action, Second Edition",
 1, docs.totalHits);

 searcher.close();
 dir.close();
}

A Field.Index.NOT_ANALYZED field doesn’t imply that it’s unique, though. It’s up to
you to ensure uniqueness during indexing. In our sample book data, isbn is unique
among all documents.

3.4.2 Searching within a term range: TermRangeQuery

Terms are ordered lexicographically (according to String.compareTo) within the
index, allowing for straightforward searching of textual terms within a range as pro-
vided by Lucene’s TermRangeQuery. The beginning and ending terms may either be
included or excluded. If either term is null, that end is open-ended. For example, a
null lowerTerm means there is no lower bound, so all terms less than the upper term
are included. Only use this query for textual ranges, such as for finding all names that
begin with N through Q. NumericRangeQuery, covered in the next section, should be
used for ranges on numeric fields.

 The following code illustrates TermRangeQuery, searching for all books whose title
begins with any letter from d to j. Our books data set has three such books. Note that
the title2 field in our book index is simply the lowercased title, indexed as a single
token using Field.NOT_ANALYZED_NO_NORMS:

public void testTermRangeQuery() throws Exception {
 Directory dir = TestUtil.getBookIndexDirectory();
 IndexSearcher searcher = new IndexSearcher(dir);
 TermRangeQuery query = new TermRangeQuery("title2", "d", "j",
 true, true);
 TopDocs matches = searcher.search(query, 100);
 assertEquals(3, matches.totalHits);
 searcher.close();
 dir.close();
}

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

92 CHAPTER 3 Adding search to your application

The last two Booleans to the TermRangeQuery state whether the start and end points
are inclusive (true) or exclusive (false). We passed true, for an inclusive search, but
had we passed false instead there would be no change in the results because we have
no books with the exact title d or j.

 Because Lucene always stores its terms in lexicographic sort order (using
String.compareTo, which compares by UTF16 code unit), the range defined by the
beginning and ending terms is always according to this lexicographic order. How-
ever, TermRangeQuery can also accept a custom Collator, which is then used for
range checking. Unfortunately, this process can be extremely slow for a large index
because it requires enumerating every single term in the index to check if it’s within
bounds. The CollationKeyAnalyzer, a contrib module, is one way to gain back the
performance.

 Next we consider the numeric equivalent of TermRangeQuery.

3.4.3 Searching within a numeric range: NumericRangeQuery

If you indexed your field with NumericField, you can efficiently search a particular
range for that field using NumericRangeQuery. Under the hood, Lucene translates
the requested range into the equivalent set of brackets in the previously indexed trie
structure. Each bracket is a distinct term in the index whose documents are OR’d
together. The number of brackets required will be relatively small, which is what
gives NumericRangeQuery such good performance when compared to an equivalent
TermRangeQuery.

 Let’s look at an example based on the pubmonth field from our book index. We
indexed this field as an integer with month precision, meaning March 2010 is indexed
as a NumericField with the integer value 201,003. We can then do an inclusive range
search like this:

public void testInclusive() throws Exception {
 Directory dir = TestUtil.getBookIndexDirectory();
 IndexSearcher searcher = new IndexSearcher(dir);
 // pub date of TTC was September 2006
 NumericRangeQuery query = NumericRangeQuery.newIntRange("pubmonth",
 200605,
 200609,
 true,
 true);

 TopDocs matches = searcher.search(query, 10);
 assertEquals(1, matches.totalHits);
 searcher.close();
 dir.close();
}

Just like TermRangeQuery, the last two Booleans to the newIntRange method state
whether the start and end points are inclusive (true) or exclusive (false). There’s
only one book published in that range, which was published in September 2006. If we
change the range search to be exclusive, the book is no longer found:
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

93Lucene’s diverse queries

public void testExclusive() throws Exception {
 Directory dir = TestUtil.getBookIndexDirectory();
 IndexSearcher searcher = new IndexSearcher(dir);

 // pub date of TTC was September 2006
 NumericRangeQuery query = NumericRangeQuery.newIntRange("pubmonth",
 200605,
 200609,
 false,
 false);
 TopDocs matches = searcher.search(query, 10);
 assertEquals(0, matches.totalHits);
 searcher.close();
 dir.close();
}

NumericRangeQuery also optionally accepts the same precisionStep parameter as
NumericField. If you had changed this value from its default during indexing, it’s cru-
cial that you provide an acceptable value (either the same value, or a multiple of the
value used during indexing) when searching. Otherwise you’ll silently get incorrect
results. See the Javadocs for NumericRangeQuery for more details.

 Now let’s move on to another query that matches terms by prefix.

3.4.4 Searching on a string: PrefixQuery

PrefixQuery matches documents containing terms beginning with a specified string.
It’s deceptively handy. The following code demonstrates how you can query a hierar-
chical structure recursively with a simple PrefixQuery. The documents contain a cate-
gory field representing a hierarchical structure, which is perfect for matching with a
PrefixQuery, as shown in listing 3.5.

public class PrefixQueryTest extends TestCase {
 public void testPrefix() throws Exception {
 Directory dir = TestUtil.getBookIndexDirectory();
 IndexSearcher searcher = new IndexSearcher(dir);
 Term term = new Term("category",
 "/technology/computers/programming");
 PrefixQuery query = new PrefixQuery(term);

 TopDocs matches = searcher.search(query, 10);
 int programmingAndBelow = matches.totalHits;

 matches = searcher.search(new TermQuery(term), 10);
 int justProgramming = matches.totalHits;

 assertTrue(programmingAndBelow > justProgramming);
 searcher.close();
 dir.close();
 }
}

Listing 3.5 PrefixQuery

Search,
including
subcategories

Search, without
subcategories
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

94 CHAPTER 3 Adding search to your application

Our PrefixQueryTest demonstrates the difference between a PrefixQuery and a
TermQuery. A methodology category exists below the /technology/computers/
programming category. Books in this subcategory are found with a PrefixQuery but
not with the TermQuery on the parent category.

 Our next query, BooleanQuery, is an interesting one because it’s able to embed
and combine other queries.

3.4.5 Combining queries: BooleanQuery

The query types discussed here can be combined in complex ways using Boolean-
Query, which is a container of Boolean clauses. A clause is a subquery that can be
required, optional, or prohibited. These attributes allow for logical AND, OR, and
NOT combinations. You add a clause to a BooleanQuery using this API method:

public void add(Query query, BooleanClause.Occur occur)

where occur can be BooleanClause.Occur.MUST, BooleanClause.Occur.SHOULD, or
BooleanClause.Occur.MUST_NOT.

 A BooleanQuery can be a clause within another BooleanQuery, allowing for arbi-
trary nesting. Let’s look at some examples. Listing 3.6 shows an AND query to find the
most recent books on one of our favorite subjects, search.

public void testAnd() throws Exception {
 TermQuery searchingBooks =
 new TermQuery(new Term("subject", "search"));

 Query books2010 =
 NumericRangeQuery.newIntRange("pubmonth", 201001,
 201012,
 true, true);

 BooleanQuery searchingBooks2010 = new BooleanQuery();
 searchingBooks2010.add(searchingBooks, BooleanClause.Occur.MUST);
 searchingBooks2010.add(books2010, BooleanClause.Occur.MUST);

 Directory dir = TestUtil.getBookIndexDirectory();
 IndexSearcher searcher = new IndexSearcher(dir);
 TopDocs matches = searcher.search(searchingBooks2010, 10);

 assertTrue(TestUtil.hitsIncludeTitle(searcher, matches,
 "Lucene in Action, Second Edition"));
 searcher.close();
 dir.close();
}

This query finds all books containing the subject "search".

This query finds all books published in 2010.

Here we combine the two queries into a single Boolean query with both clauses
required (the second argument is BooleanClause.Occur.MUST).

Listing 3.6 Using BooleanQuery to combine required subqueries

B

C

D

 B

 C

 D
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

95Lucene’s diverse queries

In this test case, we used a new utility method, TestUtil.hitsIncludeTitle:

public static boolean hitsIncludeTitle(IndexSearcher searcher,
 TopDocs hits, String title)
 throws IOException {
 for (ScoreDoc match : hits.scoreDocs) {
 Document doc = searcher.doc(match.doc);
 if (title.equals(doc.get("title"))) {
 return true;
 }
 }
 System.out.println("title '" + title + "' not found");
 return false;
}

BooleanQuery.add has two overloaded method signatures. One accepts only a
BooleanClause, and the other accepts a Query and a BooleanClause.Occur instance.
A BooleanClause is simply a container of a Query and a BooleanClause.Occur
instance, so we omit coverage of it. BooleanClause.Occur.MUST means exactly that:
only documents matching that clause are considered. BooleanClause.Occur.SHOULD
means the term is optional. BooleanClause.Occur.MUST_NOT means any documents
matching this clause are excluded from the results. Use Boolean-

Clause.Occur.SHOULD to perform an OR query, as shown in listing 3.7.

public void testOr() throws Exception {
 TermQuery methodologyBooks = new TermQuery(
 new Term("category",
 "/technology/computers/programming/methodology"));

 TermQuery easternPhilosophyBooks = new TermQuery(
 new Term("category",
 "/philosophy/eastern"));

 BooleanQuery enlightenmentBooks = new BooleanQuery();
 enlightenmentBooks.add(methodologyBooks,
 BooleanClause.Occur.SHOULD);
 enlightenmentBooks.add(easternPhilosophyBooks
 BooleanClause.Occur.SHOULD);

 Directory dir = TestUtil.getBookIndexDirectory();
 IndexSearcher searcher = new IndexSearcher(dir);
 TopDocs matches = searcher.search(enlightenmentBooks, 10);
 System.out.println("or = " + enlightenmentBooks);

 assertTrue(TestUtil.hitsIncludeTitle(searcher, matches,
 "Extreme Programming Explained"));
 assertTrue(TestUtil.hitsIncludeTitle(searcher, matches,
 "Tao Te Ching \u9053\u5FB7\u7D93"));
 searcher.close();
 dir.close();
}

Listing 3.7 Using BooleanQuery to combine optional subqueries.

Match 1st category

Match 2nd
category

Combine both
categories
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

96 CHAPTER 3 Adding search to your application

It’s fine to mix and match different clauses within a single BooleanQuery; simply
specify the BooleanClause.Occur for each. You can create very powerful queries by
doing so. For example, you could construct a query that must match “java” and “pro-
gramming”, must not match “ant”, and should match “computers” as well as “flow-
ers.” Then, you’ll know that every returned document will contain both “java” and
“programming,” won’t contain “ant”, and will contain either “computers” or “flow-
ers”, or both.

 BooleanQuerys are restricted to a maximum number of clauses; 1,024 is the
default. This limitation is in place to prevent queries from accidentally adversely
affecting performance. A TooManyClauses exception is thrown if the maximum is
exceeded. This had been necessary in past Lucene releases, because certain queries
would rewrite themselves under the hood to the equivalent BooleanQuery. But as of
2.9, these queries are now executed in a more efficient manner. Should you ever have
the unusual need of increasing the number of clauses allowed, there’s a setMax-
ClauseCount(int) method on BooleanQuery, but be aware of the performance cost
of executing such queries.

 The next query, PhraseQuery, differs from the queries we’ve covered so far in that
it pays attention to the positional details of multiple-term occurrences.

3.4.6 Searching by phrase: PhraseQuery

An index by default contains positional information of terms, as long as you didn’t
create pure Boolean fields by indexing with the omitTermFreqAndPositions option
(described in section 2.4.1). PhraseQuery uses this information to locate documents
where terms are within a certain distance of one another. For example, suppose a field
contained the phrase the quick brown fox jumped over the lazy dog. Without knowing the
exact phrase, you can still find this document by searching for documents with fields
having quick and fox near each other. Sure, a plain TermQuery would do the trick to
locate this document knowing either of those words, but in this case we only want doc-
uments that have phrases where the words are either exactly side by side (quick fox) or
have one word in between (quick [irrelevant] fox).

 The maximum allowable positional distance between terms to be considered a
match is called slop. Distance is the number of positional moves of terms used to recon-
struct the phrase in order. Let’s take the phrase just mentioned and see how the slop
factor plays out. First we need a little test infrastructure, which includes a setUp()
method to index a single document, a tearDown() method to close the directory and
searcher, and a custom matched (String[], int) method to construct, execute, and
assert a phrase query matched the test document, shown in listing 3.8.

public class PhraseQueryTest extends TestCase {
 private Directory dir;
 private IndexSearcher searcher;

Listing 3.8 PhraseQuery
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

97Lucene’s diverse queries

 protected void setUp() throws IOException {
 dir = new RAMDirectory();
 IndexWriter writer = new IndexWriter(dir,
 new WhitespaceAnalyzer(),
 IndexWriter.MaxFieldLength.UNLIMITED);
 Document doc = new Document();
 doc.add(new Field("field",
 "the quick brown fox jumped over the lazy dog",
 Field.Store.YES,
 Field.Index.ANALYZED));
 writer.addDocument(doc);
 writer.close();

 searcher = new IndexSearcher(dir);
 }

 protected void tearDown() throws IOException {
 searcher.close();
 dir.close();
 }

 private boolean matched(String[] phrase, int slop)
 throws IOException {
 PhraseQuery query = new PhraseQuery();
 query.setSlop(slop);

 for (String word : phrase) {
 query.add(new Term("field", word));
 }

 TopDocs matches = searcher.search(query, 10);
 return matches.totalHits > 0;
 }
}

Because we want to demonstrate several phrase query examples, we wrote the matched
method to simplify the code. Phrase queries are created by adding terms in the
desired order. By default, a PhraseQuery has its slop factor set to zero, specifying an
exact phrase match. With our setUp() and helper matched method, our test case suc-
cinctly illustrates how PhraseQuery behaves. Failing and passing slop factors show the
boundaries:

public void testSlopComparison() throws Exception {
 String[] phrase = new String[] {"quick", "fox"};

 assertFalse("exact phrase not found", matched(phrase, 0));

 assertTrue("close enough", matched(phrase, 1));
}

Terms added to a phrase query don’t have to be in the same order found in the field,
although order does impact slop-factor considerations. For example, had the terms
been reversed in the query (fox and then quick), the number of moves needed to
match the document would be three, not one. To visualize this, consider how many
moves it would take to physically move the word fox two slots past quick; you’ll see that

Add a single
test document

Create initial
PhraseQuery

Add sequential
phrase terms
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

98 CHAPTER 3 Adding search to your application

it takes one move to move fox into the same position as quick and then two more to
move fox beyond quick sufficiently to match “quick brown fox.”

 Figure 3.4 shows how the slop positions work in both of these phrase query scenar-
ios, and this test case shows the match in action:

public void testReverse() throws Exception {
 String[] phrase = new String[] {"fox", "quick"};

 assertFalse("hop flop", matched(phrase, 2));
 assertTrue("hop hop slop", matched(phrase, 3));
}

Let’s now examine how multiple-term phrase queries work.
MULTIPLE-TERM PHRASES

PhraseQuery supports multiple-term phrases. Regardless of how many terms are used
for a phrase, the slop factor is the maximum total number of moves allowed to put the
terms in order. Let’s look at an example of a multiple-term phrase query:

public void testMultiple() throws Exception {
 assertFalse("not close enough",
 matched(new String[] {"quick", "jumped", "lazy"}, 3));

 assertTrue("just enough",
 matched(new String[] {"quick", "jumped", "lazy"}, 4));

 assertFalse("almost but not quite",
 matched(new String[] {"lazy", "jumped", "quick"}, 7));

 assertTrue("bingo",
 matched(new String[] {"lazy", "jumped", "quick"}, 8));
}

Now that you’ve seen how phrase queries match, let’s turn our attention to how
phrase queries affect the score.
PHRASE QUERY SCORING

Phrase queries are scored based on the edit distance needed to match the phrase.
More exact matches count for more weight than sloppier ones. The phrase query fac-
tor is shown in figure 3.5. The inverse relationship with distance ensures that greater
distances have lower scores.

quick fox

fox quick

quick [brown] fox

Figure 3.4 Illustrating the PhraseQuery slop
factor: “quick fox” requires a slop of 1 to match,
whereas “fox quick” requires a slop of 3 to match.

Figure 3.5 Sloppy phrase
scoring formula
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

99Lucene’s diverse queries

NOTE Terms surrounded by double quotes in QueryParser-parsed expressions
are translated into a PhraseQuery. The slop factor defaults to 0, but you
can adjust the slop factor by adding a tilde (~) followed by an integer. For
example, the expression "quick fox"~3 is a PhraseQuery with the terms
quick and fox and a slop factor of 3. There are additional details about
PhraseQuery and the slop factor in section 3.4.6. Phrases are analyzed by
the analyzer passed to the QueryParser, adding another layer of com-
plexity, as discussed in section 4.1.2.

Our next query, WildcardQuery, matches terms using wildcard characters.

3.4.7 Searching by wildcard: WildcardQuery

Wildcard queries let you query for terms with missing pieces but still find matches.
Two standard wildcard characters are used: * for zero or more characters, and ? for
zero or one character. Listing 3.9 demonstrates WildcardQuery in action. You can
think of WildcardQuery as a more general PrefixQuery because the wildcard doesn’t
have to be at the end.

private void indexSingleFieldDocs(Field[] fields) throws Exception {
 IndexWriter writer = new IndexWriter(directory,
 new WhitespaceAnalyzer(), IndexWriter.MaxFieldLength.UNLIMITED);
 for (Field f : fields) {
 Document doc = new Document();
 doc.add(f);
 writer.addDocument(doc);
 }
 writer.optimize();
 writer.close();
}

public void testWildcard() throws Exception {
 indexSingleFieldDocs(new Field[]
 { new Field("contents", "wild", Field.Store.YES,
 Field.Index.ANALYZED),
 new Field("contents", "child", Field.Store.YES,
 Field.Index.ANALYZED),
 new Field("contents", "mild", Field.Store.YES,
 Field.Index.ANALYZED),
 new Field("contents", "mildew", Field.Store.YES,
 Field.Index.ANALYZED) });

 IndexSearcher searcher = new IndexSearcher(directory);
 Query query = new WildcardQuery(new Term("contents", "?ild*"));
 TopDocs matches = searcher.search(query, 10);
 assertEquals("child no match", 3, matches.totalHits);

 assertEquals("score the same", matches.scoreDocs[0].score,
 matches.scoreDocs[1].score, 0.0);
 assertEquals("score the same", matches.scoreDocs[1].score,
 matches.scoreDocs[2].score, 0.0);
 searcher.close();

Listing 3.9 WildcardQuery

Create
WildcardQuery
}

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 3 Adding search to your application

Note how the wildcard pattern is created as a Term (the pattern to match) even
though it isn’t explicitly used as an exact term under the covers. Internally, it’s used as
a pattern to match terms in the index. A Term instance is a convenient placeholder to
represent a field name and an arbitrary string.

WARNING Performance degradations can occur when you use WildcardQuery. A
larger prefix (characters before the first wildcard character) decreases
the number of terms enumerated to find matches. Beginning a pattern
with a wildcard query forces the term enumeration to search all terms in
the index for matches.

Oddly, the closeness of a wildcard match has no effect on scoring. The last two asser-
tions in listing 3.9, where wild and mild are closer matches to the pattern than mildew,
demonstrate this.

 Our next query is FuzzyQuery.

3.4.8 Searching for similar terms: FuzzyQuery

Lucene’s FuzzyQuery matches terms similar to a specified term. The Levenshtein dis-
tance algorithm determines how similar terms in the index are to a specified target
term. (See http://en.wikipedia.org/wiki/Levenshtein_Distance for more information
about Levenshtein distance.) Edit distance is another term for Levenshtein distance;
it’s a measure of similarity between two strings, where distance is measured as the
number of character deletions, insertions, or substitutions required to transform one
string to the other string. For example, the edit distance between three and tree is 1,
because only one character deletion is needed.

 Levenshtein distance isn’t the same as the distance calculation used in Phrase-
Query and PrefixQuery. The phrase query distance is the number of term moves to
match, whereas Levenshtein distance is an intraterm computation of character moves.
The FuzzyQuery test demonstrates its usage and behavior:

public void testFuzzy() throws Exception {
 indexSingleFieldDocs(new Field[] { new Field("contents",
 "fuzzy",
 Field.Store.YES,
 Field.Index.ANALYZED),
 new Field("contents",
 "wuzzy",
 Field.Store.YES,
 Field.Index.ANALYZED)
 });

 IndexSearcher searcher = new IndexSearcher(directory);
 Query query = new FuzzyQuery(new Term("contents", "wuzza"));
 TopDocs matches = searcher.search(query, 10);
 assertEquals("both close enough", 2, matches.totalHits);

 assertTrue("wuzzy closer than fuzzy",
 matches.scoreDocs[0].score != matches.scoreDocs[1].score);
 Document doc = searcher.doc(matches.scoreDocs[0].doc);

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://en.wikipedia.org/wiki/Levenshtein_Distance
http://www.it-ebooks.info/

101Parsing query expressions: QueryParser

 assertEquals("wuzza bear", "wuzzy", doc.get("contents"));
 searcher.close();
}

This test illustrates a couple of key points. Both documents match; the term searched
for (wuzza) wasn’t indexed but was close enough to match. FuzzyQuery uses a threshold
rather than a pure edit distance. The threshold is a factor of the edit distance divided
by the string length. Edit distance affects scoring; terms with less edit distance are
scored higher. Other term statistics, such as the inverse document frequency, are also
factored in, as described in section 3.3. Distance is computed using the formula shown
in figure 3.6.

WARNING FuzzyQuery enumerates all terms in an index to find terms within the
allowable threshold. Use this type of query sparingly or at least with the
knowledge of how it works and the effect it may have on performance.

3.4.9 Matching all documents: MatchAllDocsQuery

MatchAllDocsQuery, as the name implies, simply matches every document in your
index. By default, it assigns a constant score, the boost of the query (default: 1.0), to
all documents that match. If you use this as your top query, it’s best to sort by a field
other than the default relevance sort.

 It’s also possible to have MatchAllDocsQuery assign as document scores the boost-
ing recorded in the index, for a specified field, like so:

Query query = new MatchAllDocsQuery(field);

If you do this, documents are scored according to how the specified field was boosted
(as described in section 2.5).

 We’re done reviewing Lucene’s basic core Query classes. Chapter 5 covers more
advanced Query classes. Now we’ll move on to using QueryParser to construct queries
from a user’s textual query.

3.5 Parsing query expressions: QueryParser
Although API-created queries can be powerful, it isn’t reasonable that all queries
should be explicitly written in Java code. Using a human-readable textual query repre-
sentation, Lucene’s QueryParser constructs one of the previously mentioned Query
subclasses. Because the QueryParser already recognizes the standard search syntax
that has become popular thanks to web search engines like Google, using Query-
Parser is also an immediate and simple way for your application to meet that user
expectation. QueryParser is also easily customized, as we’ll see in section 6.3.

 The constructed Query instance could be a complex entity, consisting of nested
BooleanQuerys and a combination of almost all the Query types mentioned, but an
expression entered by the user could be as readable as this:

Figure 3.6 FuzzyQuery
distance formula
+pubdate:[20100101 TO 20101231] Java AND (Lucene OR Apache)

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 3 Adding search to your application

This query searches for all books about Java that also include Lucene or Apache in their
contents and were published in 2010.

NOTE Whenever special characters are used in a query expression, you need to
provide an escaping mechanism so that the special characters can be
used in a normal fashion. QueryParser uses a backslash (\) to escape spe-
cial characters within terms. The characters that require escaping are as
follows:
\ + - ! () : ^] { } ~ * ?

We’ve already seen a brief introduction to QueryParser in section 3.1.2 at the start of
the chapter. In this section we’ll first delve into the specific syntax for each of Lucene’s
core Query classes that QueryParser supports. We’ll also describe some of the settings
that control the parsing of certain queries. We’ll wrap up with further syntax that
QueryParser accepts for controlling grouping, boosting, and field searching of each
query clause. This discussion assumes knowledge of the Query types discussed in sec-
tion 3.4. Note that some of these subsections here are rather short; this is a reflection
of just how powerful QueryParser is under the hood—it’s able to take a simple-to-
describe search syntax and easily build rich queries.

 We begin with a handy way to glimpse what QueryParser does to expressions.

3.5.1 Query.toString

Seemingly strange things can happen to a query expression as it’s parsed with Query-
Parser. How can you tell what really happened to your expression? Was it translated
properly into what you intended? One way to peek at a resultant Query instance is to
use its toString() method.

 All concrete core Query classes we’ve discussed in this chapter have a special
toString() implementation. The standard Object.toString() method is overridden
and delegates to a toString(String field) method, where field is the name of the
default field. Calling the no-arg toString() method uses an empty default field
name, causing the output to explicitly use field selector notation for all terms. Here’s
an example of using the toString() method:

public void testToString() throws Exception {
 BooleanQuery query = new BooleanQuery();
 query.add(new FuzzyQuery(new Term("field", "kountry")),
 BooleanClause.Occur.MUST);
 query.add(new TermQuery(new Term("title", "western")),
 BooleanClause.Occur.SHOULD);
 assertEquals("both kinds", "+kountry~0.5 title:western",
 query.toString("field"));
}

The toString() methods (particularly the String-arg one) are handy for visual
debugging of complex API queries as well as getting a handle on how QueryParser
interprets query expressions. Don’t rely on the ability to go back and forth accurately

between a Query.toString() representation and a QueryParser-parsed expression,

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

103Parsing query expressions: QueryParser

though. It’s generally accurate, but an analyzer is involved and may confuse things;
this issue is discussed further in section 4.1.2. Let’s begin, again, with the simplest
Query type, TermQuery.

3.5.2 TermQuery

As you might expect, a single word is by default parsed into a TermQuery by Query-
Parser, as long as it’s not part of a broader expression recognized by the other query
types. For example:

public void testTermQuery() throws Exception {
 QueryParser parser = new QueryParser(Version.LUCENE_30,
 "subject", analyzer);
 Query query = parser.parse("computers");
 System.out.println(“term: “ + query);
}

produces this output:

term: subject:computers

Note how QueryParser built the term query by appending the default field we’d pro-
vided when instantiating it, subject, to the analyzed term, computers. Section 3.5.11
shows how you can specify a field other than the default one. Note that the text for the
word is passed through the analysis process, described in the next chapter, before con-
structing the TermQuery. In our QueryParserTest we’re using an analyzer that simply
splits words at whitespace. Had we used a more interesting analyzer, it could have
altered the term—for example, by stripping the plural suffix, and perhaps reducing
the word to its root form before passing it to the TermQuery. It’s vital that this analysis
done by QueryParser match the analysis performed during indexing. Section 4.1.2
delves into this tricky topic.

 Let’s see how QueryParser constructs range searches.

3.5.3 Term range searches

Text or date range queries use bracketed syntax, with TO between the beginning term
and ending term. Note that TO must be all caps. The type of bracket determines
whether the range is inclusive (square brackets) or exclusive (curly braces). Note that,
unlike with the programmatic construction of NumericRangeQuery or TermRange-
Query, you can’t mix inclusive and exclusive: both the start and end term must be
either inclusive or exclusive.

 Our testRangeQuery() method, in listing 3.10, demonstrates both inclusive and
exclusive range queries.

public void testTermRangeQuery() throws Exception {
 Query query = new QueryParser(Version.LUCENE_30,
 "subject", analyzer)

Listing 3.10 Creating a TermRangeQuery using QueryParser

Verify
inclusive range
 .parse("title2:[Q TO V]");

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

104 CHAPTER 3 Adding search to your application

 assertTrue(query instanceof TermRangeQuery);

 TopDocs matches = searcher.search(query, 10);
 assertTrue(TestUtil.hitsIncludeTitle(searcher, matches,
 "Tapestry in Action"));

 query = new QueryParser(Version.LUCENE_30,
 "subject",
 analyzer)
 .parse("title2:{Q TO \"Tapestry in Action\" }");
 matches = searcher.search(query, 10);
 assertFalse(TestUtil.hitsIncludeTitle(searcher, matches,
 "Tapestry in Action"));
}

NOTE Nondate range queries lowercase the beginning and ending terms as the
user entered them, unless QueryParser.setLowercaseExpanded-
Terms(false) has been called. The text isn’t analyzed. If the start or end
terms contain whitespace, they must be surrounded with double quotes,
or parsing fails.

Let’s look next at numeric and date ranges.

3.5.4 Numeric and date range searches

QueryParser won’t create a NumericRangeQuery for you. This is because Lucene cur-
rently doesn’t keep track of which of your fields were indexed with NumericField,
though it’s possible this limitation has been corrected by the time you read this. Que-
ryParser does include certain built-in logic for parsing dates when they appear as
part of a range query, but the logic doesn’t work when you’ve indexed your dates
using NumericField. Fortunately, subclassing QueryParser to correctly handle
numeric fields is straightforward, as described in sections 6.3.3 and 6.3.4.

 Next we’ll see how QueryParser creates prefix and wildcard queries.

3.5.5 Prefix and wildcard queries

If a term contains an asterisk or a question mark, it’s considered a WildcardQuery.
When the term contains only a trailing asterisk, QueryParser optimizes it to a Prefix-
Query instead. Both prefix and wildcard queries are lowercased by default, but this
behavior can be controlled:

public void testLowercasing() throws Exception {
 Query q = new QueryParser(Version.LUCENE_30,
 "field", analyzer).parse("PrefixQuery*");
 assertEquals("lowercased",
 "prefixquery*", q.toString("field"));

 QueryParser qp = new QueryParser(Version.LUCENE_30,
 "field", analyzer);
 qp.setLowercaseExpandedTerms(false);
 q = qp.parse("PrefixQuery*");
 assertEquals("not lowercased",
 "PrefixQuery*", q.toString("field"));

Verify
exclusive range

Exclude Tapestry
in Action
}

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

105Parsing query expressions: QueryParser

Wildcards at the beginning of a term are prohibited using QueryParser by default,
which you can override at the expense of performance by calling the setAllow-
LeadingWildcard method. Section 3.4.7 discusses more about the performance
issue, and section 6.3.2 provides a way to prohibit WildcardQuerys entirely from
parsed expressions.

 Let’s look next at QueryParser’s ability to create BooleanQuerys.

3.5.6 Boolean operators

Constructing Boolean queries textually via QueryParser is done using the operators
AND, OR, and NOT. Note that these operators must be typed as all caps. Terms listed
without an operator specified use an implicit operator, which by default is OR. The
query abc xyz will be interpreted as either abc OR xyz or abc AND xyz, based on the
implicit operator setting. To switch parsing to use AND:

QueryParser parser = new QueryParser(Version.LUCENE_30,
 "contents", analyzer);
parser.setDefaultOperator(QueryParser.AND_OPERATOR);

Placing a NOT in front of a term excludes
documents matching the following term.
Negating a term must be combined with at
least one non-negated term to return docu-
ments; in other words, it isn’t possible to
use a query like NOT term to find all docu-
ments that don’t contain a term. Each of
the uppercase word operators has shortcut
syntax; table 3.6 illustrates various syntax equivalents.

 We’ll see how to construct a PhraseQuery next.

3.5.7 Phrase queries

Terms enclosed in double quotes create a PhraseQuery. The text between the quotes
is analyzed; thus the resultant PhraseQuery may not be exactly the phrase originally
specified. This process has been the subject of some confusion. For example, the
query "This is Some Phrase*", when analyzed by the StandardAnalyzer, parses to a
PhraseQuery using the phrase “some phrase.” The StandardAnalyzer removes the
words this and is because they match the default stop word list and leaves positional
holes recording that the words were removed (more in section 4.3.2 on Standard-
Analyzer). A common question is why the asterisk isn’t interpreted as a wildcard
query. Keep in mind that surrounding text with double quotes causes the surrounded
text to be analyzed and converted into a PhraseQuery. Single-term phrases are opti-
mized to a TermQuery. The following code demonstrates both the effect of analysis on
a phrase query expression and the TermQuery optimization:

public void testPhraseQuery() throws Exception {
 Query q = new QueryParser(Version.LUCENE_30,

Table 3.6 Boolean query operator shortcuts

Verbose syntax Shortcut syntax

a AND b +a +b

a OR b a b

a AND NOT b +a –b
 "field",

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

106 CHAPTER 3 Adding search to your application

 new StandardAnalyzer(
 Version.LUCENE_30))
 .parse("\"This is Some Phrase*\"");

 assertEquals("analyzed",
 "\"? ? some phrase\"", q.toString("field"));

 q = new QueryParser(Version.LUCENE_30,
 "field", analyzer)
 .parse("\"term\"");
 assertTrue("reduced to TermQuery", q instanceof TermQuery);
}

You can see that the query represents the positional holes left by the removed stop
words, using a ? character. The default slop factor is 0, but you can change this default
by calling QueryParser.setPhraseSlop. The slop factor can also be overridden for
each phrase by using a trailing tilde (~) and the desired integer slop value:

public void testSlop() throws Exception {
 Query q = new QueryParser(Version.LUCENE_30,
 "field", analyzer)
 .parse("\"exact phrase\"");
 assertEquals("zero slop",
 "\"exact phrase\"", q.toString("field"));

 QueryParser qp = new QueryParser(Version.LUCENE_30,
 "field", analyzer);
 qp.setPhraseSlop(5);
 q = qp.parse("\"sloppy phrase\"");
 assertEquals("sloppy, implicitly",
 "\"sloppy phrase\"~5", q.toString("field"));
}

A sloppy PhraseQuery, as noted, doesn’t require that the terms match in the same
order. But a SpanNearQuery (discussed in section 5.5.3) has the ability to guarantee an
in-order match. In section 6.3.5, we extend QueryParser and substitute a SpanNear-
Query when phrase queries are parsed, allowing for sloppy in-order phrase matches.
The final queries we discuss are FuzzyQuery and MatchAllDocsQuery.

3.5.8 Fuzzy queries

A trailing tilde (~) creates a fuzzy query on the preceding term. Note that the tilde is
also used to specify sloppy phrase queries, but the context is different. Double quotes
denote a phrase query and aren’t used for fuzzy queries. You can optionally specify a
trailing floating point number to specify the minimum required similarity. Here’s an
example:
public void testFuzzyQuery() throws Exception {
 QueryParser parser = new QueryParser(Version.LUCENE_30,
 "subject", analyzer);
 Query query = parser.parse("kountry~");
 System.out.println("fuzzy: " + query);

 query = parser.parse("kountry~0.7");
 System.out.println("fuzzy 2: " + query);

}

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

107Parsing query expressions: QueryParser

This produces the following output:

fuzzy: subject:kountry~0.5
fuzzy 2: subject:kountry~0.7

The same performance caveats that apply to WildcardQuery also apply to fuzzy que-
ries and can be disabled by customizing, as discussed in section 6.3.2.

3.5.9 MatchAllDocsQuery

QueryParser produces the MatchAllDocsQuery when you enter *:*.
 This wraps up our coverage showing how QueryParser produces each of Lucene’s

core query types. But that’s not the end of QueryParser: it also supports some very
useful syntax to group clauses of a Query, boost clauses, and restrict clauses to specific
fields. Let’s begin with grouping.

3.5.10 Grouping

Lucene’s BooleanQuery lets you construct complex nested clauses; likewise, Query-
Parser enables this same capability with textual query expressions via grouping. Let’s
find all the methodology books that are about either agile or extreme methodolo-
gies. We use parentheses to form subqueries, enabling advanced construction of
BooleanQuerys:

public void testGrouping() throws Exception {
 Query query = new QueryParser(
 Version.LUCENE_30,
 "subject",
 analyzer).parse("(agile OR extreme) AND methodology");
 TopDocs matches = searcher.search(query, 10);

 assertTrue(TestUtil.hitsIncludeTitle(searcher, matches,
 "Extreme Programming Explained"));
 assertTrue(TestUtil.hitsIncludeTitle(searcher,
 matches,
 "The Pragmatic Programmer"));
}

You can arbitrarily nest queries within other queries using this code. It’s possible to
build up some truly amazing queries by doing so. Figure 3.7 shows an example of the
recursive structure produced by such rich queries.

 Next, we discuss how a specific field can be selected. Notice that field selection can
also leverage parentheses.

3.5.11 Field selection

QueryParser needs to know the field name to use when constructing queries, but it
would generally be unfriendly to require users to identify the field to search (the end
user may not need or want to know the field names). As you’ve seen, the default field
name is provided when you create the QueryParser instance. Parsed queries aren’t
restricted, however, to searching only the default field. Using field selector notation,

you can specify terms in nondefault fields. For example, if you set query parser to

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

108 CHAPTER 3 Adding search to your application

search a catchall field by default, your users can still restrict the search to the title
field using title:lucene. You can group field selection over multiple clauses. Using
field:(a b c) will OR together (by default) the three term queries, where each term
must appear in the specified field. Let’s see how to boost a query clause next.

3.5.12 Setting the boost for a subquery

A caret (^) followed by a floating-point number sets the boost factor for the preceding
query. For example, the query expression junit^2.0 testing sets the junit Term-
Query to a boost of 2.0 and leaves the testing TermQuery at the default boost of 1.0.
You can apply a boost to any type of query, including parenthetical groups.

3.5.13 To QueryParse or not to QueryParse?

QueryParser is a quick and effortless way to give users powerful query construction,
but it isn’t right for all scenarios. QueryParser can’t create every type of query that can
be constructed using the API. In chapter 5, we detail a handful of API-only queries
that have no QueryParser expression capability. You must keep in mind all the possi-
bilities available when exposing free-form query parsing to an end user; some queries
have the potential for performance bottlenecks, and the syntax used by the built-in
QueryParser may not be suitable for your needs. You can exert some limited control
by subclassing QueryParser (see section 6.3.1).

 Should you require different expression syntax or capabilities beyond what Query-
Parser offers, technologies such as ANTLR (http://www.antlr.org) and JFlex (http://
jflex.de/) are great options. We don’t discuss the creation of a custom query parser,
though we do explore extending QueryParser in chapter 6. The source code for
Lucene’s QueryParser is freely available for you to borrow from. The contrib area also
contains an entirely new QueryParser framework, covered in section 9.9, that’s
designed for more modular extensibility. Another contrib option is the XML query
parser, described in section 9.5, that’s able to build arbitrary queries described as an

AND

Phrase

Term: brown Term: fox

Term: quick

OR

Term: red

Phrase

Term: dog

Figure 3.7 A Query can have an arbitrary nested structure, easily
expressed with QueryParser’s grouping. This query is achieved
by parsing the expression (+"brown fox" +quick) "red dog".
XML string.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.antlr.org
http://jflex.de/
http://www.it-ebooks.info/

109Summary

 You can often obtain a happy medium by combining a QueryParser-parsed
query with API-created queries as clauses in a BooleanQuery. For example, if users
need to constrain searches to a particular category or narrow them to a date range,
you can have the UI separate those selections into a category chooser or separate
date-range fields.

3.6 Summary
Lucene provides highly relevant search results to queries—quickly. Most applications
need only a few Lucene classes and methods to enable searching. The most funda-
mental things for you to take away from this chapter are an understanding of the basic
query types and how to access search results.

 Although it can be a bit daunting, Lucene’s scoring formula (coupled with the
index format discussed in appendix B and the efficient algorithms) provides the
magic of returning the most relevant documents first. Lucene’s QueryParser parses
human-readable query expressions, giving rich full-text search power to end users.
QueryParser immediately satisfies most application requirements—but it doesn’t
come without caveats, so be sure you understand the rough edges. Much of the confu-
sion regarding QueryParser stems from unexpected analysis interactions; chapter 4
goes into great detail about analysis, including more on the QueryParser issues.

 And yes, there’s more to searching than we’ve covered in this chapter, but under-
standing the groundwork is crucial. After analysis in chapter 4, chapter 5 delves into
Lucene’s more elaborate features, such as constraining (or filtering) the search
space of queries and sorting search results by field values; chapter 6 explores the
numerous ways you can extend Lucene’s searching capabilities for custom sorting
and query parsing.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Lucene’s analysis process
Analysis, in Lucene, is the process of converting field text into its most fundamental
indexed representation, terms. These terms are used to determine what documents
match a query during searching. For example, if you indexed this sentence in a
field the terms might start with for and example, and so on, as separate terms in
sequence. An analyzer is an encapsulation of the analysis process. An analyzer
tokenizes text by performing any number of operations on it, which could include
extracting words, discarding punctuation, removing accents from characters, low-
ercasing (also called normalizing), removing common words, reducing words to a
root form (stemming), or changing words into the basic form (lemmatization).
This process is also called tokenization, and the chunks of text pulled from a
stream of text are called tokens. Tokens, combined with their associated field
name, are terms.

 Lucene’s primary goal is to facilitate information retrieval. The emphasis on
retrieval is important. You want to throw gobs of text at Lucene and have them be

This chapter covers
Understanding the analysis process

Using Lucene’s core analysis classes

Writing custom analyzers

Handling foreign languages
110

richly searchable by the individual words within that text. In order for Lucene to

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

111Using analyzers

know what “words” are, it analyzes the text during indexing, extracting it into terms.
These terms are the primitive building blocks for searching.

 Choosing the right analyzer is a crucial development decision with Lucene, and
one size definitely doesn’t fit all. Language is one factor, because each has its own
unique features. Another factor to consider is the domain of the text being ana-
lyzed; different industries have different terminology, acronyms, and abbreviations
that may deserve attention. Although we present many of the considerations for
choosing analyzers, no single analyzer will suffice for all situations. It’s possible that
none of the built-in analysis options are adequate for your needs, and you’ll have to
invest in creating a custom analysis solution; fortunately, Lucene’s building blocks
make this quite easy.

 In this chapter, we’ll cover all aspects of the Lucene analysis process, including
how and where to use analyzers, what the built-in analyzers do, and how to write your
own custom analyzers using the building blocks provided by the core Lucene API. Cus-
tom analyzers are trivial to create, and many applications do so, so we’ll cover exam-
ples such as synonym injection, sounds-like searching, stemming, and stop-word
filtering. Let’s begin by seeing when and how analyzers are used by Lucene.

4.1 Using analyzers
Before we get into the gory details of what lurks inside an analyzer, let’s explore how
an analyzer is used in Lucene. Analysis occurs any time text needs to be converted into
terms, which in Lucene’s core is at two spots: during indexing and when using Query-
Parser for searching. If you highlight hits in your search results (which we strongly
recommend because it gives a better end-user experience), you may need to analyze
text at that point as well. Highlighting, enabled with two of Lucene’s contrib modules,
is covered in detail in chapter 8. In this section, we first detail how an analyzer is used
in each of these scenarios, and then describe the important difference between pars-
ing a document and analyzing it.

 Before we begin with any code details, let’s look at what the analysis process is all
about. First we analyze the phrase “The quick brown fox jumped over the lazy dog,”
using each of the four built-in analyzers:

Analyzing "The quick brown fox jumped over the lazy dog"
 WhitespaceAnalyzer:
 [The] [quick] [brown] [fox] [jumped] [over] [the] [lazy] [dog]

 SimpleAnalyzer:
 [the] [quick] [brown] [fox] [jumped] [over] [the] [lazy] [dog]

 StopAnalyzer:
 [quick] [brown] [fox] [jumped] [over] [lazy] [dog]

 StandardAnalyzer:
 [quick] [brown] [fox] [jumped] [over] [lazy] [dog]

Each token is shown between brackets to make the separations apparent. During
indexing, the tokens extracted during analysis are the terms indexed. And, most

important, it’s only the terms that are indexed that are searchable!

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

112 CHAPTER 4 Lucene’s analysis process

NOTE Only the tokens produced by the analyzer are searchable, unless the field
is indexed with Field.Index.NOT_ANALYZED or Field.Index.NOT_
ANALYZED_NO_NORMS, in which case the entire field’s value, as a single
token, is searchable.

Next we analyze the phrase “XY&Z Corporation - xyz@example.com” with the same
analyzers:

Analyzing "XY&Z Corporation - xyz@example.com"
 WhitespaceAnalyzer:
 [XY&Z] [Corporation] [-] [xyz@example.com]

 SimpleAnalyzer:
 [xy] [z] [corporation] [xyz] [example] [com]

 StopAnalyzer:
 [xy] [z] [corporation] [xyz] [example] [com]

 StandardAnalyzer:
 [xy&z] [corporation] [xyz@example.com]

You can see that the resulting tokens are very analyzer dependent. A few interesting
things happen in these examples. Look at how the word the is treated, and likewise the
company name XY&Z and the email address xyz@example.com; look at the special
hyphen character (-) and the case of each token. Section 4.2.3 explains more of the
details of what happened, and you can see the code that produced this output in list-
ing 4.1 in section 4.24. In the meantime, here’s a summary of each of these analyzers:

WhitespaceAnalyzer, as the name implies, splits text into tokens on whitespace
characters and makes no other effort to normalize the tokens. It doesn’t lower-
case each token.
SimpleAnalyzer first splits tokens at nonletter characters, then lowercases each
token. Be careful! This analyzer quietly discards numeric characters but keeps
all other characters.
StopAnalyzer is the same as SimpleAnalyzer, except it removes common
words. By default, it removes common words specific to the English language
(the, a, etc.), though you can pass in your own set.
StandardAnalyzer is Lucene’s most sophisticated core analyzer. It has quite a
bit of logic to identify certain kinds of tokens, such as company names, email
addresses, and hostnames. It also lowercases each token and removes stop
words and punctuation.

Lucene doesn’t make the results of the analysis process visible to the end user. Terms
pulled from the original text are immediately and quietly added to the index. It’s
these terms that are matched during searching. When searching with QueryParser,
the analysis process takes place again on the textual parts of the search query, in order
to ensure the best possible matches.

 Let’s see how the analyzer is used during indexing.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

113Using analyzers

4.1.1 Indexing analysis

During indexing, text contained in the document’s field values must be converted
into tokens, as shown in figure 4.1. You provide IndexWriter with an Analyzer
instance up front:

Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_30);
IndexWriter writer = new IndexWriter(directory, analyzer,
 IndexWriter.MaxFieldLength.UNLIMITED);

Each analyzed field of every document indexed with the IndexWriter instance uses
the analyzer specified by default. But if an individual document has special analysis
needs, the analyzer may be specified on a per-document basis: both the addDocument
and updateDocument methods in IndexWriter optionally accept an analyzer to be
used for that one document.

 To make sure the text is analyzed, specify Field.Index.ANALYZED or
Field.Index.ANALYZED_NO_NORMS when creating the field. To index the entire field’s
value as a single token, like Field 3 in figure 4.1, pass Field.Index.NOT_ANALYZED or
Field.Index.NOT_ANALYZED_NO_NORMS as the fourth argument. One example where
this is usually required is if you intend to sort on the field, as covered in section 2.4.6.

NOTE new Field(String, String, Field.Store.YES, Field.Index.ANALYZED)
creates a tokenized and stored field. Rest assured the original String
value is stored. But the output of the designated Analyzer dictates what’s
indexed and available for searching.

The following code demonstrates indexing of a document where one field is analyzed
and stored, and the second field is analyzed but not stored:

Document doc = new Document();
doc.add(new Field("title", "This is the title", Field.Store.YES,
 Field.Index.ANALYZED));

Analyze

Analyze Update index

Index

Document
Tokens

Field 1

Field 2

Field 3

Figure 4.1 Analysis process
during indexing. Fields 1 and 2 are
analyzed, producing a sequence
of tokens; Field 3 is unanalyzed,
causing its entire value to be

indexed as a single token.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

114 CHAPTER 4 Lucene’s analysis process

doc.add(new Field("contents", "...document contents...", Field.Store.NO,
 Field.Index.ANALYZED));
writer.addDocument(doc);

Both "title" and "contents" are analyzed using the Analyzer instance provided to
the IndexWriter. QueryParser also uses an analyzer to parse fragments of the user’s
textual query.

4.1.2 QueryParser analysis

QueryParser is wonderful for presenting the end user with a free-form option of que-
rying. To do its job, QueryParser uses an analyzer to break the text it encounters into
terms for searching. You provide an analyzer when you instantiate the QueryParser:

QueryParser parser = new QueryParser(Version.LUCENE_30,
 "contents", analyzer);
Query query = parser.parse(expression);

The analyzer receives individual contiguous text pieces of the expression, not the
expression as a whole, which in general may include operators, parentheses, and
other special expression syntax to denote range, wildcard, and fuzzy searches. For
example, when provided this query text:

"president obama" +harvard +professor

QueryParser will invoke the analyzer three separate times, first with the text president
obama, then the text harvard, then professor. QueryParser analyzes all text equally, with-
out knowledge of how it was indexed. This is a particularly thorny issue when you’re
querying for fields that were indexed without tokenization. We address this situation
in section 4.7.3.

 Should you use the same analyzer with QueryParser that you used during index-
ing? It depends. If you stick with the basic built-in analyzers, you’ll probably be fine
using the same analyzer in both situations. But when you’re using more sophisticated
analyzers, quirky cases can come up in which using different analyzers between index-
ing and QueryParser is necessary. We discuss this issue in more detail in section 4.5.
Now we draw the difference between parsing and analyzing a document.

4.1.3 Parsing vs. analysis: when an analyzer isn’t appropriate

An important point about analyzers is that they’re used internally for textual fields
enabled for analysis. Document formats such as HTML, Microsoft Word, XML, and
others contain metadata such as the author, the title, the last modified date, and
potentially much more. When you’re indexing rich documents, this metadata should
be separated and indexed as separate fields. Analyzers are used to analyze a specific
field at a time and break things into tokens only within that field; creating new fields
isn’t possible within an analyzer.

 Analyzers don’t help in field separation because their scope is to deal with a single
field at a time. Instead, parsing these documents prior to analysis is required. For

example, it’s a common practice to separate at least the <title> and <body> of HTML

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

115What’s inside an analyzer?

documents into separate fields. In these cases, the documents should be parsed, or
preprocessed, into separate blocks of text representing each field. Chapter 7 covers
this preprocessing step in detail.

 Now that we’ve seen where and how Lucene uses analyzers, it’s time to delve into
just what an analyzer does and how it works.

4.2 What’s inside an analyzer?
To understand the analysis process, we need to open the hood and tinker around a
bit. Because it’s possible that you’ll be constructing your own analyzers, knowing the
architecture and building blocks provided is crucial.

 The Analyzer class is the abstract base class. Quite elegantly, it turns text into a
stream of tokens enumerated by the TokenStream class. The single required method
signature implemented by analyzers is

public TokenStream tokenStream(String fieldName, Reader reader)

The returned TokenStream is then used to iterate through all tokens.
 Let’s start “simply” with the SimpleAnalyzer and see what makes it tick. The fol-

lowing code is copied directly from Lucene’s codebase:

public final class SimpleAnalyzer extends Analyzer {
 @Override
 public TokenStream tokenStream(String fieldName, Reader reader) {
 return new LowerCaseTokenizer(reader);
 }

 @Override
 public TokenStream reusableTokenStream(String fieldName, Reader reader
 throws IOException {
 Tokenizer tokenizer = (Tokenizer) getPreviousTokenStream();
 if (tokenizer == null) {
 tokenizer = new LowerCaseTokenizer(reader);
 setPreviousTokenStream(tokenizer);
 } else
 tokenizer.reset(reader);
 return tokenizer;
 }
}

The LowerCaseTokenizer divides text at nonletters (determined by Charac-

ter.isLetter), removing nonletter characters and, true to its name, lowercasing
each character.

 The reusableTokenStream method is an additional, optional method that an ana-
lyzer can implement to gain better indexing performance. That method is allowed to
reuse the same TokenStream that it had previously returned to the same thread. This
approach can save a lot of allocation and garbage collection cost because every field of
every document otherwise needs a new TokenStream. Two utility methods are imple-
mented in the Analyzer base class, setPreviousTokenStream and getPrevious-
TokenStream, to store and retrieve a TokenStream in thread local storage. All the built-

in Lucene analyzers implement this method: the first time the method is called from a

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

116 CHAPTER 4 Lucene’s analysis process

given thread, a new TokenStream instance is created and saved. Subsequent calls
return the previous TokenStream after resetting it to the new Reader.

 In the following sections, we take a detailed look at each of the major players used
by analyzers, including the TokenStream family, as well as the various attributes that
represent the components of a token. We’ll also show you how to visualize what an
analyzer is actually doing, and describe the importance of the order of tokenizers.
Let’s begin with the basic unit of analysis, the token.

4.2.1 What’s in a token?

A stream of tokens is the fundamental
output of the analysis process. During
indexing, fields designated for analysis
are processed with the specified ana-
lyzer, and the important attributes
from each token are then written into
the index.

 For example, let’s analyze the text
“the quick brown fox.” Each token rep-
resents an individual word of that text. A token carries with it a text value (the word
itself) as well as some metadata: the start and end character offsets in the original text,
a token type, and a position increment. The token may also optionally contain appli-
cation defined bit flags and an arbitrary byte[] payload, and can be easily extended
to include any application specific attributes. Figure 4.2 shows the details of the token
stream analyzing this phrase with the SimpleAnalyzer.

 The start offset is the character position in the original text where the token text
begins, and the end offset is the position just after the last character of the token text.
These offsets are useful for highlighting matched tokens in search results, as
described in chapter 8. The token type is a String, defaulting to "word", that you can
control and use in the token-filtering process if desired. As text is tokenized, the posi-
tion relative to the previous token is recorded as the position increment value. Most of
the built-in tokenizers leave the position increment at the default value of 1, indicat-
ing that all tokens are in successive positions, one after the other. Each token also has
optional flags; a flag is a set of 32 bits (stored in an int) that’s unused by Lucene’s
built-in analyzers but could be used by your application. Likewise, each token can
have a byte[] recorded in the index, referred to as the payload. Using payloads is an
advanced topic that we cover in section 6.5.
TOKENS INTO TERMS

After text is analyzed during indexing, each token is posted to the index as a term.
The position increment, start, and end offsets and payload are the only additional
metadata associated with the token that’s recorded in the index. The token type and
flags are discarded—they’re only used during the analysis process.

quick brown foxthe

0 3 4 9 10 15 16 19 Offsets

Position
Increment

1 1 1

Figure 4.2 A token stream with positional and off-
set information
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

117What’s inside an analyzer?

POSITION INCREMENTS

The token position increment value relates the current token’s position to the previ-
ous token’s position. Position increment is usually 1, indicating that each word is in a
unique and successive position in the field. Position increments factor directly into
performing phrase queries (see section 3.4.6) and span queries (see section 5.5),
which rely on knowing how far terms are from one another within a field.

 Position increments greater than 1 allow for gaps and can be used to indicate
where words have been removed. See section 4.6.1 for an example, where stop-word
removal leaves gaps using position increments.

 A token with a zero position increment places the token in the same position as
the previous token. Analyzers that inject synonyms can use a position increment of
zero for the synonyms. The effect is that phrase queries work regardless of which syn-
onym was used in the query. See our SynonymAnalyzer in section 4.5 for an example
that uses position increments of 0.

4.2.2 TokenStream uncensored

A TokenStream is a class that can produce a series of
tokens when requested, but there are two very dif-
ferent styles of TokenStreams: Tokenizer and
TokenFilter. They both inherit from the abstract
TokenStream class, as shown in figure 4.3. Note the
composite pattern used by TokenFilter to encapsu-
late another TokenStream (which could, of course,
be another TokenFilter). A Tokenizer reads char-
acters from a java. io.Reader and creates tokens,
whereas a TokenFilter takes tokens in, and pro-
duces new tokens by either adding or removing
whole tokens or altering the attributes of the incom-
ing tokens.

 When an analyzer returns a TokenStream from
its tokenStream or reusableTokenStream method, it typically starts with a single
Tokenizer, which creates the initial sequence of tokens, then chains together any
number of TokenFilters to modify these tokens. This is referred to as the analyzer
chain. Figure 4.4 shows an analyzer chain that has three TokenFilters.

 Lucene’s core tokenizers and analyzers

TokenStream

Tokenizer TokenFilter

Figure 4.3 The hierarchy of classes
used to produce tokens:
TokenStream is the abstract base
class; Tokenizer creates tokens
from a Reader; and TokenFilter
filters any other TokenStream.

Reader Tokenizer TokenFilter TokenFilter TokenFilter Tokens

Figure 4.4 An analyzer chain starts with a Tokenizer, to produce initial
tokens from the characters read from a Reader, then modifies the tokens
with any number of chained TokenFilters.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

118 CHAPTER 4 Lucene’s analysis process

Let’s look at the core Tokenizers and TokenFilters in Lucene, shown in table 4.1.
The corresponding class hierarchy is shown in figure 4.5.

Table 4.1 Analyzer building blocks provided in Lucene’s core API

Class name Description

TokenStream Abstract Tokenizer base class.

Tokenizer TokenStream whose input is a Reader.

CharTokenizer Parent class of character-based tokenizers, with abstract
isTokenChar() method. Emits tokens for contiguous blocks when
isTokenChar() returns true. Also provides the capability to normalize
(for example, lowercase) characters. Tokens are limited to a maximum
size of 255 characters.

WhitespaceTokenizer CharTokenizer with isTokenChar() true for all nonwhitespace
characters.

KeywordTokenizer Tokenizes the entire input string as a single token.

LetterTokenizer CharTokenizer with isTokenChar() true when
Character.isLetter is true.

LowerCaseTokenizer LetterTokenizer that normalizes all characters to lowercase.

SinkTokenizer A Tokenizer that absorbs tokens, caches them in a private list, and
can later iterate over the tokens it had previously cached. This is used in
conjunction with TeeTokenizer to “split” a TokenStream.

StandardTokenizer Sophisticated grammar-based tokenizer, emitting tokens for high-level
types like email addresses (see section 4.3.2 for more details). Each
emitted token is tagged with a special type, some of which are handled
specially by StandardFilter.

TokenFilter TokenStream whose input is another TokenStream.

LowerCaseFilter Lowercases token text.

StopFilter Removes words that exist in a provided set of words.

PorterStemFilter Stems each token using the Porter stemming algorithm. For example,
country and countries both stem to countri.

TeeTokenFilter Splits a TokenStream by passing each token it iterates through into a
SinkTokenizer. It also returns the token unnmodified to its caller.

ASCIIFoldingFilter Maps accented characters to their unaccented counterparts.

CachingTokenFilter Saves all tokens from the input stream and can replay the stream once
reset is called.

LengthFilter Accepts tokens whose text length falls within a specified range.

StandardFilter Designed to be fed by a StandardTokenizer. Removes dots from
acronyms and ’s (apostrophe followed by s) from words with apostrophes.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

119What’s inside an analyzer?

To illustrate the analyzer chain in code, here’s a simple example analyzer:

public TokenStream tokenStream(String fieldName, Reader reader) {
 return new StopFilter(true,
 new LowerCaseTokenizer(reader),
 stopWords);
}

In this analyzer, LowerCaseTokenizer produces the initial set of tokens from a Reader
and feeds them to a StopFilter. The LowerCaseTokenizer emits tokens that are adja-
cent letters in the original text, lowercasing each of the characters in the process.
Non-letter characters form token boundaries and aren’t included in any emitted
token. Following this word tokenizer and lowercasing, StopFilter removes words in a
stop-word list while preserving accurate positionIncrements (see section 4.3.1).

 Buffering is a feature that’s commonly needed in the TokenStream implementa-
tions. Low-level Tokenizers do this to buffer up characters to form tokens at boundar-
ies such as whitespace or nonletter characters. TokenFilters that emit additional
tokens into the stream they’re filtering must queue an incoming token and the

Tokenizer

LowerCaseTokenizer

KeywordTokenizer StandardTokenizer CharTokenizer

WhitespaceTokenizer LetterTokenizer

TokenFilter

StopFilter

LowerCaseFilter

StandardFilter

PorterStemFilter TeeSinkTokenFilter

ASCIIFoldingFilter

CachingTokenFilter

LengthFilter

Figure 4.5 TokenFilter and
Tokenizer class hierarchy
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

120 CHAPTER 4 Lucene’s analysis process

additional ones and emit them one at a time; our SynonymFilter in section 4.5 is an
example of such a filter.

 Most of the built-in TokenFilters alter a single stream of input tokens in some
fashion, but one of them, TeeSinkTokenFilter, is more interesting. This is a filter
that clones an incoming token stream into any number of output streams called sinks.
It reads tokens from its single input source, then sends a copy of that token to all of its
sink output streams as well as its output stream. Each of the sink streams can undergo
its own further processing. This is useful when two or more fields would like to share
the same initial analysis steps but differ on the final processing of the tokens.

 Next we describe how to see the results of the analysis process.

4.2.3 Visualizing analyzers

Normally, the tokens produced by analysis are silently absorbed by indexing. Yet see-
ing the tokens is a great way to gain a concrete understanding of the analysis process.
In this section we’ll show you how to do just that. Specifically, we’ll show you the
source code that generated the token examples in section 4.1. Along the way we’ll see
that a token consists of several interesting attributes, including term, position-
Increment, offset, type, flags, and payload.

 We begin with listing 4.1, AnalyzerDemo, which analyzes two predefined phrases
using Lucene’s core analyzers. Each phrase is analyzed by all the analyzers, then the
tokens are displayed with bracketed output to indicate what would be indexed.

public class AnalyzerDemo {
 private static final String[] examples = {
 "The quick brown fox jumped over the lazy dog",
 "XY&Z Corporation - xyz@example.com"
 };

 private static final Analyzer[] analyzers = new Analyzer[] {
 new WhitespaceAnalyzer(),
 new SimpleAnalyzer(),
 new StopAnalyzer(Version.LUCENE_30),
 new StandardAnalyzer(Version.LUCENE_30)
 };

 public static void main(String[] args) throws IOException {

 String[] strings = examples;
 if (args.length > 0) {
 strings = args;
 }

 for (String text : strings) {
 analyze(text);
 }
 }

 private static void analyze(String text) throws IOException {

Listing 4.1 AnalyzerDemo: seeing analysis in action

Analyze command-
line strings
 System.out.println("Analyzing \"" + text + "\"");

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

121What’s inside an analyzer?

 for (Analyzer analyzer : analyzers) {
 String name = analyzer.getClass().getSimpleName();
 System.out.println(" " + name + ":");
 System.out.print(" ");
 AnalyzerUtils.displayTokens(analyzer, text);
 System.out.println("\n");
 }
 }
}

The real fun happens in AnalyzerUtils (listing 4.2), where the analyzer is applied to
the text and the tokens are extracted. AnalyzerUtils passes text to an analyzer with-
out indexing it and pulls the results in a manner similar to what happens during the
indexing process under the covers of IndexWriter.

public static void displayTokens(Analyzer analyzer,
 String text) throws IOException {
 displayTokens(analyzer.tokenStream("contents,"
 new StringReader(text)));
}

public static void displayTokens(TokenStream stream)
 throws IOException {

 TermAttribute term = stream.addAttribute(TermAttribute.class);
 while(stream.incrementToken()) {
 System.out.print("[" + term.term() + "] ");
 }
}

Generally you wouldn’t invoke the analyzer’s tokenStream method explicitly except
for this type of diagnostic or informational purpose. Note that the field name con-
tents is arbitrary in the displayTokens() method. We recommend keeping a utility
like this handy to see what tokens emit from your analyzers of choice. In fact, rather
than write this yourself, you can use our AnalyzerUtils or the AnalyzerDemo code for
experimentation. The AnalyzerDemo application lets you specify one or more strings
from the command line to be analyzed instead of the embedded example ones:

%java lia.analysis.AnalyzerDemo "No Fluff, Just Stuff"

Analyzing "No Fluff, Just Stuff"
 org.apache.lucene.analysis.WhitespaceAnalyzer:
 [No] [Fluff,] [Just] [Stuff]

 org.apache.lucene.analysis.SimpleAnalyzer:
 [no] [fluff] [just] [stuff]

 org.apache.lucene.analysis.StopAnalyzer:
 [fluff] [just] [stuff]

 org.apache.lucene.analysis.standard.StandardAnalyzer:
 [fluff] [just] [stuff]

Listing 4.2 AnalyzerUtils: delving into an analyzer

Perform real work

Invoke analysis
process

Print token text
within brackets
Let’s now look deeper into what makes up a token.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 4 Lucene’s analysis process

LOOKING INSIDE TOKENS

We’ve seen that TokenFilters access and alter the attributes of tokens that flow
through them. But exactly what attributes make up a token? We’ve added the display-
TokensWithFullDetails utility method in AnalyzerUtils, shown in listing 4.3, to
shed some light on this.

public static void displayTokensWithFullDetails(Analyzer analyzer,
 String text)
 throws IOException {

 TokenStream stream = analyzer.tokenStream("contents",
 new StringReader(text));

 TermAttribute term = stream.addAttribute(TermAttribute.class);
 PositionIncrementAttribute posIncr =
 stream.addAttribute(PositionIncrementAttribute.class);
 OffsetAttribute offset =
 stream.addAttribute(OffsetAttribute.class);
 TypeAttribute type = stream.addAttribute(TypeAttribute.class);

 int position = 0;
 while(stream.incrementToken()) {

 int increment = posIncr.getPositionIncrement();
 if (increment > 0) {
 position = position + increment;
 System.out.println();
 System.out.print(position + ": ");
 }

 System.out.print("[" +
 term.term() + ":" +
 offset.startOffset() + "->" +
 offset.endOffset() + ":" +
 type.type() + "] ");
 }
 System.out.println();
}

We display all token information on the example phrase using SimpleAnalyzer:

public static void main(String[] args) throws IOException {
 AnalyzerUtils.displayTokensWithFullDetails(new SimpleAnalyzer(),
 "The quick brown fox....");
}

Here’s the output:

1: [the:0->3:word]
2: [quick:4->9:word]
3: [brown:10->15:word]
4: [fox:16->19:word]

Each token is in a successive position relative to the previous one (noted by the incre-

Listing 4.3 Seeing the term, offsets, type, and position increment of each token

Perform analysis

Obtain
attributes
of interest

Iterate through
all tokens

Compute
position, print

Print all
token details
menting numbers 1, 2, 3, and 4). The word the begins at offset 0 and ends just before

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

123What’s inside an analyzer?

offset 3 in the original text. Each of the tokens has a type of word. We present a similar,
but simpler, visualization of token position increments in section 4.6.1, and we pro-
vide a visualization of tokens sharing the same position. Each of these aspects of a
token is recorded in its own Attribute class.
ATTRIBUTES

Notice that the TokenStream never explicitly creates a single object holding all attri-
butes for the token. Instead, you interact with a separate reused attribute interface for
each element of the token (term, offsets, position increments, etc.). Past versions of
Lucene did use a standalone Token object, but in order to be more extensible, and to
provide better analysis performance through reuse, Lucene switched to the attribute-
based API as of version 2.9.

 TokenStream subclasses from a class called AttributeSource (in org.apache.
lucene.util). AttributeSource is a useful and generic means of providing strongly
typed yet fully extensible attributes without requiring runtime casting, thus resulting
in good performance. Lucene uses certain predefined attributes during analysis, as
listed in table 4.2, but your application is free to add its own attributes by creating a
concrete class implementing the Attribute interface. Note that Lucene will do noth-
ing with your new attribute during indexing, so this is only currently useful in cases
where one TokenStream early in your analysis chain wishes to send information to
another TokenStream later in the chain.

With this reusable API, you first obtain the attributes of interest by calling the add-
Attribute method, which will return a concrete class implementing the requested
interface. Then, you iterate through all tokens by calling TokenStream.increment-
Token. This method returns true if it has advanced to a new token and false once
you’ve exhausted the stream. You then interact with the previously obtained attributes
to get that attribute’s value for each token. When incrementToken returns true, all
attributes within it will have altered their internal state to the next token.

 If you’re only interested in the position increment, you could do this:

TokenStream stream = analyzer.tokenStream("contents",

Table 4.2 Lucene’s built-in token attributes

Token attribute interface Description

TermAttribute Token’s text

PositionIncrementAttribute Position increment (defaults to 1)

OffsetAttribute Start and end character offset

TypeAttribute Token’s type (defaults to word)

FlagsAttribute Bits to encode custom flags

PayloadAttribute Per-token byte[] payload (see section 6.5)
 new StringReader(text));

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

124 CHAPTER 4 Lucene’s analysis process

PositionIncrementAttribute posIncr =
 stream.addAttribute(PositionIncrementAttribute.class);
while (stream.incrementToken()) {
 System.out.println("posIncr=" + posIncr.getPositionIncrement());
}

Note that the core attribute classes in table 4.2 are bidirectional: you can use them to
get and set the value for that attribute. Thus, a TokenFilter that alters only the posi-
tion increment would grab and store the PositionIncrementAttribute from its input
TokenStream when it’s first instantiated, then implement the incrementToken method
by first calling incrementToken on its input stream and calling PositionIncrement-
Attribute.setPositionIncrement to change the value.

 Sometimes you need to take a complete copy of all details for the current token
and restore it later. You can do this by calling captureState, which returns a State
object holding all state. You can later restore that state by calling restoreState. Note
that this results in slower performance so you should avoid doing so, if possible, when
creating your own TokenFilters.
WHAT GOOD ARE START AND END OFFSETS?

The start and end offset values, which record the original character offset at the start
and end of each token’s text, aren’t used in the core of Lucene. Rather, they’re
treated as opaque integers for each token, and you could put any arbitrary integers
you’d like into there.

 If you index with TermVectors, as described in section 2.4.3, and specify that the
offsets are stored, then at search time you can retrieve the TermVectors for a given
document and access the offsets. Often this is used for highlighting, as discussed in
chapter 8. It’s also possible to reanalyze the text to do highlighting without storing
TermVectors, in which case the start and end offsets are recomputed by the analyzer,
then used in real time.
TOKEN TYPE USEFULNESS

You can use the token type to denote special lexical types for tokens. Under the covers
of StandardAnalyzer is a StandardTokenizer that parses the incoming text into dif-
ferent types based on a grammar. Analyzing the phrase “I’ll email you at xyz@exam-
ple.com” with StandardAnalyzer produces this interesting output:

1: [i'll:0->4:<APOSTROPHE>]
2: [email:5->10:<ALPHANUM>]
3: [you:11->14:<ALPHANUM>]
5: [xyz@example.com:18->33:<EMAIL>]

Notice the token type of each token. The token i'll has an apostrophe, which Stan-
dardTokenizer notices in order to keep it together as a unit; and likewise for the
email address. The word at was removed as a stop word. We cover the other Standard-
Analyzer effects in section 4.3.2. StandardAnalyzer is the only built-in analyzer that
leverages the token type data. Our metaphone and synonym analyzers, in sections 4.4
and 4.5, provide another example of token type usage. By default, Lucene doesn’t

record the token type into the index; thus, it only serves a purpose during analysis.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

125What’s inside an analyzer?

But you can use the TypeAsPayloadTokenFilter to record the type of each token as a
payload. Section 6.5 describes payloads in more detail.

4.2.4 TokenFilter order can be significant

For certain TokenFilters, the order of events may be important during analysis. Each
step may rely on the work of a previous step. A prime example is that of stop-word
removal. StopFilter performs a case-sensitive lookup of each token in a set of stop
words. It relies on being fed already lowercased tokens. As an example, we first write a
functionally equivalent StopAnalyzer variant; we’ll follow it with a flawed variant that
reverses the order of the steps:

public class StopAnalyzer2 extends Analyzer {

 private Set stopWords;

 public StopAnalyzer2() {
 stopWords = StopAnalyzer.ENGLISH_STOP_WORDS_SET;
 }

 public StopAnalyzer2(String[] stopWords) {
 this.stopWords = StopFilter.makeStopSet(stopWords);
 }

 public TokenStream tokenStream(String fieldName, Reader reader) {
 return new StopFilter(true,
 new LowerCaseFilter(
 new LetterTokenizer(reader)),
 stopWords);
 }
}

StopAnalyzer2 uses a LetterTokenizer feeding a LowerCaseFilter, rather than just
a LowerCaseTokenizer. A LowerCaseTokenizer has a performance advantage: it low-
ercases as it tokenizes, rather than dividing the process into two steps. This test case
proves that our StopAnalyzer2 works as expected, by using AnalyzerUtils.tokens-
FromAnalysis and asserting that the stop word the was removed:

public void testStopAnalyzer2() throws Exception {
 AnalyzerUtils.assertAnalyzesTo(new StopAnalyzer2(),
 "The quick brown...",
 new String[] {"quick", "brown"});
}

We’ve added a utility method to our AnalyzerUtils. This method asserts that tokens
match an expected list:

public static void assertAnalyzesTo(Analyzer analyzer, String input,
 String[] output) throws Exception {
 TokenStream stream =
 analyzer.tokenStream("field", new StringReader(input));

 TermAttribute termAttr = stream.addAttribute(TermAttribute.class);
 for (String expected : output) {

 Assert.assertTrue(stream.incrementToken());

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

126 CHAPTER 4 Lucene’s analysis process

 Assert.assertEquals(expected, termAttr.term());
 }
 Assert.assertFalse(stream.incrementToken());
 stream.close();
}

To illustrate the importance that the order can make with token filtering, we’ve written
a flawed analyzer that swaps the order of the StopFilter and the LowerCaseFilter:

public class StopAnalyzerFlawed extends Analyzer {
 private Set stopWords;

 public StopAnalyzerFlawed() {
 stopWords = StopAnalyzer.ENGLISH_STOP_WORDS_SET;
 }

 public TokenStream tokenStream(String fieldName, Reader reader) {
 return new LowerCaseFilter(
 new StopFilter(true, new LetterTokenizer(reader),
 stopWords));
 }
}

The StopFilter presumes all tokens have already been lowercased and does a case-
sensitive lookup. Another test case shows that The wasn’t removed (it’s the first token
of the analyzer output), yet it was lowercased:

public void testStopAnalyzerFlawed() throws Exception {
 AnalyzerUtils.assertAnalyzesTo(new StopAnalyzerFlawed(),
 "The quick brown...",
 new String[] {"the", "quick", "brown"});
}

Lowercasing is just one example where order may matter. Filters may assume previous
processing was done. For example, the StandardFilter is designed to be used in con-
junction with StandardTokenizer and wouldn’t make sense with any other Token-
Stream feeding it. There may also be performance considerations when you order the
filtering process. Consider an analyzer that removes stop words and injects synonyms
into the token stream—it would be more efficient to remove the stop words first so
that the synonym injection filter would have fewer terms to consider (see section 4.5
for a detailed example).

 At this point you should have a solid grasp of the internals of the analysis process.
An analyzer simply defines a specific chain of tokenizers, beginning with an original
source of new tokens (TokenStream) followed by any number of TokenFilters that
alter the tokens. A Token consists of values for a certain set of interesting attributes,
which Lucene stores in different ways. Finally, we saw helpful methods for visualizing
what an analyzer is doing. We’ll now have a closer look at some example analyzers,
beginning with the out-of-the-box analyzers that Lucene provides and followed by
some of our own concoctions.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

127Using the built-in analyzers

4.3 Using the built-in analyzers
Lucene includes several built-in analyzers, created by chaining together certain com-
binations of the built-in Tokenizers and TokenFilters. The primary ones are shown
in table 4.3. We’ll discuss certain language-specific contrib analyzers in section 4.8.2
and the special PerFieldAnalyzerWrapper in section 4.7.2.

The built-in analyzers—WhitespaceAnalyzer, SimpleAnalyzer, StopAnalyzer, Key-
wordAnalyzer, and StandardAnalyzer—are designed to work with text in almost any
Western (European-based) language. You can see the effect of each of these analyzers,
except KeywordAnalyzer, in the output in section 4.1. WhitespaceAnalyzer and Sim-
pleAnalyzer are truly trivial: the one-line description in table 4.3 pretty much sums
them up, so we don’t cover them further here. We cover KeywordAnalyzer in
section 4.7.3. We explore the StopAnalyzer and StandardAnalyzer in more depth
because they have nontrivial effects.

4.3.1 StopAnalyzer

StopAnalyzer, beyond doing basic word splitting and lowercasing, also removes spe-
cial words called stop words. Stop words are words that are very common, such as the,
and thus assumed to carry very little standalone meaning for searching since nearly
every document will contain the word.

 Embedded in StopAnalyzer is the following set of common English stop words,
defined as ENGLISH_STOP_WORDS_SET. This default set is used unless otherwise
specified:

"a", "an", "and", "are", "as", "at", "be", "but", "by",
"for", "if", "in", "into", "is", "it", "no", "not", "of", "on",
"or", "such","that", "the", "their", "then", "there", "these",
"they", "this", "to", "was", "will", "with"

The StopAnalyzer has a second constructor that allows you to pass your own set
instead.

 Under the hood, StopAnalyzer creates a StopFilter to perform the filtering. Sec-

Table 4.3 Primary analyzers available in Lucene

Analyzer Steps taken

WhitespaceAnalyzer Splits tokens at whitespace.

SimpleAnalyzer Divides text at nonletter characters and lowercases.

StopAnalyzer Divides text at nonletter characters, lowercases, and removes stop words.

KeywordAnalyzer Treats entire text as a single token.

StandardAnalyzer Tokenizes based on a sophisticated grammar that recognizes email
addresses, acronyms, Chinese-Japanese-Korean characters, alphanumer-
ics, and more. It also lowercases and removes stop words.
tion 4.6.1 describes StopFilter in more detail.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

128 CHAPTER 4 Lucene’s analysis process

4.3.2 StandardAnalyzer

StandardAnalyzer holds the honor as the most generally useful built-in analyzer. A
JFlex-based1 grammar underlies it, tokenizing with cleverness for the following lexical
types: alphanumerics, acronyms, company names, email addresses, computer host-
names, numbers, words with an interior apostrophe, serial numbers, IP addresses, and
Chinese and Japanese characters. StandardAnalyzer also includes stop-word removal,
using the same mechanism as the StopAnalyzer (identical default English set, and an
optional Set constructor to override). StandardAnalyzer makes a great first choice.

 Using StandardAnalyzer is no different than using any of the other analyzers, as
you can see from its use in section 4.1.1 and AnalyzerDemo (listing 4.1). Its unique
effect, though, is apparent in the different treatment of text. For example, compare
the different analyzers on the phrase “XY&Z Corporation - xyz@example.com” from
section 4.1. StandardAnalyzer is the only one that kept XY&Z together as well as the
email address xyz@example.com; both of these showcase the vastly more sophisticated
analysis process.

4.3.3 Which core analyzer should you use?

We’ve now seen the substantial differences in how each of the four core Lucene ana-
lyzers works. How do you choose the right one for your application? The answer may
surprise you: most applications don’t use any of the built-in analyzers, and instead opt
to create their own analyzer chain. For those applications that do use a core analyzer,
StandardAnalyzer is likely the most common choice. The remaining core analyzers
are usually far too simplistic for most applications, except perhaps for specific use
cases (for example, a field that contains a list of part numbers might use Whitespace-
Analyzer). But these analyzers are great for test cases, and are indeed used heavily by
Lucene’s unit tests.

 Typically an application has specific needs, such as customizing the stop-words list,
performing special tokenization for application-specific tokens like part numbers or
for synonym expansion, preserving case for certain tokens, or choosing a specific
stemming algorithm. In fact, Solr makes it trivial to create your own analysis chain by
expressing the chain directly as XML in solrconfig.xml.

 With that in mind, and now that you’re equipped with a strong foundational
knowledge of Lucene’s analysis process, we’ll move on to creating our own real-world
analyzers. We’ll show you how to implement a couple of frequently requested features:
sounds-like querying and synonym expansion. Next, we create our own analyzer chain
that normalizes tokens by their stems, removing stop words in the process, and discuss
some challenges that result. After that we’ll discuss some interesting field-specific vari-
ations that impact analysis. Finally we’ll visit issues that arise when analyzing different
languages, and we’ll wrap up with a quick taste of how the Nutch project handles doc-
ument analysis. Let’s begin with sounds-like querying.
1 JFlex is a sophisticated and high-performance lexical analyzer. See http://jflex.de.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://jflex.de
http://www.it-ebooks.info/

129Sounds-like querying

4.4 Sounds-like querying
Have you ever played the game charades, cupping your hand to your ear to indicate
that your next gestures refer to words that “sound like” the real words you’re trying to
convey? Neither have we. Suppose, though, that a high-paying client has asked you to
implement a search engine accessible by Java 2 Micro Edition (J2ME)-enabled devices,
such as a smart phone, to help during those tough charade matches. In this section,
we’ll implement an analyzer to convert words to a phonetic root using an implementa-
tion of the Metaphone algorithm from the Apache Commons Codec project. We
chose the Metaphone algorithm as an example, but other algorithms are available,
such as Soundex.

 Let’s start with a test case, shown in listing 4.4, showing the high-level goal of our
search experience.

public void testKoolKat() throws Exception {
 RAMDirectory directory = new RAMDirectory();
 Analyzer analyzer = new MetaphoneReplacementAnalyzer();

 IndexWriter writer = new IndexWriter(directory, analyzer, true,
 IndexWriter.MaxFieldLength.UNLIMITED);

 Document doc = new Document();
 doc.add(new Field("contents",
 "cool cat",
 Field.Store.YES,
 Field.Index.ANALYZED));
 writer.addDocument(doc);
 writer.close();

 IndexSearcher searcher = new IndexSearcher(directory);

 Query query = new QueryParser(Version.LUCENE_30,
 "contents", analyzer)
 .parse("kool kat");

 TopDocs hits = searcher.search(query, 1);
 assertEquals(1, hits.totalHits);
 int docID = hits.scoreDocs[0].doc;
 doc = searcher.doc(docID);
 assertEquals("cool cat", doc.get("contents"));

 searcher.close();
}

It seems like magic! The user searched for “kool kat.” Neither of those terms was in
our original document, yet the search found the desired match. Searches on the orig-
inal text would also return the expected matches. The trick lies in the Metaphone-
ReplacementAnalyzer:

public class MetaphoneReplacementAnalyzer extends Analyzer {
 public TokenStream tokenStream(String fieldName, Reader reader) {

Listing 4.4 Searching for words that sound like one another

Index document

Parse query text

Verify match

Retrieve original value
 return new MetaphoneReplacementFilter(

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

130 CHAPTER 4 Lucene’s analysis process

 new LetterTokenizer(reader));
 }
}

Because the Metaphone algorithm expects words that only include letters, the Let-
terTokenizer is used to feed our metaphone filter. The LetterTokenizer doesn’t
lowercase, however. The tokens emitted are replaced by their metaphone equivalent,
so lowercasing is unnecessary. Let’s now dig into the MetaphoneReplacementFilter
(listing 4.5), where the real work is done.

public class MetaphoneReplacementFilter extends TokenFilter {
 public static final String METAPHONE = "metaphone";

 private Metaphone metaphoner = new Metaphone();
 private TermAttribute termAttr;
 private TypeAttribute typeAttr;

 public MetaphoneReplacementFilter(TokenStream input) {
 super(input);
 termAttr = addAttribute(TermAttribute.class);
 typeAttr = addAttribute(TypeAttribute.class);
 }

 public boolean incrementToken() throws IOException {
 if (!input.incrementToken())
 return false;

 String encoded;
 encoded = metaphoner.encode(termAttr.term());
 termAttr.setTermBuffer(encoded);
 typeAttr.setType(METAPHONE);
 return true;
 }
}

The token emitted by our MetaphoneReplacementFilter, as its name implies, literally
replaces the incoming token. This new token is set with the same position offsets as
the original, because it’s a replacement in the same position. The last line before
returning the token sets the token type. The StandardTokenizer, as discussed in sec-
tion 4.3.2, tags tokens with a type that is later used by the StandardFilter. The meta-
phone type isn’t used in our examples, but it demonstrates that a later filter could be
metaphone-token aware by calling Token’s type() method.

NOTE Token types, such as the metaphone type used in MetaphoneReplace-
mentFilter, are carried through the analysis phase but aren’t encoded
into the index. Unless otherwise specified, the type word is used for
tokens by default. Section 4.2.4 discusses token types further.

As always, it’s good to view what an analyzer is doing with text. Using our Analyzer-
Utils, two phrases that sound similar yet are spelled differently are tokenized and

Listing 4.5 TokenFilter that replaces tokens with their metaphone equivalents

Advance to
next token

Convert to
Metaphone encoding

Overwrite with
encoded textSet

token
type
displayed:

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

131Synonyms, aliases, and words that mean the same

public static void main(String[] args) throws IOException {
 MetaphoneReplacementAnalyzer analyzer =
 new MetaphoneReplacementAnalyzer();
 AnalyzerUtils.displayTokens(analyzer,
 "The quick brown fox jumped over the lazy dog");

 System.out.println("");
 AnalyzerUtils.displayTokens(analyzer,
 "Tha quik brown phox jumpd ovvar tha lazi dag");
}

We get a sample of the metaphone encoder, shown here:

[0] [KK] [BRN] [FKS] [JMPT] [OFR] [0] [LS] [TKS]
[0] [KK] [BRN] [FKS] [JMPT] [OFR] [0] [LS] [TKS]

Wow—an exact match!
 In practice, it’s unlikely you’ll want sounds-like matches except in special places;

otherwise, far too many undesired matches may be returned.2 In the “What would
Google do?” sense, a sounds-like feature would be great for situations where a user
misspelled every word and no documents were found but alternative words could be
suggested. One implementation approach to this idea would be to run all text
through a sounds-like analysis and build a cross-reference lookup to consult when a
correction is needed.

 Now let’s walk through an analyzer that can handle synonyms during indexing.

4.5 Synonyms, aliases, and words that mean the same
How often have you searched for “spud” and been disappointed that the results didn’t
include “potato”? Okay, maybe that precise example doesn’t happen often, but you
get the idea: natural languages for some reason have evolved many ways to say the
same thing. Such synonyms must be handled during searching, or your users won’t
find their documents.

 Our next custom analyzer injects synonyms of words into the outgoing token
stream during indexing but places the synonyms in the same position as the original
word. By adding synonyms during indexing, searches will find documents that may not
contain the original search terms but that match the synonyms of those words. We start
with the test case showing how we expect our new analyzer to work, shown in listing 4.6.

public void testJumps() throws Exception {
 TokenStream stream =
 synonymAnalyzer.tokenStream("contents",
 new StringReader("jumps"));

2 While working on this chapter, Erik asked his brilliant, then five-year-old son Jakob how he would spell cool
cat. Jakob replied, “c-o-l c-a-t.” What a wonderfully confusing language English is. Erik imagines that a “sounds-
like” feature in search engines designed for children would be very useful. Metaphone encodes cool, kool, and

Listing 4.6 Testing the synonym analyzer

Analyze with
SynonymAnalyzer
col all as KL.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

132 CHAPTER 4 Lucene’s analysis process

 TermAttribute term = stream.addAttribute(TermAttribute.class);
 PositionIncrementAttribute posIncr =
 stream.addAttribute(PositionIncrementAttribute.class);

 int i = 0;
 String[] expected = new String[]{"jumps",
 "hops",
 "leaps"};
 while(stream.incrementToken()) {
 assertEquals(expected[i], term.term());

 int expectedPos;
 if (i == 0) {
 expectedPos = 1;
 } else {
 expectedPos = 0;
 }
 assertEquals(expectedPos,
 posIncr.getPositionIncrement());
 i++;
 }
 assertEquals(3, i);
}

Notice that our unit test shows not only that synonyms for the word jumps are emitted
from the SynonymAnalyzer but also that the synonyms are placed in the same position
(using an increment of 0) as the original word. Now that we see what behavior we
expect of SynonymAnalyzer, let’s see how to build it.

4.5.1 Creating SynonymAnalyzer

SynonymAnalyzer’s purpose is to first detect the occurrence of words that have syn-
onyms, and second to insert the synonyms at the same position. Figure 4.6 graphi-
cally shows what our SynonymAnalyzer does to text input, and listing 4.7 is the
implementation.

public class SynonymAnalyzer extends Analyzer {
 private SynonymEngine engine;

 public SynonymAnalyzer(SynonymEngine engine) {
 this.engine = engine;
 }

 public TokenStream tokenStream(String fieldName, Reader reader) {
 TokenStream result = new SynonymFilter(
 new StopFilter(true,
 new LowerCaseFilter(
 new StandardFilter(
 new StandardTokenizer(
 Version.LUCENE_30, reader))),
 StopAnalyzer.ENGLISH_STOP_WORDS_SET),
 engine

Listing 4.7 SynonymAnalyzer implementation

Check for
correct synonyms

Verify synonyms
positions
);

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

133Synonyms, aliases, and words that mean the same

 return result;
 }
}

Once again, the analyzer code is minimal and
simply chains a Tokenizer together with a series
of TokenFilters; in fact, this is the StandardAn-
alyzer wrapped with an additional filter. (See
table 4.1 for more on these basic analyzer build-
ing blocks.) The final TokenFilter in the chain
is the new SynonymFilter (listing 4.8), which
gets to the heart of the current discussion. When
you’re injecting terms, buffering is needed. This
filter uses a Stack as the buffer.

public class SynonymFilter extends TokenFilter {
 public static final String TOKEN_TYPE_SYNONYM = "SYNONYM";

 private Stack<String> synonymStack;
 private SynonymEngine engine;
 private AttributeSource.State current;

 private final TermAttribute termAtt;
 private final PositionIncrementAttribute posIncrAtt;

 public SynonymFilter(TokenStream in, SynonymEngine engine) {
 super(in);
 synonymStack = new Stack<String>();
 this.engine = engine;

 this.termAtt = addAttribute(TermAttribute.class);
 this.posIncrAtt = addAttribute(PositionIncrementAttribute.class);
 }

 public boolean incrementToken() throws IOException {
 if (synonymStack.size() > 0) {
 String syn = synonymStack.pop();
 restoreState(current);
 termAtt.setTermBuffer(syn);
 posIncrAtt.setPositionIncrement(0);
 return true;
 }

 if (!input.incrementToken())
 return false;

Listing 4.8 SynonymFilter: buffering tokens and emitting one at a time

Define synonym bufferB

Pop buffered
synonyms

C

Set position
increment to 0D

Read next tokenE

Figure 4.6 SynonymAnalyzer
visualized as factory automation
 if (addAliasesToStack()) { Push synonyms onto stackF

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

134 CHAPTER 4 Lucene’s analysis process

 current = captureState();
 }

 return true;
 }

 private boolean addAliasesToStack() throws IOException {
 String[] synonyms = engine.getSynonyms(termAtt.term());
 if (synonyms == null) {
 return false;
 }
 for (String synonym : synonyms) {
 synonymStack.push(synonym);
 }
 return true;
 }
}

We create a stack to hold the pending synonyms.

The code successively pops the stack of buffered synonyms from the last streamed-in
token until it’s empty.

After all previous token synonyms have been emitted, we read the next token.

We push all synonyms of the current token onto the stack.

We save details for the current token, if it has synonyms.

We return the current (and original) token before its associated synonyms.

Synonyms are retrieved from the SynonymEngine.

The design of SynonymAnalyzer allows for pluggable SynonymEngine implementa-
tions. SynonymEngine is a one-method interface:

public interface SynonymEngine {
 String[] getSynonyms(String s) throws IOException;
}

Using an interface for this design easily allows test implementations. We leave it as an
exercise for you to create production-quality SynonymEngine implementations.3 For
our examples, we use a simple test that’s hard-coded with a few synonyms:

public class TestSynonymEngine implements SynonymEngine {
 private static HashMap<String, String[]> map =

 new HashMap<String, String[]>();

 static {
 map.put("quick", new String[] {"fast", "speedy"});
 map.put("jumps", new String[] {"leaps", "hops"});
 map.put("over", new String[] {"above"});
 map.put("lazy", new String[] {"apathetic", "sluggish"});
 map.put("dog", new String[] {"canine", "pooch"});
 }

3 It’s cruel to leave you hanging with a mock implementation, isn’t it? Actually, we’ve implemented a powerful

Save current tokenG

Return current tokenH

I Retrieve synonyms

Push synonyms
onto stackJ

 B

C D

 E

F J

 G

 H

 I
SynonymEngine using the WordNet database. It’s covered in section 9.3.2.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

135Synonyms, aliases, and words that mean the same

 public String[] getSynonyms(String s) {
 return map.get(s);
 }
}

Notice that the synonyms generated by TestSynonymEngine are one-way: quick has the
synonyms fast and speedy, but fast has no synonyms. In a real production environment,
you should ensure all synonyms list one another as alternate synonyms, but because
we’re using this for simple testing, it’s fine.

 Setting the position increment seems powerful, and indeed it is. You should only
modify increments knowing of some odd cases that arise in searching, though.
Because synonyms are indexed just like other terms, TermQuery works as expected.
Also, PhraseQuery works as expected when we use a synonym in place of an original
word. The SynonymAnalyzerTest test case in listing 4.9 demonstrates things working
well using API-created queries.

public class SynonymAnalyzerTest extends TestCase {
 private IndexSearcher searcher;
 private static SynonymAnalyzer synonymAnalyzer =
 new SynonymAnalyzer(new TestSynonymEngine());

 public void setUp() throws Exception {
 RAMDirectory directory = new RAMDirectory();

 IndexWriter writer = new IndexWriter(directory,
 synonymAnalyzer,
 IndexWriter.MaxFieldLength.UNLIMITED);
 Document doc = new Document();
 doc.add(new Field("content",
 "The quick brown fox jumps over the lazy dog",
 Field.Store.YES,
 Field.Index.ANALYZED));
 writer.addDocument(doc);

 writer.close();

 searcher = new IndexSearcher(directory);
 }

 public void tearDown() throws Exception {
 searcher.close();
 }

 public void testSearchByAPI() throws Exception {

 TermQuery tq = new TermQuery(new Term("content", "hops"));
 assertEquals(1, TestUtil.hitCount(searcher, tq));

 PhraseQuery pq = new PhraseQuery();
 pq.add(new Term("content", "fox"));
 pq.add(new Term("content", "hops"));
 assertEquals(1, TestUtil.hitCount(searcher, pq));
 }

Listing 4.9 SynonymAnalyzerTest: showing that synonym queries work

Search for
"hops"

B

Search for
"fox hops"

C

 }

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

136 CHAPTER 4 Lucene’s analysis process

A search for the word hops matches the document.

A search for the phrase “fox hops” also matches.

The phrase “…fox jumps…” was indexed, and our SynonymAnalyzer injected hops in
the same position as jumps. A TermQuery for hops succeeded, as did an exact Phrase-
Query for “fox hops.” Excellent!

 Let’s test it with QueryParser. We’ll run two tests. The first one creates Query-
Parser using our SynonymAnalyzer and the second one using StandardAnalyzer, as
shown in listing 4.10.

public void testWithQueryParser() throws Exception {
 Query query = new QueryParser(Version.LUCENE_30,
 "content",
 synonymAnalyzer).parse("\"fox jumps\"");
 assertEquals(1, TestUtil.hitCount(searcher, query));
 System.out.println("With SynonymAnalyzer, \"fox jumps\" parses to " +
 query.toString("content"));

 query = new QueryParser(Version.LUCENE_30,
 "content",
 new StandardAnalyzer(Version.LUCENE_30))
 .parse("\"fox jumps\"");
 assertEquals(1, TestUtil.hitCount(searcher, query));
 System.out.println("With StandardAnalyzer, \"fox jumps\" parses to " +
 query.toString("content"));
}

Both analyzers find the matching document just fine, which is great. The test pro-
duces the following output:

With SynonymAnalyzer, "fox jumps" parses to "fox (jumps hops leaps)"
With StandardAnalyzer, "fox jumps" parses to "fox jumps"

As expected, with SynonymAnalyzer, words in our query were expanded to their syn-
onyms. QueryParser is smart enough to notice that the tokens produced by the ana-
lyzer have zero position increment, and when that happens inside a phrase query, it
creates a MultiPhraseQuery, described in section 5.3.

 But this is wasteful and unnecessary: we only need synonym expansion during
indexing or during searching, not both. If you choose to expand during indexing, the
disk space consumed by your index will be somewhat larger, but searching may be
faster because there are fewer search terms to visit. Your synonyms have been baked
into the index, so you don’t have the freedom to quickly change them and see the
impact of such changes during searching. If instead you expand at search time, you
can see fast turnaround when testing. These are simply trade-offs, and which option is
best is your decision based on your application’s constraints.

 Next we improve our AnalyzerUtils class to more easily see synonyms expansion
during indexing.

Listing 4.10 Testing SynonymAnalyzer with QueryParser

 B
 C

SynonymAnalyzer
finds doc

StandardAnalyzer
also finds doc
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

137Synonyms, aliases, and words that mean the same

4.5.2 Visualizing token positions

Our AnalyzerUtils.displayTokens doesn’t show us all the information when deal-
ing with analyzers that set position increments other than 1. To get a better view of
these types of analyzers, we add an additional utility method, displayTokensWithPo-
sitions, to AnalyzerUtils, as shown in listing 4.11.

public static void displayTokensWithPositions
 (Analyzer analyzer, String text) throws IOException {

 TokenStream stream = analyzer.tokenStream("contents",
 new StringReader(text));
 TermAttribute term = stream.addAttribute(TermAttribute.class);
 PositionIncrementAttribute posIncr =
 stream.addAttribute(PositionIncrementAttribute.class);

 int position = 0;
 while(stream.incrementToken()) {
 int increment = posIncr.getPositionIncrement();
 if (increment > 0) {
 position = position + increment;
 System.out.println();
 System.out.print(position + ": ");
 }

 System.out.print("[" + term.term() + "] ");
 }
 System.out.println();
}

We wrote a quick piece of code to see what our SynonymAnalyzer is doing:

public class SynonymAnalyzerViewer {

 public static void main(String[] args) throws IOException {

 SynonymEngine engine = new TestSynonymEngine();

 AnalyzerUtils.displayTokensWithPositions(
 new SynonymAnalyzer(engine),
 "The quick brown fox jumps over the lazy dog");
 }
}

And we can now visualize the synonyms placed in the same positions as the original
words:

2: [quick] [speedy] [fast]
3: [brown]
4: [fox]
5: [jumps] [hops] [leaps]
6: [over] [above]
8: [lazy] [sluggish] [apathetic]
9: [dog] [pooch] [canine]

Listing 4.11 Visualizing the position increment of each token
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

138 CHAPTER 4 Lucene’s analysis process

Each number on the left represents the token position. The numbers here are con-
tinuous, but they wouldn’t be if the analyzer left holes (as you’ll see with the next cus-
tom analyzer). Multiple terms shown for a single position illustrate where synonyms
were added.

4.6 Stemming analysis
Our final analyzer pulls out all the stops. It has a ridiculous, yet descriptive name:
PositionalPorterStopAnalyzer. This analyzer removes stop words, leaving posi-
tional holes where words are removed, and leverages a stemming filter.

 The PorterStemFilter is shown in the class hierarchy in figure 4.5, but it isn’t
used by any built-in analyzer. It stems words using the Porter stemming algorithm cre-
ated by Dr. Martin Porter, and it’s best defined in his own words:

The Porter stemming algorithm (or “Porter stemmer”) is a process for removing the com-
moner morphological and inflexional endings from words in English. Its main use is as
part of a term normalisation process that is usually done when setting up Information
Retrieval systems.4

In other words, the various forms of a word are reduced to a common root form. For
example, the words breathe, breathes, breathing, and breathed, via the Porter stemmer,
reduce to breath.

 The Porter stemmer is one of many stemming algorithms. See section 8.2.1 for cov-
erage of an extension to Lucene that implements the Snowball algorithm (also cre-
ated by Dr. Porter). KStem is another stemming algorithm that has been adapted to
Lucene (search Google for KStem and Lucene).

 Next we’ll show how to use StopFilter to remove words but leave a positional
hole behind, and then we’ll describe the full analyzer.

4.6.1 StopFilter leaves holes

Stop-word removal brings up an interesting issue: what happens to the holes left by the
words removed? Suppose you index “one is not enough.” The tokens emitted from
StopAnalyzer will be one and enough, with is and not thrown away. By default, Stop-
Analyzer accounts for the removed words by incrementing the position increment.
This is illustrated from the output of AnalyzerUtils.displayTokensWithPositions:

2: [quick]
3: [brown]
4: [fox]
5: [jump]
6: [over]
8: [lazi]
9: [dog]

Positions 1 and 7 are missing due to the removal of the. If you have a need to disable
the holes so that position increment is always 1, use StopFilter’s setEnable-
PositionIncrements method. But be careful when doing so: your index won’t
4 Taken from the website http://tartarus.org/~martin/PorterStemmer/index.html

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://tartarus.org/~martin/PorterStemmer/index.html
http://www.it-ebooks.info/

139Stemming analysis

record the deleted words, so there can be surprising effects. For example, the phrase
“one enough” will match the indexed phrase “one is not enough” if you don’t pre-
serve the holes!

 Stepping back a bit, the primary reason to remove stop words is because these
words typically have no special meaning; they are the “glue” words required in any lan-
guage. The problem is, because we’ve discarded them, we’ve lost some information,
which may or may not be a problem for your application. For example, nonexact
searches can still match the document, such as “a quick brown fox.”

 There’s an interesting alternative, called shingles, which are compound tokens cre-
ated from multiple adjacent tokens. Lucene has a TokenFilter called ShingleFilter
in the contrib analyzers module that creates shingles during analysis. We’ll describe it
in more detail in section 8.2.3. With shingles, stop words are combined with adjacent
words to make new tokens, such as the-quick. At search time, the same expansion is
used. This enables precise phrase matching, because the stop words aren’t discarded.
Using shingles yields good search performance because the number of documents
containing the-quick is far fewer than the number containing the stop word the in any
context. Nutch’s document analysis, described in section 4.9, also uses shingles.

4.6.2 Combining stemming and stop-word removal

This custom analyzer uses a stop-word removal filter, enabled to maintain posi-
tional gaps and fed from a LowerCaseTokenizer. The results of the stop filter are
fed to the Porter stemmer. Listing 4.12 shows the full implementation of this sophis-
ticated analyzer. LowerCaseTokenizer kicks off the analysis process, feeding tokens
through the stop-word removal filter and finally stemming the words using the built-
in Porter stemmer.

public class PositionalPorterStopAnalyzer extends Analyzer {
 private Set stopWords;

 public PositionalPorterStopAnalyzer() {
 this(StopAnalyzer.ENGLISH_STOP_WORDS_SET);
 }

 public PositionalPorterStopAnalyzer(Set stopWords) {
 this.stopWords = stopWords;
 }

 public TokenStream tokenStream(String fieldName, Reader reader) {
 StopFilter stopFilter = new StopFilter(true,
 new LowerCaseTokenizer(reader),
 stopWords);
 stopFilter.setEnablePositionIncrements(true);
 return new PorterStemFilter(stopFilter);
 }
}

Listing 4.12 PositionalPorterStopAnalyzer: stemming and stop word removal
Next we describe field-specific issues with analysis.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

140 CHAPTER 4 Lucene’s analysis process

4.7 Field variations
The fact that a document is composed of multiple fields, with diverse characteristics,
introduces some interesting requirements to the analysis process. We’ll first consider
how analysis is impacted by multivalued fields. Next we’ll discuss how to use different
analyzers for different fields. Finally, we’ll talk about skipping analysis entirely for cer-
tain fields.

4.7.1 Analysis of multivalued fields

Recall from chapter 2 that a document may have more than one Field instance with
the same name, and that Lucene logically appends the tokens of these fields sequen-
tially during indexing. Fortunately, your analyzer has some control over what happens
at each field value boundary. This is important in order to ensure queries that pay
attention to a Token’s position, such as phrase or span queries, don’t inadvertently
match across two separate field instances. For example, if one value is “it’s time to pay
income tax” and the next value is “return library books on time,” then a phrase search
for “tax return” will happily match this field!

 To fix this, you’ll have to create your own analyzer by subclassing the Analyzer
class, then override the getPositionIncrementGap method (along with the token-
Stream or reusableTokenStream method). By default, getPositionIncrementGap
returns 0 (no gap), which means it acts as if the field values were directly appended to
one another. Increase it to a large enough number (for example, 100) so that no posi-
tional queries could ever incorrectly match across the boundary.

 It’s also important to ensure that token offsets are computed properly for multival-
ued fields. If you intend to highlight such fields, as described in section 8.3, incorrect
offsets will cause the wrong parts of the text to be highlighted. The token’s Offset-
Attribute, which exposes methods to retrieve the start and end offset, also has a spe-
cial method endOffset, whose purpose is to return the final offset for the field. This is
necessary for cases where a TokenFilter has stripped out one or more final tokens;
Lucene would otherwise have no way to compute the final offset for that field value.
The offsets of each Field instance are shifted by the sum of the endOffset of all fields
before it. Lucene’s core tokenizers all implement endOffset properly, but if you cre-
ate your own tokenizer, it’s up to you to do so. Similarly, if your application requires a
gap to be added to offsets when a field has multiple values, you should override the
getOffsetGap method of your custom analyzer.

 Another frequently encountered analysis challenge is how to use a different ana-
lyzer for different fields.

4.7.2 Field-specific analysis

During indexing, the granularity of analyzer choice is at the IndexWriter or per-
document level. With QueryParser, there’s only one analyzer applied to all encoun-
tered text. Yet for many applications, where the documents have diverse fields, it

would seem that each field may deserve unique analysis.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

141Field variations

 Internally, analyzers can easily act on the field name being analyzed, because that’s
passed as an argument to the tokenStream method. The built-in analyzers don’t lever-
age this capability because they’re designed for general-purpose use and field names
are application specific, but you can easily create a custom analyzer that does so. Alter-
natively, Lucene has a helpful built-in utility class, PerFieldAnalyzerWrapper, that
makes it easy to use different analyzers per field. Use it like this:

PerFieldAnalyzerWrapper analyzer = new PerFieldAnalyzerWrapper(
 new SimpleAnalyzer());
analyzer.addAnalyzer("body", new StandardAnalyzer(Version.LUCENE_30));

You provide the default analyzer when you create PerFieldAnalyzerWrapper. Then,
for any field that requires a different analyzer, you call the addAnalyzer method. Any
field that wasn’t assigned a specific analyzer simply falls back to the default one. In the
previous example, we use SimpleAnalyzer for all fields except body, which uses
StandardAnalyzer.

 Let’s see next how PerFieldAnalyzerWrapper can be useful when you need to mix
analyzed and unanalyzed fields.

4.7.3 Searching on unanalyzed fields

There are often cases when you’d like to index a field’s value without analysis. For
example, part numbers, URLs, and Social Security numbers should all be indexed and
searched as a single token. During indexing this is easily done by specifying
Field.Index.NOT_ANALYZED or Field.Index.NOT_ANALYZED_NO_NORMS when you cre-
ate the field. You also want users to be able to search on these part numbers. This is
simple if your application directly creates a TermQuery.

 But a dilemma can arise if you use QueryParser and attempt to query on an unan-
alyzed field; this is because the fact that the field wasn’t analyzed is only known during
indexing. There’s nothing special about such a field’s terms once indexed; they’re just
terms. Let’s see the issue exposed with a straightforward test case that indexes a docu-
ment with an unanalyzed field and then attempts to find that document again, shown
in listing 4.13.

public class KeywordAnalyzerTest extends TestCase {

 private IndexSearcher searcher;

 public void setUp() throws Exception {
 Directory directory = new RAMDirectory();

 IndexWriter writer = new IndexWriter(directory,
 new SimpleAnalyzer(),
 IndexWriter.MaxFieldLength.UNLIMITED);

 Document doc = new Document();
 doc.add(new Field("partnum",
 "Q36",

Listing 4.13 Using QueryParser to match part numbers
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

142 CHAPTER 4 Lucene’s analysis process

 Field.Store.NO,
 Field.Index.NOT_ANALYZED_NO_NORMS));
 doc.add(new Field("description",
 "Illidium Space Modulator",
 Field.Store.YES,
 Field.Index.ANALYZED));
 writer.addDocument(doc);

 writer.close();

 searcher = new IndexSearcher(directory);
 }

 public void testTermQuery() throws Exception {
 Query query = new TermQuery(new Term("partnum", "Q36"));
 assertEquals(1, TestUtil.hitCount(searcher, query));
 }

 public void testBasicQueryParser() throws Exception {
 Query query = new QueryParser(Version.LUCENE_30,
 "description",
 new SimpleAnalyzer())
 .parse("partnum:Q36 AND SPACE");
 assertEquals("note Q36 -> q",
 "+partnum:q +space",
 query.toString("description"));
 assertEquals("doc not found :(", 0,
 TestUtil.hitCount(searcher, query));
 }
}

QueryParser analyzes each term and phrase of the query expression. Both Q36 and
SPACE are analyzed separately. SimpleAnalyzer strips nonletter characters and lower-
cases, so Q36 becomes q. But at indexing time, Q36 was left as is. Notice, also, that this
is the same analyzer used during indexing, but because the field was indexed with
Field.Index.NOT_ANALYZED_NO_NORMS, the analyzer wasn’t used.

Query has a nice toString() method (see section 3.3.2) to return the query as a Que-
ryParser-like expression. Notice that Q36 is gone.

The TermQuery worked fine, but QueryParser found no results. This issue of Query-
Parser encountering an unanalyzed field emphasizes a key point: indexing and analy-
sis are intimately tied to searching. The testBasicQueryParser test shows that
searching for terms created using Index.NOT_ANALYZED_NO_NORMS when a query
expression is analyzed can be problematic. It’s problematic because QueryParser ana-
lyzed the partnum field, but it shouldn’t have. There are a few possible solutions:

Change your UI so a user selects a part number separately from free-form que-
ries. Generally, users don’t want to know (and shouldn’t need to know) about
the field names in the index. This approach, while simple to implement, isn’t
generally recommended because it’s poor practice to present more than one
text entry box to the user: he or she may become confused.

Don’t
analyze
field

Don’t
analyze
term

Verify
document
matches

B

C

 B

 C
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

143Field variations

If part numbers or other textual constructs are common lexical occurrences in
the text you’re analyzing, consider creating a custom domain-specific analyzer
that recognizes and preserves them.
Subclass QueryParser and override one or both of the getFieldQuery methods
to provide field-specific handling.
Use PerFieldAnalyzerWrapper for field-specific analysis.

Designing a search UI is application-dependent; BooleanQuery (section 3.4.5) and fil-
ters (section 5.6) provide the support you need to combine query pieces in sophisti-
cated ways. Section 9.5 shows how to present a forms-based search interface that uses
XML to represent the full query. The information in this chapter provides the founda-
tion for building domain-centric analyzers. We cover subclassing QueryParser in sec-
tion 6.3. Of all these solutions, the simplest is to use PerFieldAnalyzerWrapper.

 We’ll use Lucene’s KeywordAnalyzer to tokenize the part number as a single
token. Note that KeywordAnalyzer and Field.Index.NOT_ANALYZED* are identical
during indexing; it’s only with QueryParser that using KeywordAnalyzer is necessary.
We want only one field to be “analyzed” in this manner, so we leverage the PerField-
AnalyzerWrapper to apply it only to the partnum field. First let’s look at the Keywor-
dAnalyzer in action as it fixes the situation:

public void testPerFieldAnalyzer() throws Exception {
 PerFieldAnalyzerWrapper analyzer = new PerFieldAnalyzerWrapper(
 new SimpleAnalyzer());
 analyzer.addAnalyzer("partnum", new KeywordAnalyzer());

 Query query = new QueryParser(Version.LUCENE_30,
 "description", analyzer).parse(
 "partnum:Q36 AND SPACE");

 assertEquals("Q36 kept as-is",
 "+partnum:Q36 +space", query.toString("description"));
 assertEquals("doc found!", 1, TestUtil.hitCount(searcher, query));
}

We use PerFieldAnalyzerWrapper to apply the KeywordAnalyzer only to the partnum
field, and SimpleAnalyzer to all other fields. This yields the same result as during
indexing. The query now has the proper term for the partnum field, and the docu-
ment is found as expected.

 Given KeywordAnalyzer, we could streamline our code (in KeywordAnalyzer-
Test.setUp) and use the same PerFieldAnalyzerWrapper used in testPerField-
Analyzer during indexing. Using a KeywordAnalyzer on special fields during
indexing would eliminate the use of Index.NOT_ANALYZED_NO_NORMS during indexing
and replace it with Index.ANALYZED. Aesthetically, it may be pleasing to see the same
analyzer used during indexing and querying, and using PerFieldAnalyzerWrapper
makes this possible.

 We’ve seen some interesting situations arising for different kinds of fields. Multi-
valued fields require setting a position increment gap, to avoid matching across differ-

ent values, while PerFieldAnalyzerWrapper lets us customize which analyzer is used

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

144 CHAPTER 4 Lucene’s analysis process

for which field. Let’s change topics now and discuss analyzing text from non-English
languages.

4.8 Language analysis issues
Dealing with languages in Lucene is an interesting and multifaceted issue. How can
text in various languages be indexed and subsequently retrieved? As a developer
building Unicode-aware applications based on Lucene, what issues do you need to
consider?

 You must contend with several issues when analyzing text in various languages. The
first hurdle is ensuring that character-set encoding is done properly so that external
data, such as files, are read into Java properly. During the analysis process, different
languages have different sets of stop words and unique stemming algorithms. Perhaps
accents and other diacritics should be removed from characters as well, which would
be language-dependent. Finally, you may require language detection if you aren’t sure
what language is being used. Each of these issues is ultimately up to the developer to
address, with only basic building-block support provided by Lucene. A number of ana-
lyzers and additional building blocks such as Tokenizers and TokenStreams are avail-
able in the contrib directory (discussed in section 8.2) and elsewhere online.

 We’ll first describe the Unicode character encoding, then discuss options for ana-
lyzing non-English languages, and in particular Asian languages, which present
unique challenges. Finally we’ll investigate options for mixing multiple languages in
one index. Let’s begin with a brief introduction to Unicode and character encodings.

4.8.1 Unicode and encodings

Internally, Lucene stores all characters in the standard UTF-8 encoding. Java frees us
from many struggles by automatically handling Unicode within Strings, represented
as UTF16 code points, and providing facilities for reading in external data in the many
encodings. You, however, are responsible for getting external text into Java and
Lucene. If you’re indexing files on a file system, you need to know what encoding the
files were saved as in order to read them properly. If you’re reading HTML or XML
from an HTTP server, encoding issues get a bit more complex. Encodings can be spec-
ified in an HTTP content-type header or specified within the document itself in the
XML header or an HTML <meta> tag.

 We won’t elaborate on these encoding details, not because they aren’t important,
but because they’re separate issues from Lucene. Please refer to appendix D for sev-
eral sources of more detailed information on encoding topics. In particular, if you’re
new to I18N issues, read Joel Spolsky’s excellent article “The Absolute Minimum Every
Software Developer Absolutely, Positively Must Know About Unicode and Character
Sets (No Excuses!)” (http://www.joelonsoftware.com/articles/Unicode.html) and the
Java language Internationalization tutorial (http://java.sun.com/docs/books/tuto-
rial/i18n/intro/).

 We’ll proceed with the assumption that you have your text available as Unicode,

and move on to the Lucene-specific language concerns.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.joelonsoftware.com/articles/Unicode.html
http://java.sun.com/docs/books/tutorial/i18n/intro/
http://www.it-ebooks.info/

145Language analysis issues

4.8.2 Analyzing non-English languages

All the details of the analysis process apply when you’re dealing with text in non-Eng-
lish languages. Extracting terms from text is the goal. With Western languages, where
whitespace and punctuation are used to separate words, you must adjust stop-word
lists and stemming algorithms to be specific to the language of the text being ana-
lyzed. You may also want to use the ASCIIFoldingFilter, which replaces non-ASCII
Unicode characters with their ASCII equivalents, when possible.

 Beyond the built-in analyzers we’ve discussed, the contrib directory provides many
language-specific analyzers, under contrib/analyzers. These analyzers generally
employ language-specific stemming and stop word removal. Also freely available is the
SnowballAnalyzer family of stemmers, which supports many European languages. We
discuss SnowballAnalyzer in section 8.2.1.

 Next we see an advanced capability in Lucene that enables filtering of characters
even before the Tokenizer sees them.

4.8.3 Character normalization

As of version 2.9, Lucene makes it possible to normalize the character stream seen by
the Tokenizer. This normalization fits in between the Reader and the Tokenizer, fil-
tering the characters produced by the Reader, as shown in figure 4.7. What’s crucial
about this API is it properly accounts for the necessary corrections to the start and end
offsets of Tokens whenever the filtering adds or removes characters. This means high-
lighting will work correctly in the original input string.

 When would you want to filter characters? One example usage might be mapping
between the hiragana and katakana in Japanese character streams. Another is map-
ping traditional Chinese to simplified Chinese. Most applications don’t need to filter
the character stream, but if yours does you’ll be happy to know it’s simple.

 Regardless of your reasons, Lucene provides a set of character filtering classes that
mirrors their token-based counterparts. The CharStream abstract base class simply
adds one method, correctOffset, to the Reader class. CharReader wraps a normal
Reader and creates a CharStream, whereas CharFilter chains any CharStream
together. Using these building blocks, you can create a character filter chain, begin-
ning with a single CharReader followed by any number of CharFilters, before tokeni-
zation even gets started. Figure 4.7 shows an initial CharReader followed by three
CharFilters.

Reader CharReader CharFilter CharFilter CharFilter

Tokenizer TokenFilter TokenFilter TokenFilter Tokens

Figure 4.6
Analysis chain that
includes character
normalization
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

146 CHAPTER 4 Lucene’s analysis process

 Lucene provides a single core concrete implementation of CharFilter, called
MappingCharFilter, that allows you to enroll input and output pairs of substrings.
Whenever one of the input substrings is seen in the input character stream, it’s
replaced with the corresponding output string. Although you can use this class as is, if
you want to perform simple substring replacement keep in mind that it has a poten-
tially high performance cost. That’s because the current implementation allocates
many temporary objects during analysis.

 None of the core analyzers perform character filtering. You’ll have to create your
own analyzer that builds a chain starting with a CharReader followed by any number of
CharFilters, then a Tokenizer and TokenFilter chain. Let’s see what support
Lucene provides for analyzing Asian languages next.

4.8.4 Analyzing Asian languages

Asian languages, such as Chinese, Japanese, and Korean (also denoted as CJK), gener-
ally use ideograms rather than an alphabet to represent words. These pictorial words
may or may not be separated by whitespace and thus require a different type of analy-
sis that recognizes when tokens should be split. The only built-in analyzer capable of
doing anything useful with Asian text is the StandardAnalyzer, which recognizes
some ranges of the Unicode space as CJK characters and tokenizes them individually.

 Three analyzers in the Lucene contrib directory are suitable for Asian language
analysis (see section 8.2 for more details on Lucene’s contrib analyzers): CJKAnalyzer,
ChineseAnalyzer, and SmartChineseAnalyzer. In our sample book data, the Chinese
characters for the book Tao Te Ching were added to the title. Because our data origi-
nates in Java properties files, Unicode escape sequences are used:5

title=Tao Te Ching \u9053\u5FB7\u7D93

We used StandardAnalyzer for all tokenized fields in our index, which tokenizes each
English word as expected (tao, te, and ching) as well as each of the Chinese characters
as separate terms (tao te ching) even though there’s no space between them. Our
ChineseTest demonstrates that searching by the word tao using its Chinese represen-
tation works as desired:

public class ChineseTest extends TestCase {
 public void testChinese() throws Exception {
 Directory dir = TestUtil.getBookIndexDirectory();
 IndexSearcher searcher = new IndexSearcher(dir);
 Query query = new TermQuery(new Term("contents", "道 "));
 assertEquals("tao", 1, TestUtil.hitCount(searcher, query));
 }
}

Note that our ChineseTest.java file was saved in UTF-8 format and compiled using the
UTF-8 encoding switch (-encoding utf8) for the Javac compiler. We had to ensure

5 java.util.Properties loads properties files using the ISO-8859-1 encoding but allows characters to be
encoded using standard Java Unicode \u syntax. Java includes a native2ascii program that can convert natively

encoded files into the appropriate format.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

147Language analysis issues

that the representations of the Chinese characters are encoded and read properly and
use a CJK-aware analyzer.

 Similar to the AnalyzerDemo in listing 4.2, we created a ChineseDemo (listing 4.14)
program to illustrate how various analyzers work with Chinese text. This demo uses
Abstract Window Toolkit (AWT) Label components to properly display the characters
regardless of your locale and console environment.

public class ChineseDemo {
 private static String[] strings = {"道德經 "};

 private static Analyzer[] analyzers = {
 new SimpleAnalyzer(),
 new StandardAnalyzer(Version.LUCENE_30),
 new ChineseAnalyzer (),
 new CJKAnalyzer (Version.LUCENE_30),
 new SmartChineseAnalyzer (Version.LUCENE_30)
 };

 public static void main(String args[]) throws Exception {

 for (String string : strings) {
 for (Analyzer analyzer : analyzers) {
 analyze(string, analyzer);
 }
 }

 }

 private static void analyze(String string, Analyzer analyzer)
 throws IOException {
 StringBuffer buffer = new StringBuffer();

 TokenStream stream = analyzer.tokenStream("contents",
 new StringReader(string));
 TermAttribute term = stream.addAttribute(TermAttribute.class);

 while(stream.incrementToken()) {
 buffer.append("[");
 buffer.append(term.term());
 buffer.append("] ");
 }

 String output = buffer.toString();

 Frame f = new Frame();
 f.setTitle(analyzer.getClass().getSimpleName() + " : " + string);
 f.setResizable(false);

 Font font = new Font(null, Font.PLAIN, 36);
 int width = getWidth(f.getFontMetrics(font), output);

 f.setSize((width < 250) ? 250 : width + 50, 75);
 Label label = new Label(output);
 label.setSize(width, 75);
 label.setAlignment(Label.CENTER);

Listing 4.14 ChineseDemo: illustrates what analyzers do with Chinese text

Analyze
this text

Test these
analyzers

Retrieve
tokens

Display
analysis
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

148 CHAPTER 4 Lucene’s analysis process

 label.setFont(font);
 f.add(label);

 f.setVisible(true);
 }

 private static int getWidth(FontMetrics metrics, String s) {
 int size = 0;
 int length = s.length();
 for (int i = 0; i < length; i++) {
 size += metrics.charWidth(s.charAt(i));
 }

 return size;
 }
}

CJKAnalyzer, ChineseAnalyzer,
and SmartChineseAnalyzer are
analyzers found in the Lucene con-
trib directory; they aren’t included
in the core Lucene distribution.
ChineseDemo shows the output
using an AWT Label component to
avoid any confusion that might arise
from console output encoding or
limited fonts mangling things; you
can see the output in figure 4.8.

 The CJKAnalyzer pairs charac-
ters in overlapping windows of two characters each. Many CJK words are two charac-
ters. By pairing characters in this manner, words are likely to be kept together (as well
as disconnected characters, increasing the index size). The ChineseAnalyzer takes a
simpler approach and, in our example, mirrors the results from the built-in Standar-
dAnalyzer by tokenizing each Chinese character. Words that consist of multiple Chi-
nese characters are split into terms for each component character. Finally,
SmartChineseAnalyzer uses probabilistic knowledge to find the optimal word seg-
mentation for Simplified Chinese text.

4.8.5 Zaijian6

A major hurdle remains when you’re dealing with various languages in a single index:
handling text encoding. The StandardAnalyzer is still the best built-in general-pur-
pose analyzer, even accounting for CJK characters; however, the contrib Smart-
ChineseAnalyzer seems better suited for Chinese language analysis.

 When you’re indexing documents in multiple languages into a single index, using
a per-document analyzer is appropriate. You may also want to add a field to docu-
ments indicating their language; this field can be used to filter search results or for

Figure 4.7 ChineseDemo illustrating analysis of the
title Tao Te Ching
6 Zaijian means good-bye in Chinese.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

149Nutch analysis

display purposes during retrieval. In section 6.3.4, we’ll show you how to retrieve the
locale from a user’s web browser, which could be used to select an appropriate ana-
lyzer during searching.

 One final topic is language detection. This, like character encodings, is outside the
scope of Lucene, but it may be important to your application. We don’t cover lan-
guage-detection techniques in this book, but it’s an active area of research with several
implementations to choose from (see appendix D).

4.9 Nutch analysis
We don’t have the source code to Google, but we do have the open source project
Nutch, created by Lucene’s creator Doug Cutting. Nutch takes an interesting
approach to analyzing text, specifically how it handles stop words, which it calls com-
mon terms. If all words are indexed, an enormous number of documents become
associated with each common term, such as the. Querying for the is practically a non-
sensical query, given that the majority of documents contain that term. When com-
mon terms are used in a query, but not within a phrase, such as the quick brown with no
other adornments or quotes, they are discarded. However, if a series of terms is sur-
rounded by double quotes, such as “the quick brown,” a fancier trick is played, which
we detail in this section.

 Nutch combines an index-time analysis bigram (grouping two consecutive words
as a single token) technique with a query-time optimization of phrases. This results in
a far smaller document space considered during searching; for example, far fewer
documents have the quick side by side than contain the. Using the internals of Nutch,
we created a simple example to demonstrate the Nutch analysis trickery. The shingles
contrib package offers the same capability. Listing 4.15 first analyzes the phrase “The
quick brown…” using the NutchDocumentAnalyzer, then parses a query of “the quick
brown” to demonstrate the Lucene query created.

public class NutchExample {

 public static void main(String[] args) throws IOException {
 Configuration conf = new Configuration();
 conf.addResource("nutch-default.xml");
 NutchDocumentAnalyzer analyzer = new NutchDocumentAnalyzer(conf);

 TokenStream ts = analyzer.tokenStream("content",
 new StringReader("The quick brown fox..."));
 int position = 0;
 while(true) {
 Token token = ts.next();
 if (token == null) {
 break;
 }
 int increment = token.getPositionIncrement();

Listing 4.15 NutchExample: demonstrating Nutch analysis and query parsing

BDefine
custom

analyzer

Display
token detailsC
 if (increment > 0) {

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

150 CHAPTER 4 Lucene’s analysis process

 position = position + increment;
 System.out.println();
 System.out.print(position + ": ");
 }

 System.out.print("[" +
 token.termText() + ":" +
 token.startOffset() + "->" +
 token.endOffset() + ":" +
 token.type() + "] ");
 }
 System.out.println();

 Query nutchQuery = Query.parse("\"the quick brown\"", conf);
 org.apache.lucene.search.Query luceneQuery;
 luceneQuery = new QueryFilters(conf).filter(nutchQuery);
 System.out.println("Translated: " + luceneQuery);
 }
}

Nutch uses a custom analyzer, NutchDocumentAnalyzer. Note that Nutch internally
embeds an earlier version (2.4) of Lucene, which explains why it’s using the old analy-
sis API based on the Token class and the next() method of TokenStream. These old
deprecated APIs have been replaced with the attributes-based API as of version 3.0.

We iterate through the tokens and print the details.

We create the Nutch query, and use Nutch’s QueryFilters to translate the Query into
the rewritten Lucene Query.

The analyzer output shows how “the quick” becomes a bigram, but the word the isn’t
discarded. The bigram resides in the same token position as the:

1: [the:0->3:<WORD>] [the-quick:0->9:gram]
2: [quick:4->9:<WORD>]
3: [brown:10->15:<WORD>]
4: [fox:16->19:<WORD>]

Because additional tokens are created during analysis, the index is larger, but the ben-
efit of this trade-off is that searches for exact-phrase queries are much faster. And
there’s a bonus: no terms were discarded during indexing.

 During querying, phrases are also analyzed and optimized. The query output
(recall from section 3.3.2 that Query’s toString() is handy) of the Lucene Query
instance for the query expression "the quick brown" is:

Translated: +(url:"the quick brown"^4.0 anchor:"the quick brown"^2.0
 content:"the-quick quick brown" title:"the quick
 brown"^1.5 host:"the quick brown"^2.0)

A Nutch query expands to search in the url, anchor, title, and host fields as well, with
higher boosts for those fields using the exact phrase. The content field clause is opti-
mized to only include the bigram of a position that contains an additional <WORD> type
token.

DParse to
Nutch’s Query

Create
translated
Lucene Query

 B

 C

 D
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

151Summary

 This was a quick view of what Nutch does with indexing analysis and query con-
struction. Nutch continues to evolve, optimize, and tweak the various techniques for
indexing and querying. The bigrams aren’t taken into consideration except in the
content field, but as the document base grows, whether optimizations are needed on
other fields will be reevaluated. You can use the shingles contrib module, covered in
section 8.2.3, to take the same approach as Nutch.

4.10 Summary
Analysis, while only a single facet of using Lucene, is the aspect that deserves the most
attention and effort. The words that can be searched are those emitted during index-
ing analysis: nothing more, nothing less. Sure, using StandardAnalyzer may do the
trick for your needs, and it suffices for many applications. But it’s important to under-
stand the analysis process. Users who take analysis for granted often run into confu-
sion later when they try to understand why searching for “to be or not to be” returns
no results (perhaps due to stop-word removal).

 It takes less than one line of code to incorporate an analyzer during indexing.
Many sophisticated processes may occur under the covers, such as stop word removal
and stemming of words. Removing words decreases your index size but can have a
negative impact on precision querying.

 Because one size doesn’t fit all when it comes to analysis, you may need to tune the
analysis process for your application domain. Lucene’s elegant analyzer architecture
decouples each of the processes internal to textual analysis, letting you reuse funda-
mental building blocks to construct custom analyzers. When you’re working with ana-
lyzers, be sure to use our AnalyzerUtils, or something similar, to see firsthand how
your text is tokenized. If you’re changing analyzers, you should rebuild your index
using the new analyzer so that all documents are analyzed in the same manner.

 Now, after four chapters, we’ve finished the first pass through the major compo-
nents of Lucene: indexing, analysis, and searching. In the next chapter we’ll dig
deeper into search by describing Lucene’s advanced search capabilities.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Advanced
search techniques
Many applications that implement search with Lucene can do so using the API
introduced in chapter 3. Some projects, though, need more than the basic search-
ing mechanisms. Perhaps you need to use security filters to restrict which docu-
ments are searchable for certain users, or you’d like to see search results sorted by a
specific field, such as title, instead of by relevance. Using term vectors, you can find
documents similar to an existing one, or automatically categorize documents.
Function queries allow you to use arbitrary logic when computing scores for each
hit, enabling you to boost relevance scores according to recency. We’ll cover all of
these examples in this chapter.

This chapter covers
Loading field values for all documents

Filtering and sorting search results

Span and function queries

Leveraging term vectors

Stopping a slow search
152

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

153Lucene’s field cache

 Rounding out our advanced topics are

Creating span queries, advanced queries that pay careful attention to positional
information of every term match within each hit
Using MultiPhraseQuery, which enables synonym searching within a phrase
Using FieldSelector, which gives fine control over which fields are loaded for
a document
Searching across multiple Lucene indexes
Stopping a search after a specified time limit
Using a variant of QueryParser that searches multiple fields at once

The first topic we’ll visit is Lucene’s field cache, which is a building block that under-
lies a number of Lucene’s advanced features.

5.1 Lucene’s field cache
Sometimes you need fast access to a certain field’s value for every document. Lucene’s
normal inverted index can’t do this, because it optimizes instead for fast access to all
documents containing a specific term. Stored fields and term vectors let you access all
field values by document number, but they’re relatively slow to load and generally
aren’t recommended for more than a page’s worth of results at a time.

 Lucene’s field cache, an advanced internal API, was created to address this need.
Note that the field cache isn’t a user-visible search feature; rather, it’s something of a
building block, a useful internal API that you can use when implementing advanced
search features in your application. Often your application won’t use the field cache
directly, but advanced functionality you do use, such as sorting results by field values
(covered in the next section), uses the field cache under the hood. Besides sorting,
some of Lucene’s built-in filters, as well as function queries, use the field cache inter-
nally, so it’s important to understand the trade-offs involved.

 There are also real-world cases when your application would directly use the field
cache itself. Perhaps you have a unique identifier for every document that you’ll need
to access when searching, to retrieve values stored in a separate database or other
store. Maybe you’d like to boost documents according to how recently they were pub-
lished, so you need fast access to that date per document (we show this example in
section 5.7.2). Possibly, in a commerce setting, your documents correspond to prod-
ucts, each with its own shipping weight (stored as a float or double, per document),
and you’d like to access that to present the shipping cost next to each search result.
These are all examples easily handled by Lucene’s field cache API.

 One important restriction for using the field cache is that all documents must have
a single value for the specified field. This means the field cache can’t handle multival-
ued fields as of Lucene 3.0, though it’s possible this restriction has been relaxed by the
time you’re reading this.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

154 CHAPTER 5 Advanced search techniques

NOTE A field cache can only be used on fields that have a single term. This typi-
cally means the field was indexed with Index.NOT_ANALYZED or
Index.NOT_ANALYZED_NO_NORMS, though it’s also possible to analyze the
fields as long as you’re using an analyzer, such as KeywordAnalyzer, that
always produces only one token.

We’ll first see how to use a field cache directly, should you need access to a field’s
value for all documents, when building a custom filter or function query, for example.
Then we’ll discuss the important RAM and CPU trade-offs when using a field cache.
Finally, we discuss the importance of accessing a field cache within the context of a
single segment at a time. We begin with the field cache API.

5.1.1 Loading field values for all documents

You can easily use the field cache to load an array of native values for a given field,
indexed by document number. For example, if every document has a field called
“weight,” you can get the weight for all documents like this:

float[] weights = FieldCache.DEFAULT.getFloats(reader, "weight");

Then, simply reference weights[docID] whenever you need to know a document’s
weight value. The field cache supports many native types: byte, short, int, long, float,
double, strings, and the class StringIndex, which includes the sort order of the
string values.

 The first time the field cache is accessed for a given reader and field, the values for
all documents are visited and loaded into memory as a single large array, and
recorded into an internal cache keyed on the reader instance and the field name.
This process can be quite time consuming for a large index. Subsequent calls quickly
return the same array from the cache. The cache entry isn’t cleared until the reader is
closed and completely dereferenced by your application (a WeakHashMap, keyed by the
reader, is used under the hood). This means that the first search that uses the field
cache will pay the price of populating it. If your index is large enough that this cost is
too high, it’s best to prewarm your IndexSearchers before using them for real que-
ries, as described in section 11.2.2.

 It’s important to factor in the memory usage of field cache. Numeric fields require
the number of bytes for the native type, multiplied by the number of documents. For
String types, each unique term is also cached for each document. For highly unique
fields, such as title, this can be a large amount of memory, because Java’s String
object itself has substantial overhead. The StringIndex field cache, which is used
when sorting by a string field, also stores an additional int array holding the sort order
for all documents.

NOTE The field cache may consume quite a bit of memory; each entry allocates
an array of the native type, whose length is equal to the number of docu-
ments in the provided reader. The field cache doesn’t clear its entries
until you close your reader and remove all references to that reader from

your application and garbage collection runs.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

155Sorting search results

5.1.2 Per-segment readers

As of 2.9, Lucene drives all search results collection and sorting one segment at a
time. This means the reader argument passed to the field cache by Lucene’s core
functionality will always be a reader for a single segment. This has strong benefits
when reopening an IndexReader; only the new segments must be loaded into the
field cache.

 But this means you should avoid passing your top-level IndexReader to the field
cache directly to load values, because you’d then have values double-loaded, thus con-
suming twice as much RAM. Typically, you require the values in an advanced customi-
zation, such as implementing a custom Collector, a custom Filter, or a custom
FieldComparatorSource, as described in chapter 6. All of these classes are provided
with the single-segment reader, and it’s that reader that you should in turn pass to the
field cache to retrieve values. If the field cache is using too much memory and you
suspect that a top-level reader may have been accidentally enrolled, try using the set-
InfoStream API to enable debugging output. Cases like this one, plus other situations
such as the same reader and field loaded under two different types, will cause a
detailed message to be printed to the PrintStream you provide.

NOTE Avoid passing a top-level reader directly to the field cache API. This can
result in consuming double the memory, if Lucene is also passing individ-
ual segments’ readers to the API.

Now that we’ve seen how to use field cache directly, as a building block when creating
your application, let’s discuss a valuable Lucene capability that uses a field cache inter-
nally: field sorting.

5.2 Sorting search results
By default, Lucene sorts the matching documents in descending relevance score order,
such that the most relevant documents appear first. This is an excellent default as it
means the user is most likely to find the right document in the first few results rather
than on page 7. However, often you’d like to offer the user an option to sort differently.

 For example, for a book search you may want to display search results grouped
into categories, and within each category the books should be ordered by relevance to
the query, or perhaps a simple sort by title is what your users want. Collecting all
results and sorting them programmatically as a second pass outside of Lucene is one
way to accomplish this. Doing so, however, introduces a possible performance bottle-
neck if the number of results is enormous. In this section, we’ll see both of these
examples and explore various other ways to sort search results, including sorting by
one or more field values in either ascending or descending order.

 Remember that sorting under the hood uses the field cache to load values across
all documents, so keep the performance trade-offs from section 5.1 in mind.

 We’ll begin by seeing how to specify a custom sort when searching, starting with
two special sort orders: relevance (the default sort) and index order. Then we’ll sort

by a field’s values, including optionally reversing the sort order. Next we’ll see how to

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

156 CHAPTER 5 Advanced search techniques

sort by multiple sort criteria. Finally we’ll show you how to specify the field’s type or
locale, which is important to ensure the sort order is correct.

5.2.1 Sorting search results by field value

IndexSearcher contains several overloaded search methods. Thus far we’ve covered
only the basic search(Query, int) method, which returns the top requested number
of results, ordered by decreasing relevance. The sorting version of this method has the
signature search(Query, Filter, int, Sort). Filter, which we’ll cover in section 5.6,
should be null if you don’t need to filter the results.

 By default, the search method that accepts a Sort argument won’t compute any
scores for the matching documents. This is often a sizable performance gain, and
many applications don’t need the scores when sorting by field. If scores aren’t
needed in your application, it’s best to keep this default. If you need to change the
default, use IndexSearcher’s setDefaultFieldSortScoring method, which takes two
Booleans: doTrackScores and doMaxScore. If doTrackScores is true, then each hit
will have a score computed. If doMaxScore is true, then the max score across all hits
will be computed. Note that computing the max score is in general more costly than
the score per hit, because the score per hit is only computed if the hit is competitive.
For our example, because we want to display the scores, we enable score tracking but
not max score tracking.

 Throughout this section we’ll use the source code in listings 5.1 and 5.2 to show
the effect of sorting. Listing 5.1 contains the displayResults method, which runs the
search and prints details for each result. Listing 5.2 is the main method that invokes
displayResults for each type of sort. You can run this by typing ant SortingExample
in the book’s source code directory.

public class SortingExample {
 private Directory directory;

 public SortingExample(Directory directory) {
 this.directory = directory;
 }

 public void displayResults(Query query, Sort sort)
 throws IOException {
 IndexSearcher searcher = new IndexSearcher(directory);

 searcher.setDefaultFieldSortScoring(true, false);

 TopDocs results = searcher.search(query, null,
 20, sort);

 System.out.println("\nResults for: " +
 query.toString() + " sorted by " + sort);

 System.out.println(StringUtils.rightPad("Title", 30) +
 StringUtils.rightPad("pubmonth", 10) +
 StringUtils.center("id", 4) +

Listing 5.1 Sorting search hits by field

B

C

D

E

 StringUtils.center("score", 15));

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

157Sorting search results

 PrintStream out = new PrintStream(System.out, true, "UTF-8");

 DecimalFormat scoreFormatter = new DecimalFormat("0.######");
 for (ScoreDoc sd : results.scoreDocs) {
 int docID = sd.doc;
 float score = sd.score;
 Document doc = searcher.doc(docID);
 System.out.println(
 StringUtils.rightPad(
 StringUtils.abbreviate(doc.get("title"), 29), 30) +
 StringUtils.rightPad(doc.get("pubmonth"), 10) +
 StringUtils.center("" + docID, 4) +
 StringUtils.leftPad(
 scoreFormatter.format(score), 12));
 out.println(" " + doc.get("category"));
 //out.println(searcher.explain(query, docID));
 }

 searcher.close();
 }

The Sort object B encapsulates an ordered collection of field sorting information.
We ask IndexSearcher C to compute scores per hit. Then we call the overloaded
search method that accepts the custom Sort D. We use the useful toString method
E of the Sort class to describe itself, then create PrintStream that accepts UTF-8
encoded output F, and finally use StringUtils G from Apache Commons Lang for
nice columnar output formatting. Later you’ll see a reason to look at the query expla-
nation. For now, it’s commented out H.

 Now that you’ve seen how displayResults works, listing 5.2 shows how we invoke
it to print the results as seen in the rest of this section.

public static void main(String[] args) throws Exception {
 Query allBooks = new MatchAllDocsQuery();

 QueryParser parser = new QueryParser(Version.LUCENE_30,
 "contents",
 new StandardAnalyzer(
 Version.LUCENE_30));
 BooleanQuery query = new BooleanQuery();
 query.add(allBooks, BooleanClause.Occur.SHOULD);
 query.add(parser.parse("java OR action"),
 BooleanClause.Occur.SHOULD);

 Directory directory = TestUtil.getBookIndexDirectory();
 SortingExample example = new SortingExample(directory);

 example.displayResults(query, Sort.RELEVANCE);

 example.displayResults(query, Sort.INDEXORDER);

 example.displayResults(query,
 new Sort(new SortField("category", SortField.STRING)));

 example.displayResults(query,

Listing 5.2 Show results when sorting by different fields

F

G

H

Create
test
query

B

Create
example
runner

C

 new Sort(new SortField("pubmonth", SortField.INT, true)));

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

158 CHAPTER 5 Advanced search techniques

 example.displayResults(query,
 new Sort(new SortField("category", SortField.STRING),
 SortField.FIELD_SCORE,
 new SortField("pubmonth", SortField.INT, true)
));

 example.displayResults(query,
 new Sort(new SortField[] {SortField.FIELD_SCORE,
 new SortField("category", SortField.STRING)}));
 directory.close();
}

The sorting example uses an unusual query B. This query was designed to match all
results, and also to assign higher scores to some hits than others, so that we have some
diversity when sorting by relevance. Next, the example runner is constructed from the
sample book index included with this book’s source code C.

 Now that you’ve seen how to use sorting, let’s explore ways search results can be
sorted. We’ll step through each of the invocations of displayResults from listing 5.2.

5.2.2 Sorting by relevance

Lucene sorts by decreasing relevance, also called the score, by default. Sorting by
score works by either passing null as the Sort object or using the default sort behavior.
Each of these variants returns results in the default score order. Sort.RELEVANCE is
equivalent to new Sort():

example.displayResults(query, Sort.RELEVANCE);
example.displayResults(query, new Sort());

There’s additional overhead involved in using a Sort object, though, so stick to using
search(Query, int) if you simply want to sort by relevance. As shown in listing 5.2,
this is how we sort by relevance:

example.displayResults(allBooks, Sort.RELEVANCE);

And here’s the corresponding output (notice the decreasing score column):

Results for: *:* (contents:java contents:action) sorted by <score>
Title pubmonth id score
Lucene in Action, Second E... 201005 7 1.052735
 /technology/computers/programming
Ant in Action 200707 9 1.052735
 /technology/computers/programming
Tapestry in Action 200403 10 0.447534
 /technology/computers/programming
JUnit in Action, Second Ed... 201005 11 0.429442
 /technology/computers/programming
Tao Te Ching 道德經 200609 0 0.151398
 /philosophy/eastern
Lipitor Thief of Memory 200611 1 0.151398
 /health
Imperial Secrets of Health... 199903 2 0.151398
 /health/alternative/chinese

Nudge: Improving Decisions... 200804 3 0.151398

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

159Sorting search results

 /health
Gödel, Escher, Bach: an Et... 199905 4 0.151398
 /technology/computers/ai
Extreme Programming Explained 200411 5 0.151398
 /technology/computers/programming/methodology
Mindstorms: Children, Comp... 199307 6 0.151398
 /technology/computers/programming/education
The Pragmatic Programmer 199910 8 0.151398
 /technology/computers/programming
A Modern Art of Education 200403 12 0.151398
 /education/pedagogy

The output of Sort’s toString() shows <score>, reflecting that we’re sorting by rele-
vance score, in descending order. Notice how many of the hits have identical scores,
but within blocks of identical scores the sort is by document ID ascending. Lucene
internally always adds an implicit final sort, by document ID, to consistently break any
ties in the sort order that you specified.

5.2.3 Sorting by index order

If the order in which the documents were indexed is relevant, you can use
Sort.INDEXORDER:

example.displayResults(query, Sort.INDEXORDER);

This results in the following output. Note the increasing document ID column:

Results for: *:* (contents:java contents:action) sorted by <doc>
Title pubmonth id score
Tao Te Ching 道德經 200609 0 0.151398
 /philosophy/eastern
Lipitor Thief of Memory 200611 1 0.151398
 /health
Imperial Secrets of Health... 199903 2 0.151398
 /health/alternative/chinese
Nudge: Improving Decisions... 200804 3 0.151398
 /health
Gödel, Escher, Bach: an Et... 199905 4 0.151398
 /technology/computers/ai
Extreme Programming Explained 200411 5 0.151398
 /technology/computers/programming/methodology
Mindstorms: Children, Comp... 199307 6 0.151398
 /technology/computers/programming/education
Lucene in Action, Second E... 201005 7 1.052735
 /technology/computers/programming
The Pragmatic Programmer 199910 8 0.151398
 /technology/computers/programming
Ant in Action 200707 9 1.052735
 /technology/computers/programming
Tapestry in Action 200403 10 0.447534
 /technology/computers/programming
JUnit in Action, Second Ed... 201005 11 0.429442
 /technology/computers/programming
A Modern Art of Education 200403 12 0.151398

 /education/pedagogy

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

160 CHAPTER 5 Advanced search techniques

Document order may be interesting for an index that you build up once and never
change. But if you need to reindex documents, document order typically won’t work
because newly indexed documents receive new document IDs and will be sorted last.
In our case, index order is unspecified.

 So far we’ve only sorted by score, which was already happening without using the
sorting facility, and document order, which is probably only marginally useful at best.
Sorting by one of our own fields is what we’re after.

5.2.4 Sorting by a field

Sorting by a textual field first requires that the field was indexed as a single token, as
described in section 2.4.6. Typically this means using Field.Index.NOT_ANALYZED or
Field.Index.NOT_ANALYZED_NO_NORMS. Separately, you can choose whether or not to
store the field. In our book test index, the category field was indexed with
Field.Index.NOT_ANALYZED and Field.Store.YES, allowing it to be used for sorting.
NumericField instances are automatically indexed properly for sorting. To sort by a
field, you must create a new Sort object, providing the field name:

example.displayResults(query,
 new Sort(new SortField("category", SortField.STRING)));

Here’s the result when sorting by category. Note that the results are sorted by our cat-
egory field in increasing alphabetical order:

Results for: *:* (contents:java contents:action)

➥ sorted by <string: "category">
Title pubmonth id score
A Modern Art of Education 200403 12 0.151398
 /education/pedagogy
Lipitor Thief of Memory 200611 1 0.151398
 /health
Nudge: Improving Decisions... 200804 3 0.151398
 /health
Imperial Secrets of Health... 199903 2 0.151398
 /health/alternative/chinese
Tao Te Ching 道德經 200609 0 0.151398
 /philosophy/eastern
Gödel, Escher, Bach: an Et... 199905 4 0.151398
 /technology/computers/ai
Lucene in Action, Second E... 201005 7 1.052735
 /technology/computers/programming
The Pragmatic Programmer 199910 8 0.151398
 /technology/computers/programming
Ant in Action 200707 9 1.052735
 /technology/computers/programming
Tapestry in Action 200403 10 0.447534
 /technology/computers/programming
JUnit in Action, Second Ed... 201005 11 0.429442
 /technology/computers/programming
Mindstorms: Children, Comp... 199307 6 0.151398
 /technology/computers/programming/education
Extreme Programming Explained 200411 5 0.151398

 /technology/computers/programming/methodology

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

161Sorting search results

5.2.5 Reversing sort order

The default sort direction for sort fields (including relevance and document ID) is nat-
ural ordering. Natural order is descending for relevance but increasing for all other
fields. The natural order can be reversed per Sort object by specifying true for the sec-
ond argument. For example, here we list books with the newest publications first:

example.displayResults(allBooks,
 new Sort(new SortField("pubmonth", SortField.INT, true)));

In our book test index, the pubmonth field is indexed as NumericField, where the
year and month are combined as an integer. For example, 201005 is indexed as inte-
ger 201,005. Note that pubmonth is now sorted in descending order:

Results for: *:* (contents:java contents:action)

➥ sorted by <int: "pubmonth">!
Title pubmonth id score
Lucene in Action, Second E... 201005 7 1.052735
 /technology/computers/programming
JUnit in Action, Second Ed... 201005 11 0.429442
 /technology/computers/programming
Nudge: Improving Decisions... 200804 3 0.151398
 /health
Ant in Action 200707 9 1.052735
 /technology/computers/programming
Lipitor Thief of Memory 200611 1 0.151398
 /health
Tao Te Ching 道德經 200609 0 0.151398
 /philosophy/eastern
Extreme Programming Explained 200411 5 0.151398
 /technology/computers/programming/methodology
Tapestry in Action 200403 10 0.447534
 /technology/computers/programming
A Modern Art of Education 200403 12 0.151398
 /education/pedagogy
The Pragmatic Programmer 199910 8 0.151398
 /technology/computers/programming
Gödel, Escher, Bach: an Et... 199905 4 0.151398
 /technology/computers/ai
Imperial Secrets of Health... 199903 2 0.151398
 /health/alternative/chinese
Mindstorms: Children, Comp... 199307 6 0.151398
 /technology/computers/programming/education

The exclamation point in sorted by "pubmonth"! indicates that the pubmonth field
is being sorted in reverse natural order (descending publication months, with newest
first). Note that the two books with the same publication month are then sorted in
document ID order due to Lucene’s internal tie break by document ID.

5.2.6 Sorting by multiple fields

Sorting by multiple fields is important whenever your primary sort leaves ambiguity
because there are equal values. Implicitly we’ve been sorting by multiple fields,

because Lucene automatically breaks ties by document ID. You can control the sort

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

162 CHAPTER 5 Advanced search techniques

fields explicitly by creating Sort with multiple SortFields. This example uses the
category field as a primary alphabetic sort, with results within category sorted by
score; finally, books with equal score within a category are sorted by decreasing pub-
lication month:

example.displayResults(query,
 new Sort(new SortField("category", SortField.STRING),
 SortField.FIELD_SCORE,
 new SortField("pubmonth", SortField.INT, true)
));

You can see in the results that we first sort by category, and second by score. For
example, the category /technology/computers/programming has multiple books
within it that are sorted first by decreasing relevance and second by decreasing publi-
cation month:

Results for: *:* (contents:java contents:action)

➥ sorted by <string: "category">,<score>,<int: "pubmonth">!
Title pubmonth id score
A Modern Art of Education 200403 12 0.151398
 /education/pedagogy
Nudge: Improving Decisions... 200804 3 0.151398
 /health
Lipitor Thief of Memory 200611 1 0.151398
 /health
Imperial Secrets of Health... 199903 2 0.151398
 /health/alternative/chinese
Tao Te Ching 道德經 200609 0 0.151398
 /philosophy/eastern
Gödel, Escher, Bach: an Et... 199905 4 0.151398
 /technology/computers/ai
Lucene in Action, Second E... 201005 7 1.052735
 /technology/computers/programming
Ant in Action 200707 9 1.052735
 /technology/computers/programming
Tapestry in Action 200403 10 0.447534
 /technology/computers/programming
JUnit in Action, Second Ed... 201005 11 0.429442
 /technology/computers/programming
The Pragmatic Programmer 199910 8 0.151398
 /technology/computers/programming
Mindstorms: Children, Comp... 199307 6 0.151398
 /technology/computers/programming/education
Extreme Programming Explained 200411 5 0.151398
 /technology/computers/programming/methodology

The Sort instance internally keeps an array of SortFields, but only in this example
have you seen it explicitly; the other examples used shortcuts to creating the Sort-
Field array. A SortField holds the field name, a field type, and the reverse order flag.
SortField contains constants for several field types, including SCORE, DOC, STRING,
BYTE, SHORT, INT, LONG, FLOAT, and DOUBLE. SCORE and DOC are special types for sorting
on relevance and document ID.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

163Using MultiPhraseQuery

5.2.7 Selecting a sorting field type

By search time, the fields that can be sorted on and their corresponding types are
already set. Indexing time is when the decision about sorting capabilities should be
made, but custom sorting implementations can do so at search time, as you’ll see in
section 6.1. Section 2.4.6 discusses index-time sorting design. By indexing using a
NumericField, you can base sorting on numeric values. Sorting by numeric values
consumes less memory than by string values; section 5.1 discusses performance
issues further.

 When sorting by String values, you may need to specify your own locale, which we
cover next.

5.2.8 Using a nondefault locale for sorting

When you’re sorting on a SortField.STRING type, order is determined under the cov-
ers using String.compareTo by default. But if you need a different collation order,
SortField lets you specify a Locale. A Collator instance is obtained for the provided
locale using Collator.getInstance(Locale), and the Collator.compare method
then determines the sort order. There are two overloaded SortField constructors for
use when you need to specify locale:

public SortField (String field, Locale locale)
public SortField (String field, Locale locale, boolean reverse)

Both constructors imply the SortField.STRING type because the locale applies only to
string-type sorting, not to numerics.

 In this section, we’ve shown you how to precisely specify how Lucene should sort
the search results. You’ve learned how to sort by relevance, which is Lucene’s default,
or by index order, as well as by field value. You know how to reverse the sort order and
sort by multiple criteria. Often Lucene’s default relevance sort is best, but for applica-
tions that need precise control, Lucene gives it to you. We’ll now see an interesting
alternative for performing phrase searches.

5.3 Using MultiPhraseQuery
The built-in MultiPhraseQuery is definitely a niche query, but it’s potentially useful.
MultiPhraseQuery is just like PhraseQuery except that it allows multiple terms per
position. You could achieve the same logical effect, albeit at a high performance cost,
by enumerating all possible phrase combinations and using a BooleanQuery to “OR”
them together.

 For example, suppose we want to find all documents about speedy foxes, with
quick or fast followed by fox. One approach is to do a "quick fox" OR "fast fox"
query. Another option is to use MultiPhraseQuery. In our example, shown in listing
5.3, two documents are indexed with similar phrases. One document uses "the quick
brown fox jumped over the lazy dog" and the other uses "the fast fox hopped
over the hound", as shown in our test setUp() method.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

164 CHAPTER 5 Advanced search techniques

public class MultiPhraseQueryTest extends TestCase {
 private IndexSearcher searcher;

 protected void setUp() throws Exception {
 Directory directory = new RAMDirectory();
 IndexWriter writer = new IndexWriter(directory,
 new WhitespaceAnalyzer(),

 IndexWriter.MaxFieldLength.UNLIMITED);
 Document doc1 = new Document();
 doc1.add(new Field("field",
 "the quick brown fox jumped over the lazy dog",
 Field.Store.YES, Field.Index.ANALYZED));
 writer.addDocument(doc1);
 Document doc2 = new Document();
 doc2.add(new Field("field",
 "the fast fox hopped over the hound",
 Field.Store.YES, Field.Index.ANALYZED));
 writer.addDocument(doc2);
 writer.close();

 searcher = new IndexSearcher(directory);
 }
}

The test method in listing 5.4 demonstrates the mechanics of using the MultiPhrase-
Query API by adding one or more terms to a MultiPhraseQuery instance in order.

public void testBasic() throws Exception {
 MultiPhraseQuery query = new MultiPhraseQuery();
 query.add(new Term[] {
 new Term("field", "quick"),
 new Term("field", "fast")
 });
 query.add(new Term("field", "fox"));
 System.out.println(query);

 TopDocs hits = searcher.search(query, 10);
 assertEquals("fast fox match", 1, hits.totalHits);

 query.setSlop(1);
 hits = searcher.search(query, 10);
 assertEquals("both match", 2, hits.totalHits);
}

Just as with PhraseQuery, the slop factor is supported. In testBasic(), the slop is used
to match "quick brown fox" in the second search; with the default slop of 0, it
doesn’t match. For completeness, listing 5.5 shows a test illustrating the described
BooleanQuery, with a slop set for "quick fox".

Listing 5.3 Setting up an index to test MultiPhraseQuery

Listing 5.4 Using MultiPhraseQuery to match more than one term at each position

Allow either term,
first

Allow single term,
second
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

165Using MultiPhraseQuery

public void testAgainstOR() throws Exception {
 PhraseQuery quickFox = new PhraseQuery();
 quickFox.setSlop(1);
 quickFox.add(new Term("field", "quick"));
 quickFox.add(new Term("field", "fox"));

 PhraseQuery fastFox = new PhraseQuery();
 fastFox.add(new Term("field", "fast"));
 fastFox.add(new Term("field", "fox"));

 BooleanQuery query = new BooleanQuery();
 query.add(quickFox, BooleanClause.Occur.SHOULD);
 query.add(fastFox, BooleanClause.Occur.SHOULD);
 TopDocs hits = searcher.search(query, 10);
 assertEquals(2, hits.totalHits);
}

One difference between using MultiPhraseQuery and using PhraseQuery’s Boolean-
Query is that the slop factor is applied globally with MultiPhraseQuery—it’s applied
on a per-phrase basis with PhraseQuery.

 Of course, hard-coding the terms wouldn’t be realistic, generally speaking. One
possible use of a MultiPhraseQuery would be to inject synonyms dynamically into
phrase positions, allowing for less precise matching. For example, you could tie in the
WordNet-based code (see section 9.3 for more on WordNet and Lucene). As seen in
listing 5.6, QueryParser produces a MultiPhraseQuery for search terms surrounded
in double quotes when the analyzer it’s using returns positionIncrement 0 for any of
the tokens within the phrase.

public void testQueryParser() throws Exception {
 SynonymEngine engine = new SynonymEngine() {
 public String[] getSynonyms(String s) {
 if (s.equals("quick"))
 return new String[] {"fast"};
 else
 return null;
 }
 };

 Query q = new QueryParser(Version.LUCENE_30,
 "field",
 new SynonymAnalyzer(engine))
 .parse("\"quick fox\"");

 assertEquals("analyzed",
 "field:\"(quick fast) fox\"", q.toString());
 assertTrue("parsed as MultiPhraseQuery", q instanceof MultiPhraseQuery);
}

Next we’ll visit MultiFieldQueryParser, which we’ll use for querying on multiple

Listing 5.5 Mimicking MultiPhraseQuery using BooleanQuery

Listing 5.6 Using QueryParser to produce a MultiPhraseQuery
fields.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

166 CHAPTER 5 Advanced search techniques

5.4 Querying on multiple fields at once
In our book data, several fields were indexed to separately hold the title, category,
author, subject, and so forth. But when searching a user would typically like to search
across all fields at once. You could require users to spell out each field name, but
except for specialized cases, that’s requiring far too much work on your users’ part.
Users much prefer to search all fields, by default, unless a specific field is requested.
We cover three possible approaches here.

 The first approach is to create a multivalued catchall field to index the text from
all fields, as we’ve done for the contents field in our book test index. Be sure to
increase the position increment gap across field values, as described in section 4.7.1,
to avoid incorrectly matching across two field values. You then perform all searching
against the catchall field. This approach has some downsides: you can’t directly con-
trol per-field boosting1, and disk space is wasted, assuming you also index each field
separately.

 The second approach is to use MultiFieldQueryParser, which subclasses Query-
Parser. Under the covers, it instantiates a QueryParser, parses the query expression for
each field, then combines the resulting queries using a BooleanQuery. The default oper-
ator OR is used in the simplest parse method when adding the clauses to the Boolean-
Query. For finer control, the operator can be specified for each field as required
(BooleanClause.Occur.MUST), prohibited (BooleanClause.Occur.MUST_NOT), or nor-
mal (BooleanClause.Occur.SHOULD), using the constants from BooleanClause.

 Listing 5.7 shows this heavier QueryParser variant in use. The testDefault-
Operator() method first parses the query "development" using both the title and sub-
ject fields. The test shows that documents match based on either of those fields. The
second test, testSpecifiedOperator(), sets the parsing to mandate that documents
must match the expression in all specified fields and searches using the query
"lucene".

public void testDefaultOperator() throws Exception {
 Query query = new MultiFieldQueryParser(Version.LUCENE_30,
 new String[]
 {"title", "subject"},
 new SimpleAnalyzer()).parse("development");

 Directory dir = TestUtil.getBookIndexDirectory();
 IndexSearcher searcher = new IndexSearcher(
 dir,
 true);
 TopDocs hits = searcher.search(query, 10);

 assertTrue(TestUtil.hitsIncludeTitle(
 searcher,

1 Using payloads, an advanced topic covered in section 6.5, it is possible to retain per-field boost even within a

Listing 5.7 MultiFieldQueryParser, which searches on multiple fields at once
catchall field.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

167Querying on multiple fields at once

 hits,
 "Ant in Action"));

 assertTrue(TestUtil.hitsIncludeTitle(
 searcher,
 hits,
 "Extreme Programming Explained"));
 searcher.close();
 dir.close();
}

public void testSpecifiedOperator() throws Exception {
 Query query = MultiFieldQueryParser.parse(Version.LUCENE_30,
 "lucene",
 new String[]{"title", "subject"},
 new BooleanClause.Occur[]{BooleanClause.Occur.MUST,
 BooleanClause.Occur.MUST},
 new SimpleAnalyzer());

 Directory dir = TestUtil.getBookIndexDirectory();
 IndexSearcher searcher = new IndexSearcher(
 dir,
 true);
 TopDocs hits = searcher.search(query, 10);

 assertTrue(TestUtil.hitsIncludeTitle(
 searcher,
 hits,
 "Lucene in Action, Second Edition "));
 assertEquals("one and only one", 1, hits.scoreDocs.length);
 searcher.close();
 dir.close();
}

MultiFieldQueryParser has some limitations due to the way it uses QueryParser. You
can’t control any of the settings that QueryParser supports, and you’re stuck with the
defaults, such as default locale date parsing and zero-slop default phrase queries.

 If you choose to use MultiFieldQueryParser, be sure your queries are fabricated
appropriately using the QueryParser and Analyzer diagnostic techniques shown in
chapters 3 and 4. Plenty of odd interactions with analysis occur using QueryParser,
and these are compounded when using MultiFieldQueryParser. An important down-
side of MultiFieldQueryParser is that it produces more complex queries, as Lucene
must separately test each query term against every field, which will run slower than
using a catchall field.

 The third approach for automatically querying across multiple fields is the
advanced DisjunctionMaxQuery, which wraps one or more arbitrary queries, OR’ing
together the documents they match. You could do this with BooleanQuery, as Multi-
FieldQueryParser does, but what makes DisjunctionMaxQuery interesting is how it
scores each hit: when a document matches more than one query, it computes the
score as the maximum score across all the queries that matched, compared to
BooleanQuery, which sums the scores of all matching queries. This can produce better

Contains development
in subject field
end-user relevance.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

168 CHAPTER 5 Advanced search techniques

 DisjunctionMaxQuery also includes an optional tie-breaker multiplier so that, all
things being equal, a document matching more queries will receive a higher score
than a document matching fewer queries. To use DisjunctionMaxQuery to query
across multiple fields, you create a new field-specific Query, for each field you’d like to
include, and then use DisjunctionMaxQuery’s add method to include that Query.

 Which approach makes sense for your application? The answer is “It depends,”
because there are important trade-offs. The catchall field is a simple index time–only
solution but results in simplistic scoring and may waste disk space by indexing the
same text twice. Yet it likely yields the best searching performance. MultiFieldQuery-
Parser produces BooleanQuerys that sum the scores (whereas DisjunctionMaxQuery
takes the maximum score) for all queries that match each document, then properly
implements per-field boosting. You should test all three approaches, taking into
account both search performance and search relevance, to find the best.

 We’ll now move on to span queries, advanced queries that allow you to match
based on positional constraints.

5.5 Span queries
Lucene includes a whole family of queries based on SpanQuery, loosely mirroring the
normal Lucene Query classes. A span in this context is a starting and ending token
position in a field. Recall from section 4.2.1 that tokens emitted during the analysis
process include a position from the previous token. This position information, in con-
junction with the new SpanQuery subclasses, allows for even more query discrimina-
tion and sophistication, such as all documents where “President Obama” is near
“health care reform.”

 Using the query types we’ve discussed thus far, it isn’t possible to formulate such a
position-aware query. You could get close with something like "president obama" AND
"health care reform", but these phrases may be too distant from one another within
the document to be relevant for our searching purposes. In typical applications, Span-
Querys are used to provide richer, more expressive position-aware functionality than
PhraseQuery. They’re also commonly used in conjunction with payloads, covered in
section 6.5, to enable access to the payloads created during indexing.

 While searching, span queries track more than the documents that match: the
individual spans, perhaps more than one per field, are also tracked. Contrasting with
TermQuery, which simply matches documents, SpanTermQuery matches exactly the
same documents but also keeps track of the positions of every term occurrence that
matches. Generally this is more compute-intensive. For example, when TermQuery
finds a document containing its term, it records that document as a match and imme-
diately moves on, whereas SpanTermQuery must enumerate all the occurrences of that
term within the document.

 There are six subclasses of the base SpanQuery, shown in table 5.1. We’ll discuss
these SpanQuery types with a simple example, shown in listing 5.8: we’ll index two doc-
uments, one with the phrase “the quick brown fox jumps over the lazy dog” and the

other with the similar phrase “the quick red fox jumps over the sleepy cat.” We’ll

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

169Span queries

create a separate SpanTermQuery for each of the terms in these documents, as well as
three helper assert methods. Finally, we’ll create the different types of span queries
to illustrate their functions.

public class SpanQueryTest extends TestCase {
 private RAMDirectory directory;
 private IndexSearcher searcher;
 private IndexReader reader;

 private SpanTermQuery quick;
 private SpanTermQuery brown;
 private SpanTermQuery red;
 private SpanTermQuery fox;
 private SpanTermQuery lazy;
 private SpanTermQuery sleepy;
 private SpanTermQuery dog;
 private SpanTermQuery cat;
 private Analyzer analyzer;

 protected void setUp() throws Exception {
 directory = new RAMDirectory();

 analyzer = new WhitespaceAnalyzer();
 IndexWriter writer = new IndexWriter(directory,
 analyzer,
 IndexWriter.MaxFieldLength.UNLIMITED);

 Document doc = new Document();
 doc.add(new Field("f",
 "the quick brown fox jumps over the lazy dog",
 Field.Store.YES, Field.Index.ANALYZED));
 writer.addDocument(doc);

 doc = new Document();
 doc.add(new Field("f",

Table 5.1 SpanQuery family

SpanQuery type Description

SpanTermQuery Used in conjunction with the other span query types. On its own, it’s
functionally equivalent to TermQuery.

SpanFirstQuery Matches spans that occur within the first part of a field.

SpanNearQuery Matches spans that occur near one another.

SpanNotQuery Matches spans that don’t overlap one another.

FieldMaskingSpanQuery Wraps another SpanQuery but pretends a different field was
matched. This is useful for doing span matches across fields, which
is otherwise not possible.

SpanOrQuery Aggregates matches of span queries.

Listing 5.8 SpanQuery demonstration infrastructure
 "the quick red fox jumps over the sleepy cat",

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

170 CHAPTER 5 Advanced search techniques

 Field.Store.YES, Field.Index.ANALYZED));
 writer.addDocument(doc);

 writer.close();

 searcher = new IndexSearcher(directory);
 reader = searcher.getIndexReader();

 quick = new SpanTermQuery(new Term("f", "quick"));
 brown = new SpanTermQuery(new Term("f", "brown"));
 red = new SpanTermQuery(new Term("f", "red"));
 fox = new SpanTermQuery(new Term("f", "fox"));
 lazy = new SpanTermQuery(new Term("f", "lazy"));
 sleepy = new SpanTermQuery(new Term("f", "sleepy"));
 dog = new SpanTermQuery(new Term("f", "dog"));
 cat = new SpanTermQuery(new Term("f", "cat"));
 }

 private void assertOnlyBrownFox(Query query) throws Exception {
 TopDocs hits = searcher.search(query, 10);
 assertEquals(1, hits.totalHits);
 assertEquals("wrong doc", 0, hits.scoreDocs[0].doc);
 }

 private void assertBothFoxes(Query query) throws Exception {
 TopDocs hits = searcher.search(query, 10);
 assertEquals(2, hits.totalHits);
 }

 private void assertNoMatches(Query query) throws Exception {
 TopDocs hits = searcher.search(query, 10);
 assertEquals(0, hits.totalHits);
 }
}

With this necessary bit of setup out of the way, we can begin exploring span queries.
First we’ll ground ourselves with SpanTermQuery.

5.5.1 Building block of spanning, SpanTermQuery

Span queries need an initial leverage point, and SpanTermQuery is just that. Internally,
a SpanQuery keeps track of its matches: a series of start/end positions for each match-
ing document. By itself, a SpanTermQuery matches documents just like TermQuery
does, but it also keeps track of position of the same terms that appear within each doc-
ument. Generally you’d never use this query by itself (you’d use TermQuery instead);
you only use it as inputs to the other SpanQuery classes.

 Figure 5.1 illustrates the SpanTermQuery matches for this code:

public void testSpanTermQuery() throws Exception {
 assertOnlyBrownFox(brown);
 dumpSpans(brown);
}

The brown SpanTermQuery was created in setUp() because it will be used in other
tests that follow. We developed a method, dumpSpans, to visualize spans. The dump-

Spans method uses lower-level SpanQuery APIs to navigate the spans; this lower-level

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

171Span queries

API probably isn’t of much interest to you other than for diagnostic purposes, so we
don’t elaborate further. Each SpanQuery subclass sports a useful toString() for diag-
nostic purposes, which dumpSpans uses, as seen in listing 5.9.

private void dumpSpans(SpanQuery query) throws IOException {
 Spans spans = query.getSpans(reader);
 System.out.println(query + ":");
 int numSpans = 0;

 TopDocs hits = searcher.search(query, 10);
 float[] scores = new float[2];
 for (ScoreDoc sd : hits.scoreDocs) {
 scores[sd.doc] = sd.score;
 }

 while (spans.next()) {
 numSpans++;

 int id = spans.doc();
 Document doc = reader.document(id);

 TokenStream stream = analyzer.tokenStream("contents",
 new StringReader(doc.get("f")));
 TermAttribute term = stream.addAttribute(TermAttribute.class);

 StringBuilder buffer = new StringBuilder();
 buffer.append(" ");
 int i = 0;
 while(stream.incrementToken()) {
 if (i == spans.start()) {
 buffer.append("<");
 }
 buffer.append(term.term());
 if (i + 1 == spans.end()) {
 buffer.append(">");
 }
 buffer.append(" ");
 i++;
 }
 buffer.append("(").append(scores[id]).append(") ");
 System.out.println(buffer);
 }

 if (numSpans == 0) {
 System.out.println(" No spans");
 }
 System.out.println();
}

Listing 5.9 dumpSpans method, used to see all spans matched by any SpanQuery

quick brown over lazyjumpsfox thethe dog

Figure 5.1 SpanTermQuery for brown

Step through
each span

Retrieve
document

Reanalyze
text

Step through
all tokens

Print < and >
around span
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

172 CHAPTER 5 Advanced search techniques

The output of dumpSpans(brown) is

f:brown:
 the quick <brown> fox jumps over the lazy dog (0.22097087)

More interesting is the dumpSpans output from a SpanTermQuery for "the":

dumpSpans(new SpanTermQuery(new Term("f", "the")));

f:the:
 <the> quick brown fox jumps over the lazy dog (0.18579213)
 the quick brown fox jumps over <the> lazy dog (0.18579213)
 <the> quick red fox jumps over the sleepy cat (0.18579213)
 the quick red fox jumps over <the> sleepy cat (0.18579213)

Not only were both documents matched, but also each document had two span
matches highlighted by the brackets. The basic SpanTermQuery is used as a building
block of the other SpanQuery types. Let’s see how to match only documents where the
terms of interest occur in the beginning of the field.

5.5.2 Finding spans at the beginning of a field

To query for spans that occur within the first specific number of positions of a field,
use SpanFirstQuery. Figure 5.2 illustrates a SpanFirstQuery.

 This test shows nonmatching and matching queries:

public void testSpanFirstQuery() throws Exception {
 SpanFirstQuery sfq = new SpanFirstQuery(brown, 2);
 assertNoMatches(sfq);

 dumpSpans(sfq);

 sfq = new SpanFirstQuery(brown, 3);
 dumpSpans(sfq);
 assertOnlyBrownFox(sfq);
}

No matches are found in the first query because the range of 2 is too short to find
brown, but the range of 3 is just long enough to cause a match in the second query
(see figure 5.2). Any SpanQuery can be used within a SpanFirstQuery, with matches
for spans that have an ending position in the first specified number (2 and 3 in this
case) of positions. The resulting span matches are the same as the original SpanQuery
spans—in this case, the same dumpSpans() output for brown as you saw in
section 5.5.1.

quick brown over lazyjumpsfox thethe dog

3

Figure 5.2 SpanFirstQuery requires that the positional
match occur near the start of the field
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

173Span queries

5.5.3 Spans near one another

A PhraseQuery (see section 3.4.6) matches documents that have terms near one
another, with a slop factor to allow for intermediate or reversed terms. SpanNearQuery
operates similarly to PhraseQuery, with some important differences. SpanNearQuery
matches spans that are within a certain number of positions from one another, with a
separate flag indicating whether the spans must be in the order specified or can be
reversed. The resulting matching spans span from the start position of the first span
sequentially to the ending position of the last span. An example of a SpanNearQuery
given three SpanTermQuery objects is shown in figure 5.3.

 Using SpanTermQuery objects as the SpanQuerys in a SpanNearQuery is much like
using a PhraseQuery. The SpanNearQuery slop factor is a bit less confusing than the
PhraseQuery slop factor because it doesn’t require at least two additional positions to
account for a reversed span. To reverse a SpanNearQuery, set the inOrder flag (third
argument to the constructor) to false. Listing 5.10 demonstrates a few variations of
SpanNearQuery and shows it in relation to PhraseQuery.

public void testSpanNearQuery() throws Exception {
 SpanQuery[] quick_brown_dog =
 new SpanQuery[]{quick, brown, dog};
 SpanNearQuery snq =
 new SpanNearQuery(quick_brown_dog, 0, true);
 assertNoMatches(snq);
 dumpSpans(snq);

 snq = new SpanNearQuery(quick_brown_dog, 4, true);
 assertNoMatches(snq);
 dumpSpans(snq);

 snq = new SpanNearQuery(quick_brown_dog, 5, true);
 assertOnlyBrownFox(snq);
 dumpSpans(snq);

 // interesting - even a sloppy phrase query would require
 // more slop to match
 snq = new SpanNearQuery(new SpanQuery[]{lazy, fox}, 3, false);
 assertOnlyBrownFox(snq);
 dumpSpans(snq);

Listing 5.10 Finding matches near one another using SpanNearQuery

quick brown over lazyjumpsfox thethe dog

SpanNearQuery

5

Figure 5.3 SpanNearQuery requires positional matches to be close to one another.

B

C

D

E

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

174 CHAPTER 5 Advanced search techniques

 PhraseQuery pq = new PhraseQuery();
 pq.add(new Term("f", "lazy"));
 pq.add(new Term("f", "fox"));
 pq.setSlop(4);
 assertNoMatches(pq);

 pq.setSlop(5);
 assertOnlyBrownFox(pq);
}

Querying for these three terms in successive positions doesn’t match either docu-
ment.

Using the same terms with a slop of 4 positions still doesn’t result in a match.

With a slop of 5, the SpanNearQuery has a match.

The nested SpanTermQuery objects are in reverse order, so the inOrder flag is set to
false. A slop of only 3 is needed for a match.

Here we use a comparable PhraseQuery, although a slop of 4 still doesn’t match.

A slop of 5 is needed for a PhraseQuery to match.

We’ve only shown SpanNearQuery with nested SpanTermQuerys, but SpanNearQuery
allows for any SpanQuery type. A more sophisticated SpanNearQuery example is dem-
onstrated later in listing 5.11 in conjunction with SpanOrQuery. Next we visit Span-
NotQuery.

5.5.4 Excluding span overlap from matches

The SpanNotQuery excludes matches where one SpanQuery overlaps another. The fol-
lowing code demonstrates:

public void testSpanNotQuery() throws Exception {
 SpanNearQuery quick_fox =
 new SpanNearQuery(new SpanQuery[]{quick, fox}, 1, true);
 assertBothFoxes(quick_fox);
 dumpSpans(quick_fox);

 SpanNotQuery quick_fox_dog = new SpanNotQuery(quick_fox, dog);
 assertBothFoxes(quick_fox_dog);
 dumpSpans(quick_fox_dog);

 SpanNotQuery no_quick_red_fox =
 new SpanNotQuery(quick_fox, red);
 assertOnlyBrownFox(no_quick_red_fox);
 dumpSpans(no_quick_red_fox);
}

The first argument to the SpanNotQuery constructor is a span to include, and the sec-
ond argument is a span to exclude. We’ve strategically added dumpSpans to clarify
what’s going on. Here’s the output with the Java query annotated above each:

SpanNearQuery quick_fox =
 new SpanNearQuery(new SpanQuery[]{quick, fox}, 1, true);
spanNear([f:quick, f:fox], 1, true):
 the <quick brown fox> jumps over the lazy dog (0.18579213)

F

G

 B

 C

 D

 E

 F

 G
 the <quick red fox> jumps over the sleepy cat (0.18579213)

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

175Span queries

SpanNotQuery quick_fox_dog = new SpanNotQuery(quick_fox, dog);
spanNot(spanNear([f:quick, f:fox], 1, true), f:dog):
 the <quick brown fox> jumps over the lazy dog (0.18579213)
 the <quick red fox> jumps over the sleepy cat (0.18579213)

SpanNotQuery no_quick_red_fox =
 new SpanNotQuery(quick_fox, red);
spanNot(spanNear([f:quick, f:fox], 1, true), f:red):
 the <quick brown fox> jumps over the lazy dog (0.18579213)

The SpanNearQuery matched both documents because both have quick and fox within
one position of each other. The first SpanNotQuery, quick_fox_dog, continues to
match both documents because there’s no overlap with the quick_fox span and dog.
The second SpanNotQuery, no_quick_red_fox, excludes the second document
because red overlaps with the quick_fox span. Notice that the resulting span matches
are the original included span. The excluded span is only used to determine if there’s
an overlap and doesn’t factor into the resulting span matches.

 Our final query is useful for joining together multiple SpanQuerys.

5.5.5 SpanOrQuery

Finally let’s talk about SpanOrQuery, which aggregates an array of SpanQuerys. Our
example query, in English, is all documents that have “quick fox” near “lazy dog” or
that have “quick fox” near “sleepy cat.” The first clause of this query is shown in
figure 5.4. This single clause is SpanNearQuery nesting two SpanNearQuerys, and each
consists of two SpanTermQuerys.

 Our test case becomes a bit lengthier due to all the sub-SpanQuerys being built on
(see listing 5.11). Using dumpSpans, we analyze the code in more detail.

public void testSpanOrQuery() throws Exception {
 SpanNearQuery quick_fox =
 new SpanNearQuery(new SpanQuery[]{quick, fox}, 1, true);

 SpanNearQuery lazy_dog =
 new SpanNearQuery(new SpanQuery[]{lazy, dog}, 0, true);

 SpanNearQuery sleepy_cat =
 new SpanNearQuery(new SpanQuery[]{sleepy, cat}, 0, true);

 SpanNearQuery qf_near_ld =

Listing 5.11 Taking the union of two span queries using SpanOrQuery

quick brown over lazyjumpsfox thethe dog

SpanNearQuery SpanNearQuery

SpanNearQuery

3

Figure 5.4 One clause of the SpanOrQuery
 new SpanNearQuery(

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

176 CHAPTER 5 Advanced search techniques

 new SpanQuery[]{quick_fox, lazy_dog}, 3, true);
 assertOnlyBrownFox(qf_near_ld);
 dumpSpans(qf_near_ld);

 SpanNearQuery qf_near_sc =
 new SpanNearQuery(
 new SpanQuery[]{quick_fox, sleepy_cat}, 3, true);
 dumpSpans(qf_near_sc);

 SpanOrQuery or = new SpanOrQuery(
 new SpanQuery[]{qf_near_ld, qf_near_sc});
 assertBothFoxes(or);
 dumpSpans(or);
}

We’ve used our handy dumpSpans a few times to allow us to follow the progression as
the final OR query is built. Here’s the output, followed by our analysis of it:

SpanNearQuery qf_near_ld =
 new SpanNearQuery(
 new SpanQuery[]{quick_fox, lazy_dog}, 3, true);
spanNear([spanNear([f:quick, f:fox], 1, true),
 spanNear([f:lazy, f:dog], 0, true)], 3, true):
 the <quick brown fox jumps over the lazy dog> (0.3321948)

SpanNearQuery qf_near_sc =
 new SpanNearQuery(
 new SpanQuery[]{quick_fox, sleepy_cat}, 3, true);
spanNear([spanNear([f:quick, f:fox], 1, true),
 spanNear([f:sleepy, f:cat], 0, true)], 3, true):
 the <quick red fox jumps over the sleepy cat> (0.3321948)

SpanOrQuery or = new SpanOrQuery(
 new SpanQuery[]{qf_near_ld, qf_near_sc});
spanOr([spanNear([spanNear([f:quick, f:fox], 1, true),
 spanNear([f:lazy, f:dog], 0, true)], 3, true),
 spanNear([spanNear([f:quick, f:fox], 1, true),
 spanNear([f:sleepy, f:cat], 0, true)], 3, true)]):
 the <quick brown fox jumps over the lazy dog> (0.6643896)
 the <quick red fox jumps over the sleepy cat> (0.6643896)

Two SpanNearQuerys are created to match “quick fox” near “lazy dog” (qf_near_ld)
and “quick fox” near “sleepy cat” (qf_near_sc) using nested SpanNearQuerys made
up of SpanTermQuerys at the lowest level. Finally, these two SpanNearQuery instances
are combined within a SpanOrQuery, which aggregates all matching spans.

 Both SpanNearQuery and SpanOrQuery accept any other SpanQuerys, so you can
create arbitrarily nested queries. For example, imagine you’d like to perform a
“phrase within a phrase” query, such as a subphrase query "Bob Dylan", with the slop
factor 0 for an exact match, and an outer phrase query matching this phrase with the
word sings, with a nonzero slop factor. Such a query isn’t possible with PhraseQuery,
because it only accepts terms. But you can easily create this query by embedding one
SpanNearQuery within another.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

177Filtering a search

5.5.6 SpanQuery and QueryParser

QueryParser doesn’t currently support any of the SpanQuery types, but the surround
QueryParser in Lucene’s contrib modules does. We cover the surround parser in sec-
tion 9.6.

 Recall from section 3.4.6 that PhraseQuery is impartial to term order when
enough slop is specified. Interestingly, you can easily extend QueryParser to use a
SpanNearQuery with SpanTermQuery clauses instead, and force phrase queries to only
match fields with the terms in the same order as specified. We demonstrate this tech-
nique in section 6.3.5.

 We’re now done with the advanced span query family. These are definitely
advanced queries that give precise control over how the position of term matches
within a document is taken into account. We’ll now visit another advanced functional-
ity: filters.

5.6 Filtering a search
Filtering is a mechanism of narrowing the search space, allowing only a subset of the
documents to be considered as possible hits. They can be used to implement search-
within-search features to successively search within a previous set of results or to con-
strain the document search space. A security filter allows users to only see search
results of documents they “own,” even if their query technically matches other docu-
ments that are off limits; we provide an example of a security filter in section 5.6.7.

 You can filter any Lucene search using the overloaded search methods that accept
a Filter instance. There are numerous built-in filter implementations:

TermRangeFilter matches only documents containing terms within a specified
range of terms. It’s exactly the same as TermRangeQuery, without scoring.
NumericRangeFilter matches only documents containing numeric values
within a specified range for a specified field. It’s exactly the same as Numeric-
RangeQuery, without scoring.
FieldCacheRangeFilter matches documents in a certain term or numeric
range, using the FieldCache (see section 5.1) for better performance.
FieldCacheTermsFilter matches documents containing specific terms, using
the field cache for better performance.
QueryWrapperFilter turns any Query instance into a Filter instance, by using
only the matching documents from the Query as the filtered space, discarding
the document scores.
SpanQueryFilter turns a SpanQuery into a SpanFilter, which subclasses the
base Filter class and adds an additional method, providing access to the posi-
tional spans for each matching document. This is just like QueryWrapperFilter
but is applied to SpanQuery classes instead.
PrefixFilter matches only documents containing terms in a specific field with
a specific prefix. It’s exactly the same as PrefixQuery, without scoring.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

178 CHAPTER 5 Advanced search techniques

CachingWrapperFilter is a decorator over another filter, caching its results to
increase performance when used again.
CachingSpanFilter does the same thing as CachingWrapperFilter, but it
caches a SpanFilter.
FilteredDocIdSet allows you to filter a filter, one document at a time. In order
to use it, you must first subclass it and define the match method in your subclass.

Before you get concerned about mentions of caching results, rest assured that it’s
done with a tiny data structure (a DocIdBitSet) where each bit position represents a
document.

 Consider also the alternative to using a filter: aggregating required clauses in a
BooleanQuery. In this section, we’ll discuss each of the built-in filters as well as the
BooleanQuery alternative, starting with TermRangeFilter.

5.6.1 TermRangeFilter

TermRangeFilter filters on a range of terms in a specific field, just like TermRange-
Query minus the scoring. If the field is numeric, you should use NumericRangeFilter
(described next) instead. TermRangeFilter applies to textual fields.

 Let’s look at title filtering as an example, shown in listing 5.12. We use the Match-
AllDocsQuery as our query, and then apply a title filter to it.

public class FilterTest extends TestCase {
 private Query allBooks;
 private IndexSearcher searcher;

 protected void setUp() throws Exception {
 allBooks = new MatchAllDocsQuery();
 dir = TestUtil.getBookIndexDirectory();
 searcher = new IndexSearcher(dir);
 }

 protected void tearDown() throws Exception {
 searcher.close();
 dir.close();
 }

 public void testTermRangeFilter() throws Exception {
 Filter filter = new TermRangeFilter("title2", "d", "j", true, true);
 assertEquals(3, TestUtil.hitCount(searcher, allBooks, filter));
 }
}

The setUp() method B establishes a baseline count of all the books in our index,
allowing for comparisons when we use an all-inclusive date filter. The first parameter
to both of the TermRangeFilter constructors is the name of the field in the index. In
our sample data this field name is title2, which is the title of each book indexed lower-
cased using Field.NOT_ANALYZED_NO_NORMS. The two final Boolean arguments to the
constructor for TermRangeFilter, includeLower, and includeUpper determine

Listing 5.12 Using TermRangeFilter to filter by title

B

whether the lower and upper terms should be included or excluded from the filter.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

179Filtering a search

 Ranges can also be optionally open-ended.
OPEN-ENDED RANGE FILTERING

TermRangeFilter also supports open-ended ranges. To filter on ranges with one end
of the range specified and the other end open, just pass null for whichever end
should be open:

filter = new TermRangeFilter("modified", null, jan31, false, true);
filter = new TermRangeFilter("modified", jan1, null, true, false);

TermRangeFilter provides two static convenience methods to achieve the same thing:

filter = TermRangeFilter.Less("modified", jan31);
filter = TermRangeFilter.More("modified", jan1);

5.6.2 NumericRangeFilter

NumericRangeFilter filters by numeric value. This is just like NumericRangeQuery,
minus the constant scoring:

public void testNumericDateFilter() throws Exception {
 Filter filter = NumericRangeFilter.newIntRange("pubmonth",
 201001,
 201006,
 true,
 true);
 assertEquals(2, TestUtil.hitCount(searcher, allBooks, filter));
}

The same caveats as NumericRangeQuery apply here; for example, if you specify a pre-
cisionStep different from the default, it must match the precisionStep used during
indexing.

 Our next filter does the job of both TermRangeFilter and NumericRangeFilter,
but is built on top of Lucene’s field cache.

5.6.3 FieldCacheRangeFilter

FieldCacheRangeFilter is another option for range filtering. It achieves exactly the
same filtering as both TermRangeFilter and NumericRangeFilter, but does so by
using Lucene’s field cache. This may result in faster performance in certain situations,
since all values are preloaded into memory. But the usual caveats with field cache
apply, as described in section 5.1.

 FieldCacheRangeFilter exposes a different API to achieve range filtering. Here’s
how to do the same filtering on title2 that we did with TermRangeFilter:

Filter filter = FieldCacheRangeFilter.newStringRange("title2",
 "d", "j", true, true);
assertEquals(3, TestUtil.hitCount(searcher, allBooks, filter));

To achieve the same filtering that we did with NumericRangeFilter:

filter = FieldCacheRangeFilter.newIntRange("pubmonth",
 201001,
 201006,

 true,

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

180 CHAPTER 5 Advanced search techniques

 true);
assertEquals(2, TestUtil.hitCount(searcher, allBooks, filter));

Let’s see how to filter by an arbitrary set of terms.

5.6.4 Filtering by specific terms

Sometimes you’d simply like to select specific terms to include in your filter. For exam-
ple, perhaps your documents have Country as a field, and your search interface pres-
ents a checkbox allowing the user to pick and choose which countries to include in
the search. There are two ways to achieve this.

 The first approach is FieldCacheTermsFilter, which uses field cache under the
hood. (Be sure to read section 5.1 for the trade-offs of the field cache.) Simply instan-
tiate it with the field (String) and an array of String:

public void testFieldCacheTermsFilter() throws Exception {
 Filter filter = new FieldCacheTermsFilter("category",
 new String[] {"/health/alternative/chinese",
 "/technology/computers/ai",
 "/technology/computers/programming"});
 assertEquals("expected 7 hits",
 7,
 TestUtil.hitCount(searcher, allBooks, filter));
}

All documents that have any of the terms in the specified field will be accepted. Note
that the documents must have a single term value for each field. Under the hood, this
filter loads all terms for all documents into the field cache the first time it’s used dur-
ing searching for a given field. This means the first search will be slower, but subse-
quent searches, which reuse the cache, will be very fast. The field cache is reused even
if you change which specific terms are included in the filter.

 The second approach for filtering by terms is TermsFilter, which is included in
Lucene’s contrib modules and is described in more detail in section 8.6.4. Terms-
Filter doesn’t do any internal caching, and it allows filtering on fields that have more
than one term; otherwise, TermsFilter and FieldCacheTermsFilter are functionally
identical. It’s best to test both approaches for your application to see if there are any
significant performance differences.

5.6.5 Using QueryWrapperFilter

QueryWrapperFilter uses the matching documents of a query to constrain available
documents from a subsequent search. It allows you to turn a query, which does scor-
ing, into a filter, which doesn’t. Using a QueryWrapperFilter, we restrict the docu-
ments searched to a specific category:

public void testQueryWrapperFilter() throws Exception {
 TermQuery categoryQuery =
 new TermQuery(new Term("category", "/philosophy/eastern"));

 Filter categoryFilter = new QueryWrapperFilter(categoryQuery);
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

181Filtering a search

 assertEquals("only tao te ching",
 1,
 TestUtil.hitCount(searcher, allBooks, categoryFilter));
}

Here we’re searching for all the books (see setUp() in listing 5.12) but constraining
the search using a filter for a category that contains a single book. Next we’ll see how
to turn a SpanQuery into a filter.

5.6.6 Using SpanQueryFilter

SpanQueryFilter does the same thing as QueryWrapperFilter, except that it’s able to
preserve the spans for each matched document. Here’s a simple example:

public void testSpanQueryFilter() throws Exception {
 SpanQuery categoryQuery =
 new SpanTermQuery(new Term("category", "/philosophy/eastern"));

 Filter categoryFilter = new SpanQueryFilter(categoryQuery);

 assertEquals("only tao te ching",
 1,
 TestUtil.hitCount(searcher, allBooks, categoryFilter));
}

SpanQueryFilter adds a method, bitSpans, enabling you to retrieve the spans for
each matched document. Only advanced applications will make use of spans (Lucene
doesn’t use them internally when filtering), so if you don’t need this information, it’s
better (faster) to simply use QueryWrapperFilter.

 Let’s see how to use filters for applying security constraints, also known as
entitlements.

5.6.7 Security filters

Another example of document filtering constrains documents with security in mind.
Our example assumes documents are associated with an owner, which is known at
indexing time. We index two documents; both have the term info in their keywords
field, but each document has a different owner, as you can see in listing 5.13.

public class SecurityFilterTest extends TestCase {

 private IndexSearcher searcher;

 protected void setUp() throws Exception {
 Directory directory = new RAMDirectory();
 IndexWriter writer = new IndexWriter(directory,
 new WhitespaceAnalyzer(),
 IndexWriter.MaxFieldLength.UNLIMITED);

 Document document = new Document();
 document.add(new Field("owner",
 "elwood",

Listing 5.13 Setting up an index to use for testing the security filter

ElwoodB
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

182 CHAPTER 5 Advanced search techniques

 Field.Store.YES,
 Field.Index.NOT_ANALYZED));
 document.add(new Field("keywords",
 "elwood's sensitive info",
 Field.Store.YES,
 Field.Index.ANALYZED));
 writer.addDocument(document);

 document = new Document();
 document.add(new Field("owner",
 "jake",
 Field.Store.YES,
 Field.Index.NOT_ANALYZED));
 document.add(new Field("keywords",
 "jake's sensitive info",
 Field.Store.YES,
 Field.Index.ANALYZED));
 writer.addDocument(document);

 writer.close();
 searcher = new IndexSearcher(directory);
 }
}

Using a TermQuery for info in the keywords field results in both documents found,
naturally. Suppose, though, that Jake is using the search feature in our application,
and only documents he owns should be searchable by him. Quite elegantly, we can
easily use a QueryWrapperFilter to constrain the search space to only documents for
which he’s the owner, as shown in listing 5.14.

public void testSecurityFilter() throws Exception {
 TermQuery query = new TermQuery(
 new Term("keywords", "info"));

 assertEquals("Both documents match",
 2,
 TestUtil.hitCount(searcher, query));

 Filter jakeFilter = new QueryWrapperFilter(
 new TermQuery(new Term("owner", "jake")));

 TopDocs hits = searcher.search(query, jakeFilter, 10);
 assertEquals(1, hits.totalHits);
 assertEquals("elwood is safe",
 "jake's sensitive info",
 searcher.doc(hits.scoreDocs[0].doc)
 .get("keywords"));
}

This is a general TermQuery for info.

All documents containing info are returned.

Here, the filter constrains document searches to only documents owned by jake.

Listing 5.14 Securing the search space with a filter

ElwoodB

JakeC

B

C

D

E

 B

 C

 D

Only jake’s document is returned, using the same info TermQuery. E

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

183Filtering a search

If your security requirements are this straightforward, where documents can be associ-
ated with users or roles during indexing, using a QueryWrapperFilter will work
nicely. But some applications require more dynamic enforcement of entitlements. In
section 6.4, we develop a more sophisticated filter implementation that leverages
external information; this approach could be adapted to a more dynamic custom
security filter.

5.6.8 Using BooleanQuery for filtering

You can constrain a query to a subset of documents another way, by combining the con-
straining query to the original query as a required clause of a BooleanQuery. There are
a couple of important differences, despite the fact that the same documents are
returned from both. If you use CachingWrapperFilter around your QueryWrapper-
Filter, you can cache the set of documents allowed, likely speeding up successive
searches using the same filter. In addition, normalized document scores are unlikely to
be the same. The score difference makes sense when you’re looking at the scoring for-
mula (see section 3.3) because the IDF (inverse document frequency) factor may be
dramatically different. When you’re using BooleanQuery aggregation, all documents
containing the terms are factored into the equation, whereas a filter reduces the doc-
uments under consideration and impacts the inverse document frequency factor.

 This test case demonstrates how to “filter” using BooleanQuery aggregation and
illustrates the scoring difference compared to testQueryFilter:

public void testFilterAlternative() throws Exception {
 TermQuery categoryQuery =
 new TermQuery(new Term("category", "/philosophy/eastern"));

 BooleanQuery constrainedQuery = new BooleanQuery();
 constrainedQuery.add(allBooks, BooleanClause.Occur.MUST);
 constrainedQuery.add(categoryQuery, BooleanClause.Occur.MUST);

 assertEquals("only tao te ching",
 1,
 TestUtil.hitCount(searcher, constrainedQuery));
}

The technique of aggregating a query in this manner works well with QueryParser
parsed queries, allowing users to enter free-form queries yet restricting the set of doc-
uments searched by an API-controlled query. We describe PrefixFilter next.

5.6.9 PrefixFilter

PrefixFilter, the corollary to PrefixQuery, matches documents containing Terms
starting with a specified prefix. We can use PrefixFilter to restrict a search to all
books under a specific category:

public void testPrefixFilter() throws Exception {
 Filter prefixFilter = new PrefixFilter(
 new Term("category",
 "/technology/computers"));

 assertEquals("only /technology/computers/* books",

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

184 CHAPTER 5 Advanced search techniques

 8,
 TestUtil.hitCount(searcher,
 allBooks,
 prefixFilter));
}

Next we show how to cache a filter for better performance.

5.6.10 Caching filter results

The biggest benefit from filters comes when they’re cached and reused using
CachingWrapperFilter, which takes care of caching automatically (internally using a
WeakHashMap, so that externally dereferenced entries get garbage collected). You can
cache any filter using CachingWrappingFilter. Filters cache by using the
IndexReader as the key, which means searching should also be done with the same
instance of IndexReader to benefit from the cache. If you aren’t constructing
IndexReader yourself but are creating an IndexSearcher from a directory, you must
use the same instance of IndexSearcher to benefit from the caching. When index
changes need to be reflected in searches, discard IndexSearcher and IndexReader
and reinstantiate.

 To demonstrate its usage, we return to the title filtering example. We want to use
TermRangeFilter, but we’d like to benefit from caching to improve performance:

public void testCachingWrapper() throws Exception {
 Filter filter = new TermRangeFilter("title2",
 "d", "j",
 true, true);

 CachingWrapperFilter cachingFilter;
 cachingFilter = new CachingWrapperFilter(filter);
 assertEquals(3,
 TestUtil.hitCount(searcher,
 allBooks,
 cachingFilter));
}

Successive uses of the same CachingWrapperFilter instance with the same Index-
Searcher instance will bypass using the wrapped filter, instead using the cached
results.

5.6.11 Wrapping a filter as a query

We saw how to wrap a filter as a query. You can also do the reverse, using Constant-
ScoreQuery to turn any filter into a query, which you can then search on. The result-
ing query matches only documents that are included in the filter, and assigns all of
them the score equal to the query boost.

5.6.12 Filtering a filter

The FilteredDocIdSet class is an abstract class that accepts a primary filter, and then,
during matching whenever a document is being considered, the match method (of

your subclass) is invoked to check whether the document should be allowed. This

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

185Custom scoring using function queries

allows you to dynamically filter any other filter by implementing any custom logic in
your match method. This approach is efficient because FilteredDocIdSet never fully
materializes a bit set for the filter. Instead, each match is checked on demand.

 This approach can be useful for enforcing entitlements, especially in cases where
much of the enforcement is static (present in the index) but some amount of entitle-
ment should be checked dynamically at runtime. For such a use case, you’d create a
standard entitlements filter based on what’s in the index, then subclass FilteredDoc-
IdSet, overriding the match method, to implement your dynamic entitlements logic.

5.6.13 Beyond the built-in filters

Lucene isn’t restricted to using the built-in filters. An additional filter found in the
Lucene contrib modules, ChainedFilter, allows for complex chaining of filters. We
cover it in section 9.1.

 Writing custom filters allows external data to factor into search constraints, but a
bit of detailed Lucene API know-how may be required to be highly efficient. We cover
writing custom filters in section 6.4.

 And if these filtering options aren’t enough, Lucene adds another interesting use
of a filter. The FilteredQuery filters a query, like IndexSearcher’s search(Query,
Filter, int) can, except it is itself a query: therefore it can be used as a single clause
within a BooleanQuery. Using FilteredQuery seems to make sense only when using
custom filters, so we cover it along with custom filters in section 6.4.3.

 We are done with filters. Our next advanced topic is function queries, which give
you custom control over how documents are scored.

5.7 Custom scoring using function queries
Lucene’s relevance scoring formula, which we discussed in chapter 3, does a great job
of assigning relevance to each document based on how well it matches the query. But
what if you’d like to modify or override how this scoring is done? In section 5.2 you saw
how you can change the default relevance sorting to sort instead by one or more fields,
but what if you need even more flexibility? This is where function queries come in.

 Function queries give you the freedom to programmatically assign scores to match-
ing documents using your own logic. All classes are from the org.apache.lucene.
search.function package. In this section we first introduce the main classes used by
function queries, and then see the real-world example of using function queries to
boost recently modified documents.

5.7.1 Function query classes

The base class for all function queries is ValueSourceQuery. This is a query that
matches all documents but sets the score of each document according to a Value-
Source provided during construction. The function package provides Field-

CacheSource, and its subclasses, to derive values from the field cache. You can also
create your own ValueSource—for example, to derive scores from an external data-

base. But probably the simplest approach is to use FieldScoreQuery, which subclasses

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

186 CHAPTER 5 Advanced search techniques

ValueSourceQuery and derives each document’s score statically from a specific
indexed field. The field should be a number, indexed without norms and with a single
token per document. Typically you’d use Field.Index.NOT_ANALYZED_NO_NORMS. Let’s
look at a simple example. First, include the field “score” in your documents like this:

doc.add(new Field("score",
 "42",
 Field.Store.NO,
 Field.Index.NOT_ANALYZED_NO_NORMS));

Then, create this function query:

Query q = new FieldScoreQuery("score", FieldScoreQuery.Type.BYTE);

That query matches all documents, assigning each a score according to the contents
of its “score” field. You can also use the SHORT, INT, or FLOAT constants. Under the
hood, this function query uses the field cache, so the important trade-offs described
in section 5.1 apply.

 Our example is somewhat contrived; you could simply sort by the score field,
descending, to achieve the same results. But function queries get more interesting
when you combine them using the second type of function query, CustomScoreQuery.
This query class lets you combine a normal Lucene query with one or more other
function queries.

 We can now use the FieldScoreQuery we created earlier and a CustomScoreQuery
to compute our own score:

Query q = new QueryParser(Version.LUCENE_30,
 "content",
 new StandardAnalyzer(
 Version.LUCENE_30))
 .parse("the green hat");
FieldScoreQuery qf = new FieldScoreQuery("score",
 FieldScoreQuery.Type.BYTE);
CustomScoreQuery customQ = new CustomScoreQuery(q, qf) {
 public CustomScoreProvider getCustomScoreProvider(IndexReader r) {
 return new CustomScoreProvider(r) {
 public float customScore(int doc,
 float subQueryScore,
 float valSrcScore) {
 return (float) (Math.sqrt(subQueryScore) * valSrcScore);
 }
 };
 }
};

In this case we create a normal query q by parsing the user’s search text. We next
create the same FieldScoreQuery we used earlier to assign a static score to docu-
ments according to the score field. Finally, we create a CustomScoreQuery, overrid-
ing the getCustomScoreProvider method to return a class containing the
customScore method to compute our score for each matching document. In this

contrived case, we take the square root of the incoming query score and then

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

187Custom scoring using function queries

multiply it by the static score provided by the FieldScoreQuery. You can use arbi-
trary logic to create your scores.

 Note that the IndexReader argument provided to the getCustomScoreProvider
method is per-segment, meaning the method will be called multiple times during
searching if the index has more than one segment. This is important as it enables your
scoring logic to efficiently use the per-segment reader to retrieve values in the field-
cache. Let’s see a more interesting use of function queries, using the field cache to
boost matches by recency.

5.7.2 Boosting recently modified documents using function queries

A real-world use of CustomScoreQuery is to perform document boosting. You can
boost according to any custom criteria, but for our example, shown in listing 5.15, we
boost recently modified documents using a new custom query class, Recency-
BoostingQuery. In applications where documents have a clear timestamp, such as
searching a newsfeed or press releases, boosting by recency can be useful. The class
requires you to specify the name of a numeric field that contains the timestamp of
each document that you’d like to use for boosting.

static class RecencyBoostingQuery extends CustomScoreQuery {

 double multiplier;
 int today;
 int maxDaysAgo;
 String dayField;
 static int MSEC_PER_DAY = 1000*3600*24;

 public RecencyBoostingQuery(Query q, double multiplier,
 int maxDaysAgo, String dayField) {
 super(q);
 today = (int) (new Date().getTime()/MSEC_PER_DAY);
 this.multiplier = multiplier;
 this.maxDaysAgo = maxDaysAgo;
 this.dayField = dayField;
 }

 private class RecencyBooster extends CustomScoreProvider {
 final int[] publishDay;

 public RecencyBooster(IndexReader r) throws IOException {
 super(r);
 publishDay = FieldCache.DEFAULT
 .getInts(r, dayField);
 }

 public float customScore(int doc, float subQueryScore,
 float valSrcScore) {
 int daysAgo = today - publishDay[doc];
 if (daysAgo < maxDaysAgo) {
 float boost = (float) (multiplier *
 (maxDaysAgo-daysAgo)

Listing 5.15 Using recency to boost search results

Retrieve days
from field cache

Compute
elapsed days

Skip old books
Compute
simple
 / maxDaysAgo); linear boost

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

188 CHAPTER 5 Advanced search techniques

 return (float) (subQueryScore * (1.0+boost));
 } else {
 return subQueryScore;
 }
 }
 }

 public CustomScoreProvider getCustomScoreProvider(IndexReader r)
 throws IOException {
 return new RecencyBooster(r);
 }
}

In our case, we previously indexed the pubmonthAsDay field, like this:

doc.add(new NumericField("pubmonthAsDay")
 .setIntValue((int) (d.getTime()/(1000*3600*24))));

See section 2.6.2 for options when indexing dates and times.
 Once the index is set up, using RecencyBoostingQuery is straightforward, as

shown in listing 5.16.

public void testRecency() throws Throwable {
 Directory dir = TestUtil.getBookIndexDirectory();
 IndexReader r = IndexReader.open(dir);
 IndexSearcher s = new IndexSearcher(r);
 s.setDefaultFieldSortScoring(true, true);

 QueryParser parser = new QueryParser(
 Version.LUCENE_30,
 "contents",
 new StandardAnalyzer(
 Version.LUCENE_30));
 Query q = parser.parse("java in action");
 Query q2 = new RecencyBoostingQuery(q,
 2.0, 2*365);
 Sort sort = new Sort(new SortField[] {
 SortField.FIELD_SCORE,
 new SortField("title2", SortField.STRING)});
 TopDocs hits = s.search(q, null, 5, sort);

 for (int i = 0; i < hits.scoreDocs.length; i++) {
 Document doc = r.document(hits.scoreDocs[i].doc);
 System.out.println((1+i) + ": " +
 doc.get("title") +
 ": pubmonth=" +
 doc.get("pubmonth") +
 " score=" + hits.scoreDocs[i].score);
 }
 s.close();
 r.close();
 dir.close();
}

We first create a normal query, by parsing the search string "java in action", and

Listing 5.16 Testing recency boosting

Return
unboosted
score

Parse query

Create recency
boosting query
then instantiate the RecencyBoostingQuery, giving a boost factor of up to 2.0 for any

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

189Searching across multiple Lucene indexes

book published within the past two years. Then we run the search, sorting first by rele-
vance score and second by title. The test as shown in listing 5.16 runs the unboosted
query, producing this result:

1: Ant in Action: pubmonth=200707 score=0.78687847
2: Lucene in Action, Second Edition: pubmonth=201005 score=0.78687847
3: Tapestry in Action: pubmonth=200403 score=0.15186688
4: JUnit in Action, Second Edition: pubmonth=201005 score=0.13288352

If instead you run the search with q2, which boosts each result by recency, you’ll see
this:

1: Lucene in Action, Second Edition: pubmonth=201005 score=2.483518
2: Ant in Action: pubmonth=200707 score=0.78687847
3: JUnit in Action, Second Edition: pubmonth=201005 score=0.41940224
4: Tapestry in Action: pubmonth=200403 score=0.15186688

You can see that in the unboosted query, the top two results were tied based on rele-
vance. But after factoring in recency boosting, the scores were different and the sort
order changed (for the better, we might add!).

 This wraps up our coverage of function queries. Although we focused on one com-
pelling example, boosting relevance scoring according to recency, function queries
open up a whole universe of possibilities. You’re completely free to implement what-
ever scoring you’d like. We’ll now look at support for searching across multiple
Lucene indexes.

5.8 Searching across multiple Lucene indexes
Some applications need to maintain separate Lucene indexes, yet want to allow a sin-
gle search to return combined results from all the indexes. Sometimes, such separa-
tion is done for convenience or administrative reasons—for example, if different
people or groups maintain the index for different collections of documents. Other
times it may be done due to high volume. For example, a news site may make a new
index for every month and then choose which months to search over.

 Whatever the reason, Lucene provides two useful classes for searching across mul-
tiple indexes. We’ll first meet MultiSearcher, which uses a single thread to perform
searching across multiple indexes. Then we’ll see ParallelMultiSearcher, which
uses multiple threads to gain concurrency.

5.8.1 Using MultiSearcher

With MultiSearcher, all indexes can be searched with the results merged in a speci-
fied (or descending-score, by default) order. Using MultiSearcher is comparable to
using IndexSearcher, except that you hand it an array of IndexSearchers to search
rather than a single directory (so it’s effectively a decorator pattern and delegates
most of the work to the subsearchers).

 Listing 5.17 illustrates how to search two indexes that are split alphabetically by
keyword. The index is made up of animal names beginning with each letter of the
alphabet. Half the names are in one index, and half are in the other. A search is
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

190 CHAPTER 5 Advanced search techniques

performed with a range that spans both indexes, demonstrating that results are
merged together.

public class MultiSearcherTest extends TestCase {
 private IndexSearcher[] searchers;

 public void setUp() throws Exception {
 String[] animals = { "aardvark", "beaver", "coati",
 "dog", "elephant", "frog", "gila monster",
 "horse", "iguana", "javelina", "kangaroo",
 "lemur", "moose", "nematode", "orca",
 "python", "quokka", "rat", "scorpion",
 "tarantula", "uromastyx", "vicuna",
 "walrus", "xiphias", "yak", "zebra"};

 Analyzer analyzer = new WhitespaceAnalyzer();

 Directory aTOmDirectory = new RAMDirectory();
 Directory nTOzDirectory = new RAMDirectory();

 IndexWriter aTOmWriter = new IndexWriter(aTOmDirectory,
 analyzer,
 IndexWriter.MaxFieldLength.UNLIMITED);
 IndexWriter nTOzWriter = new IndexWriter(nTOzDirectory,
 analyzer,
 IndexWriter.MaxFieldLength.UNLIMITED);

 for (int i=animals.length - 1; i >= 0; i--) {
 Document doc = new Document();
 String animal = animals[i];
 doc.add(new Field("animal", animal,
 Field.Store.YES, Field.Index.NOT_ANALYZED));
 if (animal.charAt(0) < 'n') {
 aTOmWriter.addDocument(doc);
 } else {
 nTOzWriter.addDocument(doc);
 }
 }

 aTOmWriter.close();
 nTOzWriter.close();

 searchers = new IndexSearcher[2];
 searchers[0] = new IndexSearcher(aTOmDirectory);
 searchers[1] = new IndexSearcher(nTOzDirectory);
 }

 public void testMulti() throws Exception {

 MultiSearcher searcher = new MultiSearcher(searchers);

 TermRangeQuery query = new TermRangeQuery("animal",
 "h",
 "t",
 true, true);

Listing 5.17 Securing the search space with a filter

Create two
directories

B

Index halves of
the alphabetC

Search both
indexes

D

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

191Leveraging term vectors

 TopDocs hits = searcher.search(query, 10);
 assertEquals("tarantula not included", 12, hits.totalHits);
 }

This code uses two indexes B. The first half of the alphabet is indexed to one index,
and the other half is indexed to the other index C. This query D spans documents in
both indexes.

 The inclusive TermRangeQuery matches animal names that begin with h through
animal names that begin with t, with the matching documents coming from both
indexes. A related class, ParallelMultiSearcher, achieves the same functionality as
MultiSearcher but uses multiple threads to gain concurrency.

5.8.2 Multithreaded searching using ParallelMultiSearcher

A multithreaded version of MultiSearcher, called ParallelMultiSearcher, spawns a
new thread for each Searchable and waits for them all to finish when the search
method is invoked. The basic search and search with filter options are parallelized,
but searching with a Collector hasn’t yet been parallelized. The exposed API is the
same as MultiSearcher, so it’s a simple drop-in.

 Whether you’ll see performance gains using ParallelMultiSearcher depends on
your architecture. If the indexes reside on different physical disks and your computer
has CPU concurrency, you should see improved performance. But there hasn’t been
much real-world testing to back this up, so be sure to test it for your application.

 A cousin to ParallelMultiSearcher lives in Lucene’s contrib/remote directory,
enabling you to remotely search multiple indexes in parallel. We’ll talk about term
vectors next, a topic you’ve already seen on the indexing side in chapter 2.

5.9 Leveraging term vectors
Term vectors are an advanced means of storing the equivalent of an inverted index
per document. They are a rather advanced topic, and there are many things you can
do with term vectors, so this section is rather sizable. We’ll work through two concrete
examples illustrating what you can do at search time once you have term vectors in the
index: finding similar documents and automatically categorizing documents.

 Technically, a term vector is a collection of term-
frequency pairs, optionally including positional informa-
tion for each term occurrence. Most of us probably can’t
picture vectors in hyper-dimensional space, so for visual-
ization purposes, let’s look at two documents that contain
only the terms cat and dog. These words appear various
times in each document. Plotting the term frequencies of
each document in X, Y coordinates looks something like
figure 5.5. What gets interesting with term vectors is the
angle between them, as you’ll see in more detail in sec-
tion 5.9.2.

cat

dog

Θ

Figure 5.5 Term vectors for
two documents containing the
terms cat and dog
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

192 CHAPTER 5 Advanced search techniques

 We showed how to enable indexing of term vectors in section 2.4.3. We indexed
the title, author, subject, and contents fields with term vectors when indexing our
book data. Retrieving term vectors for a field in a given document by ID requires a call
to an IndexReader method:

TermFreqVector termFreqVector =
 reader.getTermFreqVector(id, "subject");

A TermFreqVector instance has several methods for retrieving the vector informa-
tion, primarily as matching arrays of Strings and ints (the term value and frequency
in the field, respectively). If you had also stored offsets and/or positions information
with your term vectors, using Field.TermVector.WITH_POSITIONS_OFFSETS for exam-
ple, then you’ll get a TermPositionVector back when you load the term vectors. That
class contains offset and position information for each occurrence of the terms in the
document.

 You can use term vectors for some interesting effects, such as finding documents
“like” a particular document, which is an example of latent semantic analysis. We’ll
show how to find books similar to an existing one, as well as a proof-of-concept catego-
rizer that can tell us the most appropriate category for a new book, as you’ll see in the
following sections. We wrap up with the TermVectorMapper classes for precisely con-
trolling how term vectors are read from the index.

5.9.1 Books like this

It’d be nice to offer other choices to the customers of our bookstore when they’re
viewing a particular book. The alternatives should be related to the original book, but
associating alternatives manually would be labor-intensive and would require ongoing
effort to keep up to date. Instead, we use Lucene’s Boolean query capability and the
information from one book to look up other books that are similar. Listing 5.18 dem-
onstrates a basic approach for finding books like each one in our sample data.

public class BooksLikeThis {

 public static void main(String[] args) throws IOException {
 Directory dir = TestUtil.getBookIndexDirectory();

 IndexReader reader = IndexReader.open(dir);
 int numDocs = reader.maxDoc();

 BooksLikeThis blt = new BooksLikeThis(reader);
 for (int i = 0; i < numDocs; i++) {
 System.out.println();
 Document doc = reader.document(i);
 System.out.println(doc.get("title"));

 Document[] docs = blt.docsLike(i, 10);
 if (docs.length == 0) {
 System.out.println(" None like this");
 }

Listing 5.18 Finding similar books to a specific example book

Iterate over
every book

B

Look up
books like this

C

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

193Leveraging term vectors

 for (Document likeThisDoc : docs) {
 System.out.println(" -> " + likeThisDoc.get("title"));
 }
 }
 reader.close();
 dir.close();
 }

 private IndexReader reader;
 private IndexSearcher searcher;

 public BooksLikeThis(IndexReader reader) {
 this.reader = reader;
 searcher = new IndexSearcher(reader);
 }

 public Document[] docsLike(int id, int max) throws IOException {
 Document doc = reader.document(id);

 String[] authors = doc.getValues("author");
 BooleanQuery authorQuery = new BooleanQuery();
 for (String author : authors) {
 authorQuery.add(new TermQuery(new Term("author", author)),
 BooleanClause.Occur.SHOULD);
 }
 authorQuery.setBoost(2.0f);

 TermFreqVector vector =
 reader.getTermFreqVector(id, "subject");

 BooleanQuery subjectQuery = new BooleanQuery();
 for (String vecTerm : vector.getTerms()) {
 TermQuery tq = new TermQuery(
 new Term("subject", vecTerm));
 subjectQuery.add(tq, BooleanClause.Occur.SHOULD);
 }

 BooleanQuery likeThisQuery = new BooleanQuery();
 likeThisQuery.add(authorQuery, BooleanClause.Occur.SHOULD);
 likeThisQuery.add(subjectQuery, BooleanClause.Occur.SHOULD);

 likeThisQuery.add(new TermQuery(
 new Term("isbn", doc.get("isbn"))),
 BooleanClause.Occur.MUST_NOT);

 TopDocs hits = searcher.search(likeThisQuery, 10);
 int size = max;
 if (max > hits.scoreDocs.length) size = hits.scoreDocs.length;

 Document[] docs = new Document[size];
 for (int i = 0; i < size; i++) {
 docs[i] = reader.document(hits.scoreDocs[i].doc);
 }

 return docs;
 }
}

DBoost books by
same author

Use terms from
"subject" term
vectors

E

FCreate final query

Exclude
current book

G

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

194 CHAPTER 5 Advanced search techniques

As an example, we iterate over every book document in the index and find books like
each one.

Here we look up books that are like this one.

Books by the same author are considered alike and are boosted so they will likely
appear before books by other authors.

Using the terms from the subject term vectors, we add each to a Boolean query.

We combine the author and subject queries into a final Boolean query.

We exclude the current book, which would surely be the best match given the other
criteria, from consideration.

In D, we used a different way to get the value of the author field. It was indexed as
multiple fields, and the original author string is a comma-separated list of author(s) of
a book:

String[] authors = author.split(",");
for (String a : authors) {
 doc.add(new Field("author",
 a,
 Field.Store.YES,
 Field.Index.NOT_ANALYZED,
 Field.TermVector.WITH_POSITIONS_OFFSETS));
}

The output is interesting, showing how our books are connected through author and
subject:

Tao Te Ching 道德經

 None like this

Lipitor Thief of Memory
 None like this

Imperial Secrets of Health and Longevity
 None like this

Nudge: Improving Decisions About Health, Wealth, and Happness
 None like this

Gödel, Escher, Bach: an Eternal Golden Braid
 None like this

Extreme Programming Explained
 -> The Pragmatic Programmer
 -> Ant in Action

Mindstorms: Children, Computers, And Powerful Ideas
 -> A Modern Art of Education

Lucene in Action, Second Edition
 -> Ant in Action

The Pragmatic Programmer
 -> Extreme Programming Explained

 B

 C

 D

 E

 F

 G
Ant in Action

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

195Leveraging term vectors

 -> Lucene in Action, Second Edition
 -> JUnit in Action, Second Edition
 -> Extreme Programming Explained

Tapestry in Action
 None like this

JUnit in Action, Second Edition
 -> Ant in Action

A Modern Art of Education
 -> Mindstorms: Children, Computers, And Powerful Ideas

If you’d like to see the actual query used for each, uncomment the output lines
toward the end of the docsLike method.

 The books-like-this example could’ve been done without term vectors, and we
aren’t using them as vectors in this case. We’ve only used the convenience of getting
the terms for a given field. Without term vectors, the subject field could have been
reanalyzed or indexed such that individual subject terms were added separately in
order to get the list of terms for that field. Our next example also uses the frequency
component to a term vector in a much more sophisticated manner.

 Lucene’s contrib modules contains a useful Query implementation, More-
LikeThisQuery, doing the same thing as our BooksLikeThis class but more generi-
cally. BooksLikeThis is clearly hardwired to fields like subject and author from our
books index. But MoreLikeThisQuery lets you set the field names, so it works well on
any index. Section 8.6.1 describes this in more detail. The two highlighter contrib
modules, described in sections 8.3 and 8.4, also use term vectors to find term occur-
rences for highlighting.

 Let’s see another example of using term vectors: automatic category assignment.

5.9.2 What category?

Each book in our index is given a single primary category: for example, this book is
categorized as “/technology/computers/programming.” The best category place-
ment for a new book may be relatively obvious or (more likely) several possible catego-
ries may seem reasonable. You can use term vectors to automate the decision. We’ve
written a bit of code that builds a representative subject vector for each existing cate-
gory. This representative, archetypical, vector is the sum of all vectors for each docu-
ment’s subject field vector.

 With these representative vectors precomputed, our end goal is a calculation that
can, given some subject keywords for a new book, tell us what category is the best fit.
Our test case uses two example subject strings:

public void testCategorization() throws Exception {
 assertEquals("/technology/computers/programming/methodology",
 getCategory("extreme agile methodology"));
 assertEquals("/education/pedagogy",
 getCategory("montessori education philosophy"));
}

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

196 CHAPTER 5 Advanced search techniques

The first assertion says that, based on our sample data, if a new book has the keywords
“extreme agile methodology” in its subject, the best category fit is /technology/com-
puters/programming/methodology. The best category is determined by finding the
closest category angle-wise in vector space to the new book’s subject.

 The test setUp() builds vectors for each category:

protected void setUp() throws Exception {
 categoryMap = new TreeMap();

 buildCategoryVectors();
}

Our code builds category vectors by walking every document in the index and aggre-
gating book subject vectors into a single vector for the book’s associated category. Cat-
egory vectors are stored in a map, keyed by category name. The value of each item in
the category map is another map keyed by term, with the value an integer for its fre-
quency, as seen in listing 5.19.

private void buildCategoryVectors() throws IOException {
 IndexReader reader = IndexReader.open(TestUtil.getBookIndexDirectory());

 int maxDoc = reader.maxDoc();

 for (int i = 0; i < maxDoc; i++) {
 if (!reader.isDeleted(i)) {
 Document doc = reader.document(i);
 String category = doc.get("category");

 Map vectorMap = (Map) categoryMap.get(category);
 if (vectorMap == null) {
 vectorMap = new TreeMap();
 categoryMap.put(category, vectorMap);
 }

 TermFreqVector termFreqVector =
 reader.getTermFreqVector(i, "subject");

 addTermFreqToMap(vectorMap, termFreqVector);
 }
 }
}

A book’s term frequency vector is added to its category vector in addTermFreqToMap.
The arrays returned by getTerms() and getTermFrequencies() align with one
another such that the same position in each refers to the same term, as listing 5.20
shows.

private void addTermFreqToMap(Map vectorMap,
 TermFreqVector termFreqVector) {
 String[] terms = termFreqVector.getTerms();

Listing 5.19 Build category vectors by aggregating for each category

Listing 5.20 Aggregate term frequencies for each category
 int[] freqs = termFreqVector.getTermFrequencies();

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

197Leveraging term vectors

 for (int i = 0; i < terms.length; i++) {
 String term = terms[i];

 if (vectorMap.containsKey(term)) {
 Integer value = (Integer) vectorMap.get(term);
 vectorMap.put(term,
 new Integer(value.intValue() + freqs[i]));
 } else {
 vectorMap.put(term, new Integer(freqs[i]));
 }
 }
}

That was the easy part—building
the category vector maps—
because it only involved addition.
Computing angles between vectors is more involved mathematically. In the simplest
two-dimensional case, as shown in figure 5.5, two categories (A and B) have unique
term vectors based on aggregation (as we’ve just done). The closest category, angle-
wise, to a new book’s subjects is the match we’ll choose. Figure 5.6 shows the equation
for computing an angle between two vectors.

 Our getCategory method loops through all categories, computing the angle
between each category and the new book. The smallest angle is the closest match, and
the category name is returned, as shown in listing 5.21.

private String getCategory(String subject) {
 String[] words = subject.split(" ");

 Iterator categoryIterator = categoryMap.keySet().iterator();
 double bestAngle = Double.MAX_VALUE;
 String bestCategory = null;

 while (categoryIterator.hasNext()) {
 String category = (String) categoryIterator.next();

 double angle = computeAngle(words, category);

 if (angle < bestAngle) {
 bestAngle = angle;
 bestCategory = category;
 }
 }

 return bestCategory;
}

We assume that the subject string is in a whitespace-separated form and that each
word occurs only once. Furthermore, we use String.split to extract tokens from the
subject, which will only work with analyzers that don’t alter the text of each token. If
you’re using an analyzer that does alter the tokens, such as one that includes Porter-
StemFilter, you’ll need to change the String.split to invoke your analyzer instead.

Listing 5.21 Finding the closest vector to match the best category

cos Ө =
A • B

|| A || || B ||
Figure 5.6 Formula for computing
the angle between two term vectors
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

198 CHAPTER 5 Advanced search techniques

The angle computation takes these assumptions into account to simplify a part of the
computation. Finally, computing the angle between an array of words and a specific
category is done in computeAngle, shown in listing 5.22.

private double computeAngle(String[] words, String category) {
 Map vectorMap = (Map) categoryMap.get(category);

 int dotProduct = 0;
 int sumOfSquares = 0;
 for (String word : words) {
 int categoryWordFreq = 0;

 if (vectorMap.containsKey(word)) {
 categoryWordFreq =
 ((Integer) vectorMap.get(word)).intValue();
 }

 dotProduct += categoryWordFreq;
 sumOfSquares += categoryWordFreq * categoryWordFreq;
 }

 double denominator;
 if (sumOfSquares == words.length) {
 denominator = sumOfSquares;
 } else {
 denominator = Math.sqrt(sumOfSquares) *
 Math.sqrt(words.length);
 }

 double ratio = dotProduct / denominator;

 return Math.acos(ratio);
}

The calculation is optimized with the assumption that each word in the words array
has a frequency of 1.

We multiply the square root of N by the square root of N to get N. This shortcut pre-
vents a precision issue where the ratio could be greater than 1 (which is an illegal
value for the inverse cosine function).

You should be aware that computing term vector angles between two documents or,
in this case, between a document and an archetypical category, is computation inten-
sive. It requires square-root and inverse cosine calculations and may be prohibitive in
high-volume indexes. We finish our coverage of term vectors with the TermVector-
Mapper class.

5.9.3 TermVectorMapper

Sometimes, the parallel array structure returned by IndexReader.getTermFreqVector
may not be convenient for your application. Perhaps instead of sorting by Term, you’d
like to sort the term vectors according to your own criteria. Or maybe you’d like to

Listing 5.22 Computing term vector angles for a new book against a given category

B

C

 B

 C
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

199Leveraging term vectors

only load certain terms of interest. All of these can be done with a recent addition to
Lucene, TermVectorMapper. This is an abstract base class that, when passed to
IndexReader.getTermFreqVector methods, separately receives each term, with
optional positions and offsets and can choose to store the data in its own manner.
Table 5.2 describes the methods that a concrete TermVectorMapper implementation
(subclass) must implement.

Lucene includes a few public core implementations of TermVectorMapper, described
in table 5.3. You can also create your own implementation.

 As we’ve now seen, term vectors are a powerful advanced functionality. We saw two
examples where you might want to use them: automatically assigning documents to
categories, and finding documents similar to an existing example. We also saw
Lucene’s advanced API for controlling exactly how term vectors are loaded. We’ll now
see how to load stored fields using another advanced API in Lucene: FieldSelector.

Table 5.2 Methods that a custom TermVectorMapper must implement

Method Purpose

setDocumentNumber Called once per document to tell you which document is currently being
loaded.

setExpectations Called once per field to tell you how many terms occur in the field, and
whether positions and offsets are stored.

map Called once per term to provide the actual term vectors data.

isIgnoringPositions You should return false only if you need to see the positions data for
the term vectors.

isIgnoringOffsets You should return false only if you need to see the offsets data for the
term vectors.

Table 5.3 Built-in implementations of TermVectorMapper

Method Purpose

PositionBasedTermVectorMapper For each field, stores a map from the integer position to
terms and optionally offsets that occurred at that position.

SortedTermVectorMapper Merges term vectors for all fields into a single SortedSet,
sorted according to a Comparator that you specify. One
comparator is provided in the Lucene core, TermVector-
EntryFreqSortedComparator, which sorts first by fre-
quency of the term and second by the term itself.

FieldSortedTermVectorMapper Just like SortedTermVectorMapper, except the fields
aren’t merged together and instead each field stores its
sorted terms separately.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

200 CHAPTER 5 Advanced search techniques

5.10 Loading fields with FieldSelector
We’ve talked about reading a document from the index using an IndexReader. You
know that the document returned differs from the original document indexed in
that it has only those fields you chose to store at indexing time using Field.
Store.YES. Under the hood, Lucene writes these fields into the index and
IndexReader reads them.

 Unfortunately, reading a document can be fairly time consuming, especially if you
need to read many of them per search and if your documents have many stored fields.
Often, a document may have one or two large stored fields, holding the actual textual
content for the document, and a number of smaller “metadata” fields such as title, cat-
egory, author, and published date. When presenting the search results, you might only
need the metadata fields and so loading the very large fields is costly and unnecessary.
This is where FieldSelector comes in. FieldSelector, which is in the org.apache.
lucene.document package, allows you to load a specific restricted set of fields for each
document. It’s an interface with a single simple method:

FieldSelectorResult accept(String fieldName);

Concrete classes implementing this interface return a FieldSelectorResult describ-
ing whether the specified field name should be loaded, and how. FieldSelector-
Result is an enum with seven values, described in table 5.4.

When loading stored fields with a FieldSelector, IndexReader steps through the
fields one by one for the document, in the order they had originally been added to
the document during indexing, invoking FieldSelector on each field and choosing
to load the field (or not) based on the returned result.

 There are several built-in concrete classes implementing FieldSelector,

Table 5.4 FieldSelectorResult options when loading a stored field

Option Purpose

LOAD Load the field.

LAZY_LOAD Load the field lazily. The actual contents of the field won’t be read until
Field.stringValue() or Field.binaryValue() is called.

NO_LOAD Skip loading the field.

LOAD_AND_BREAK Load this field and don’t load any of the remaining fields.

LOAD_FOR_MERGE Used internally to load a field during segment merging; this skips decompress-
ing compressed fields.

SIZE Read only the size of the field, then add a binary field with a 4-byte array
encoding that size.

SIZE_AND_BREAK Like SIZE, but don’t load any of the remaining fields.
described in table 5.5. It’s also straightforward to create your own implementation.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

201Stopping a slow search

Although FieldSelector will save time when loading fields, just how much time is
application-dependent. Much of the cost when loading stored fields is in seeking the
file pointers to the places in the index where all fields are stored, so you may find you
don’t save that much time skipping fields. Test on your application to find the right
trade-off.

5.11 Stopping a slow search
Usually Lucene’s searches are fast. But if you have a large index, or you create excep-
tionally complex searches, it’s possible for Lucene to take too long to execute the
search. Fortunately, Lucene has a special Collector implementation, TimeLimiting-
Collector, that stops a search when it has taken too much time. We cover Collector
in more detail in section 6.2.

 TimeLimitingCollector delegates all methods to a separate Collector that you
provide, and throws a TimeExceededException when the searching has taken too
long. It’s simple to use, as shown in listing 5.23.

public class TimeLimitingCollectorTest extends TestCase {
 public void testTimeLimitingCollector() throws Exception {
 Directory dir = TestUtil.getBookIndexDirectory();
 IndexSearcher searcher = new IndexSearcher(dir);
 Query q = new MatchAllDocsQuery();
 int numAllBooks = TestUtil.hitCount(searcher, q);

 TopScoreDocCollector topDocs = TopScoreDocCollector.create(10, false);
 Collector collector = new TimeLimitingCollector(topDocs,
 1000);
 try {
 searcher.search(q, collector);
 assertEquals(numAllBooks, topDocs.getTotalHits());
 } catch (TimeExceededException tee) {
 System.out.println("Too much time taken.");
 }
 searcher.close();
 dir.close();
 }
}

Table 5.5 Core FieldSelector implementations

Class Purpose

LoadFirstFieldSelector Loads only the first field encountered.

MapFieldSelector You specify the String names of the fields you want to load;
all other fields are skipped.

SetBasedFieldSelector You specify two sets: the first set is fields to load and the sec-
ond set is fields to load lazily.

Listing 5.23 Using TimeLimitingCollector to stop a slow search

Wrap existing
Collector

Verify
all hitsPrint timeout

message
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

202 CHAPTER 5 Advanced search techniques

In this example we create a TopScoreDocCollector, which keeps the top 10 hits
according to score, and wrap it with a TimeLimitingCollector that will abort the
search if it takes longer than 1,000 msec (1.0 seconds). You’d obviously have to modify
the exception handler to choose what to do when a timeout is hit. One option is to
present the results collected so far, noting to the user that the results may not be accu-
rate because the search took too long. This may be dangerous; the results are incom-
plete and the user could go on to make important decisions based on false results.
Another option is to not show any results and simply ask users to rephrase or simplify
their search.

 There are a few couple of limitations to TimeLimitingCollector. First, it adds
some of its own overhead during results collection (to check the timeout, per
matched document) and that will make your searches run somewhat slower, though
the impact should be small. Second, it only times out the search during collection,
whereas it’s possible that some queries take a very long time during Query.rewrite().
For such queries it’s possible you won’t hit the TimeExceededException until well
after your requested timeout.

5.12 Summary
This chapter has covered some diverse Lucene functionality, highlighting Lucene’s
additional built-in search features. We touched on Lucene’s internal field cache API,
which allows you to load into memory an array of a given field’s value for all docu-
ments. Sorting is a flexible way to control the ordering of search results.

 We described a number of advanced queries. MultiPhraseQuery generalizes
PhraseQuery by allowing more than one term at the same position within a phrase.
The SpanQuery family leverages term-position information for greater searching pre-
cision. MultiFieldQueryParser is another QueryParser that matches against more
than one field. Function queries let you programmatically customize how documents
are scored.

 Filters constrain document search space, regardless of the query, and you can
either create your own filter (described in section 6.4), or use one of Lucene’s many
built-in ones. We saw how to wrap a query as a filter, and vice versa, as well as how to
cache filters for fast reuse.

 Lucene includes support for multiple index searching, including a parallel version
to easily take advantage of concurrency. Term vectors enable interesting effects, such
as “like this” term vector angle calculations. We showed how to fine-tune the loading
of term vectors and stored fields by using TermVectorMapper and FieldSelector.
Finally we showed you how to use TimeLimitingCollector to handle searches that
could take too long to run.

 As modern-day search applications become more diverse and interesting, and
users more demanding, you’ll find that Lucene’s rich advanced capabilities we’ve
covered here give you a strong arsenal for addressing your needs. We’ve only
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

203Summary

touched on what’s possible with the examples in this chapter, because the possibili-
ties with major features like sorting, filtering, and term vectors are so vast. Very likely
whatever advanced needs your application encounters, they can be satisfied with
what Lucene offers.

 Yet this is still not quite the end of the searching story. Lucene also includes several
ways to extend its searching behavior, such as custom sorting, positional payloads, fil-
tering, and query expression parsing, which we cover in the next chapter.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Extending search
Just when you thought we were done with searching, here we are again with even
more on the topic! Chapter 3 discussed the basics of Lucene’s built-in capabilities,
and chapter 5 delved well beyond the basics into Lucene’s more advanced search-
ing features. In those two chapters, we explored only the built-in features. Lucene
also has several powerful extension points, which we’ll cover here.

 Custom sorting lets you implement arbitrary sorting criteria when the built-in
sort by relevance or field isn’t appropriate. We’ll show an example of sorting by
geographic proximity to a user’s current location. Custom collection lets you arbi-
trarily process each matching document yourself, in case you don’t want the top
documents according to a sort criterion. We’ll also include examples of two custom
collectors. QueryParser has many extension points to customize how each type of
query is created, and we provide examples, including how to prevent certain query
types and handling numeric and date fields. Custom filters let you arbitrarily

This chapter covers
Creating a custom sort

Using a Collector

Customizing QueryParser

Using positional payloads
204

restrict the allowed documents for matching. Finally, you can use payloads to

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

205Using a custom sort method

separately boost specific occurrences of a given term within the same document.
Armed with an understanding of these powerful extension points, you’ll be able to
customize Lucene’s behavior in nearly arbitrary ways.

 Let’s begin with custom sorting.

6.1 Using a custom sort method
If sorting by score, ID, or field values is insufficient for your needs, Lucene lets you
implement a custom sorting mechanism by providing your own subclass of the Field-
ComparatorSource abstract base class. Custom sorting implementations are most use-
ful in situations when the sort criteria can’t be determined during indexing.

 For this section we’ll create a custom sort that orders search results based on geo-
graphic distance from a given location.1 The given location is only known at search
time, and could, for example, be the geographic location of the user doing the search
if the user is searching from a mobile device with an embedded global positioning ser-
vice (GPS). First we show the required steps at indexing time. Next we’ll describe how
to implement the custom sort during searching. Finally, you’ll learn how to access
field values involved in the sorting for presentation purposes.

6.1.1 Indexing documents for geographic sorting

We’ve created a simplified demonstration of this concept using the important ques-
tion, “What Mexican food restaurant is nearest to me?” Figure 6.1 shows a sample of

10

9

8

7

6

5

4

3

2

1

0

N
o

rt
h

 -
So

u
th

East - West
0 1 2 3 4 5 6 7 8 9 10

Map

Figure 6.1 Which
Mexican restaurant is
closest to home (at 0,0) or
work (at 10,10)?
1 Thanks to Tim Jones (the contributor of Lucene’s sort capabilities) for the inspiration.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

206 CHAPTER 6 Extending search

restaurants and their fictitious grid coordinates on a sample 10 x 10 grid. Note that
Lucene now includes the “spatial” package in the contrib modules, described in sec-
tion 9.7, for filtering and sorting according to geographic distance in general.

 The test data is indexed as shown in listing 6.1, with each place given a name, loca-
tion in X and Y coordinates, and a type. The type field allows our data to accommo-
date other types of businesses and could allow us to filter search results to specific
types of places.

public class DistanceSortingTest extends TestCase {
 private RAMDirectory directory;
 private IndexSearcher searcher;
 private Query query;

 protected void setUp() throws Exception {
 directory = new RAMDirectory();
 IndexWriter writer =
 new IndexWriter(directory, new WhitespaceAnalyzer(),
 IndexWriter.MaxFieldLength.UNLIMITED);
 addPoint(writer, "El Charro", "restaurant", 1, 2);
 addPoint(writer, "Cafe Poca Cosa", "restaurant", 5, 9);
 addPoint(writer, "Los Betos", "restaurant", 9, 6);
 addPoint(writer, "Nico's Taco Shop", "restaurant", 3, 8);

 writer.close();

 searcher = new IndexSearcher(directory);

 query = new TermQuery(new Term("type", "restaurant"));
 }

 private void addPoint(IndexWriter writer,
 String name, String type, int x, int y)
 throws IOException {
 Document doc = new Document();
 doc.add(new Field("name", name, Field.Store.YES,
 Field.Index.NOT_ANALYZED));
 doc.add(new Field("type", type, Field.Store.YES,
 Field.Index.NOT_ANALYZED));
 doc.add(new Field("location", x + "," + y, Field.Store.YES,
 Field.Index.NOT_ANALYZED));
 writer.addDocument(doc);
 }
}

The coordinates are indexed into a single location field as a string x, y. The location
could be encoded in numerous ways, but we opted for the simplest approach for this
example.

6.1.2 Implementing custom geographic sort

Before we delve into the class that performs our custom sort, let’s look at the test case
that we’re using to confirm that it’s working correctly:

Listing 6.1 Indexing geographic data
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

207Using a custom sort method

public void testNearestRestaurantToHome() throws Exception {
 Sort sort = new Sort(new SortField("location",
 new DistanceComparatorSource(0, 0)));

 TopDocs hits = searcher.search(query, null, 10, sort);

 assertEquals("closest",
 "El Charro",
 searcher.doc(hits.scoreDocs[0].doc).get("name"));
 assertEquals("furthest",
 "Los Betos",
 searcher.doc(hits.scoreDocs[3].doc).get("name"));
}

Home is at coordinates (0,0). Our test has shown that the first and last documents in
the returned results are the ones closest and furthest from home. Muy bien! Had we not
used a sort, the documents would’ve been returned in insertion order, because the
score of each hit is equivalent for the restaurant-type query. The distance computation,
using the basic distance formula, is done under our custom DistanceComparator-
Source, shown in listing 6.2.

public class DistanceComparatorSource
 extends FieldComparatorSource {
 private int x;
 private int y;

 public DistanceComparatorSource(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public FieldComparator newComparator(java.lang.String fieldName,
 int numHits, int sortPos,
 boolean reversed)
 throws IOException {
 return new DistanceScoreDocLookupComparator(fieldName,
 numHits);
 }

 private class DistanceScoreDocLookupComparator
 extends FieldComparator {
 private int[] xDoc, yDoc;
 private float[] values;
 private float bottom;
 String fieldName;

 public DistanceScoreDocLookupComparator(
 String fieldName, int numHits) throws IOException {
 values = new float[numHits];
 this.fieldName = fieldName;
 }

 public void setNextReader(IndexReader reader, int docBase)
 throws IOException {

Listing 6.2 DistanceComparatorSource

B

C

D

E

F
G

H

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

208 CHAPTER 6 Extending search

 xDoc = FieldCache.DEFAULT.getInts(reader, "x");
 yDoc = FieldCache.DEFAULT.getInts(reader, "y");
 }

 private float getDistance(int doc) {
 int deltax = xDoc[doc] - x;
 int deltay = yDoc[doc] - y;
 return (float) Math.sqrt(deltax * deltax + deltay * deltay);
 }

 public int compare(int slot1, int slot2) {
 if (values[slot1] < values[slot2]) return -1;
 if (values[slot1] > values[slot2]) return 1;
 return 0;
 }

 public void setBottom(int slot) {
 bottom = values[slot];
 }

 public int compareBottom(int doc) {
 float docDistance = getDistance(doc);
 if (bottom < docDistance) return -1;
 if (bottom > docDistance) return 1;
 return 0;
 }

 public void copy(int slot, int doc) {
 values[slot] = getDistance(doc);
 }

 public Comparable value(int slot) {
 return new Float(values[slot]);
 }

 public int sortType() {
 return SortField.CUSTOM;
 }
 }

 public String toString() {
 return "Distance from ("+x+","+y+")";
 }
}

The sorting infrastructure within Lucene interacts with the FieldComparatorSource
and FieldComparator B, E API in order to sort matching documents. For perfor-
mance reasons, this API is more complex than you’d otherwise expect. In particular,
the comparator is made aware of the size of the queue (passed as the numHits argu-
ment to newComparator) D being tracked within Lucene. In addition, the compara-
tor is notified every time a new segment is searched (with the setNextReader
method).

 The constructor is provided with the origin location C for computing distances.
With each call to setNextReader, we get all x and y values from the field cache F, I.
Be sure to understand the performance implications when a field cache is used, as

I

J

1)

1!

1@

1#

1$
described in section 5.1. These values are also used by the getDistance method J

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

209Using a custom sort method

which computes the actual distance for a given document, and in turn the value
method 1$, which Lucene invokes to retrieve the actual value used for sorting.

 While searching, when a document is competitive it’s inserted into the queue at a
given slot, as determined by Lucene. Your comparator is asked to compare hits within
the queue (compare 1)), set the bottom (worst scoring entry) slot in the queue (set-
Bottom H, 1!), compare a hit to the bottom of the queue (compareBottom 1@), and
copy a new hit into the queue (copy 1#). The values array G stores the distances for
all competitive documents in the queue.

 Sorting by runtime information such as a user’s location is an incredibly powerful
feature. At this point, though, we still have a missing piece: what’s the distance from
each of the restaurants to our current location? When using the TopDocs-returning
search methods, we can’t get to the distance computed. But a lower-level API lets us
access the values used for sorting.

6.1.3 Accessing values used in custom sorting

The IndexSearcher.search method you use when sorting, covered in section 5.2,
returns more information than the top documents:

public TopFieldDocs search(Query query, Filter filter,
 int nDocs, Sort sort)

TopFieldDocs is a subclass of TopDocs that adds the values used for sorting each hit.
The values are available via each FieldDoc, which subclasses ScoreDoc, contained in
the array of returned results. FieldDoc encapsulates the computed raw score, docu-
ment ID, and an array of Comparables with the value used for each SortField. Rather
than concerning ourselves with the details of the API, which you can get from
Lucene’s Javadocs or the source code, let’s see how to use it.

 Listing 6.3’s test case demonstrates the use of TopFieldDocs and FieldDoc to
retrieve the distance computed during sorting, this time sorting from work at location
(10,10).

public void testNeareastRestaurantToWork() throws Exception {
 Sort sort = new Sort(new SortField("unused",
 new DistanceComparatorSource(10, 10)));

 TopFieldDocs docs = searcher.search(query, null, 3, sort);

 assertEquals(4, docs.totalHits);
 assertEquals(3, docs.scoreDocs.length);

 FieldDoc fieldDoc = (FieldDoc) docs.scoreDocs[0];

 assertEquals("(10,10) -> (9,6) = sqrt(17)",
 new Float(Math.sqrt(17)),
 fieldDoc.fields[0]);

 Document document = searcher.doc(fieldDoc.doc);
 assertEquals("Los Betos", document.get("name"));

Listing 6.3 Accessing custom sorting values for search results

B

C
D

E

F

G

}

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

210 CHAPTER 6 Extending search

This lower-level API requires that we specify the maximum number of hits returned.

The total number of hits is still provided because all hits need to be determined to
find the three best ones.

The total number of documents (up to the maximum specified) are returned.

 docs.scoreDocs(0) returns a ScoreDoc and must be cast to FieldDoc to get sorting
values.

The value of the first (and only, in this example) SortField computation is available
in the first fields slot.

Getting the actual Document requires another call.

As you can see, Lucene’s custom sorting capabilities empower you to build arbitrary
sorting logic for those cases when sorting by relevance or by field value is insufficient.
We delved into a basic example, sorting by geographic distance, but that’s just one of
many possibilities. We’ll now switch to an even deeper extensions point inside Lucene:
custom collection.

6.2 Developing a custom Collector
In most applications with full-text search, users are looking for the top documents
when sorting by either relevance or field values. The most common usage pattern is
such that only these ScoreDocs are visited. In some scenarios, though, users want
more control over precisely which documents should be retained during searching.

 Lucene allows full customization of what you do with each matching document if
you create your own subclass of the abstract Collector base class. For example, per-
haps you wish to gather every single document ID that matched the query. Or perhaps
with each matched document you’d like to consult its contents or an external resource
to collate additional information. We’ll cover both of these examples in this section.

 You might be tempted to run a normal search, with a very large numHits, and then
postprocess the results. This strategy will work, but it’s an exceptionally inefficient
approach because these methods are spending sizable CPU computing scores, which
you may not need, and performing sorting, which you also may not need. Using a cus-
tom Collector class avoids these costs.

 We begin by delving into the methods that make up the custom Collector API
(see table 6.1).

Table 6.1 Methods to implement for a custom Collector

Method name Purpose

setNextReader(IndexReader
reader, int docBase)

Notifies the collector that a new segment is being searched, and
provides the segment’s IndexReader and the starting base for
documents.

setScorer(Scorer scorer) Provides a Scorer to the Collector. This is also called once
per segment. The Collector should call Scorer.score()
from within its collect() method to retrieve the score for the
current matched document.

 B
 C

 D

 E

 F

 G
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

211Developing a custom Collector

6.2.1 The Collector base class

Collector is an abstract base class that defines the API that Lucene interacts with
while doing searching. As with the FieldComparator API for custom sorting, Collec-
tor’s API is more complex than you’d expect, in order to enable high-performance hit
collection. Table 6.1 shows the four methods with a brief summary.

 All of Lucene’s core search methods use a Collector subclass under the hood to
do their collection. For example, when sorting by relevance, TopScoreDocCollector
is used. When sorting by field, it’s TopFieldCollector. Both of these are public
classes in the org.apache.lucene.search package, and you can instantiate them
yourself if needed.

 During searching, when Lucene finds a matching document, it calls the Collec-
tor’s collect(int docID) method. Lucene couldn’t care less what’s done with the
document; it’s up to the Collector to record the match, if it wants. This is the hot
spot of searching, so make sure your collect method does only the bare minimum
work required.

 Lucene drives searching one segment at a time, for higher performance, and noti-
fies you of each segment transition by calling the setNextReader(IndexReader
reader, int docBase). The provided IndexReader is specific to the segment. It will be
a different instance for each segment. It’s important for the Collector to record the
docBase at this point, because the docID provided to the collect method is relative
within each segment. To get the absolute or global docID, you must add docBase to it.
This method is also the place to do any segment-specific initialization required by
your collector. For example, you could use the FieldCache API, described in
section 5.1, to retrieve values corresponding to the provided IndexReader.

 Note that the relevance score isn’t passed to the collect method. This saves wasted
CPU for Collectors that don’t require it. Instead, Lucene calls the setScorer(Scorer)
method on the Collector, once per segment in the index, to provide a Scorer
instance. You should hold onto this Scorer, if needed, and then retrieve the relevance
score of the currently matched document by calling Scorer.score(). That method
must be called from within the collect method because it holds volatile data specific
to the current docID being collected. Note that Scorer.score() will recompute the
score every time, so if your collect method may invoke score multiple times, you
should call it once internally and simply reuse the returned result. Alternatively,

collect(int docID) Called for each document that matches the search. The docID is
relative to the current segment, so docBase must be added to it
to make it absolute.

acceptsDocsOutOfOrder() Return true if your Collector can handle out-of-order docIDs.
Some BooleanQuery instances can collect results faster if this
returns true.

Table 6.1 Methods to implement for a custom Collector (continued)

Method name Purpose
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

212 CHAPTER 6 Extending search

Lucene provides the ScoreCachingWrapperScorer, which is a Scorer implementation
that caches the score per document. Note also that Scorer is a rich and advanced API
in and of itself, but in this context you should only use the score method.

 The final method, acceptsDocsOutOfOrder(), which returns a Boolean, is invoked
by Lucene to see whether your Collector can tolerate docIDs that arrive out of sorted
order. Many collectors can, but some collectors either can’t accept docIDs out or
order, or would have to do too much extra work. If possible, you should return true,
because certain BooleanQuery instances can use a faster scorer under the hood if
given this freedom.

 Let’s look at two example custom Collectors: BookLinkCollector and AllDoc-
Collector.

6.2.2 Custom collector: BookLinkCollector

We’ve developed a custom Collector, called BookLinkCollector, which builds a map
of all unique URLs and the corresponding book titles matching a query. BookLinkCol-
lector is shown in listing 6.4.

public class BookLinkCollector extends Collector {
 private Map<String,String> documents = new HashMap<String,String>();
 private Scorer scorer;
 private String[] urls;
 private String[] titles;

 public boolean acceptsDocsOutOfOrder() {
 return true;
 }

 public void setScorer(Scorer scorer) {
 this.scorer = scorer;
 }

 public void setNextReader(IndexReader reader, int docBase)
 throws IOException {
 urls = FieldCache.DEFAULT.getStrings(reader, "url");
 titles = FieldCache.DEFAULT.getStrings(reader, "title2");
 }

 public void collect(int docID) {
 try {
 String url = urls[docID];
 String title = titles[docID];
 documents.put(url, title);
 System.out.println(title + ":" + scorer.score());
 } catch (IOException e) {
 }
 }

 public Map<String,String> getLinks() {
 return Collections.unmodifiableMap(documents);
 }

Listing 6.4 Custom Collector: collects all book links

Accept docIDs
out of order

Load FieldCache
values

Store details for
the match
}

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

213Developing a custom Collector

The collector differs from Lucene’s normal search result collection in that it does not
retain the matching document IDs. Instead, for each matching document, it adds a
mapping of URL to title into its private map, then makes that map available after the
search completes. For this reason, even though we are passed the docBase in setNex-
tReader, there’s no need to save it, as the urls and titles that we retrieve from the
FieldCache are based on the per-segment document ID. Using our custom Collector
requires the use of IndexSearcher’s search method variant, as shown in listing 6.5.

public void testCollecting() throws Exception {
 Directory dir = TestUtil.getBookIndexDirectory();
 TermQuery query = new TermQuery(new Term("contents", "junit"));
 IndexSearcher searcher = new IndexSearcher(dir);

 BookLinkCollector collector = new BookLinkCollector(searcher);
 searcher.search(query, collector);

 Map<String,String> linkMap = collector.getLinks();
 assertEquals("ant in action",
 linkMap.get("http://www.manning.com/loughran"));;
 searcher.close();
 dir.close();
}

During the search, Lucene delivers each matching docID to our collector; after the
search finishes, we confirm that the link map created by the collector contains the
right mapping for “ant in action.”

 Let’s look at a simple custom Collector, next.

6.2.3 AllDocCollector

Sometimes you’d like to simply record every single matching document for a search,
and you know the number of matches won’t be very large. Listing 6.6 shows a simple
class, AllDocCollector, to do just that.

public class AllDocCollector extends Collector {
 List<ScoreDoc> docs = new ArrayList<ScoreDoc>();
 private Scorer scorer;
 private int docBase;

 public boolean acceptsDocsOutOfOrder() {
 return true;
 }

 public void setScorer(Scorer scorer) {
 this.scorer = scorer;
 }

 public void setNextReader(IndexReader reader, int docBase) {
 this.docBase = docBase;

Listing 6.5 Testing the BookLinkCollector

Listing 6.6 A collector that gathers all matching documents and scores into a List
 }

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

214 CHAPTER 6 Extending search

 public void collect(int doc) throws IOException {
 docs.add(
 new ScoreDoc(doc+docBase,
 scorer.score()));
 }

 public void reset() {
 docs.clear();
 }

 public List<ScoreDoc> getHits() {
 return docs;
 }
}

You simply instantiate it, pass it to the search, and use the getHits() method to
retrieve all hits. But note that the resulting docIDs might be out of sorted order
because acceptsDocsOutOfOrder() returns true. Just change that to false, if this is a
problem.

 As you’ve seen, creating a custom Collector is quite simple. Lucene passes you the
docIDs that match and you’re free to do what you want with them. We created one col-
lector that populates a map, discarding the documents that match, and another that
gathers all matching documents. The possibilities are endless!

 Next we discuss useful ways to extend QueryParser.

6.3 Extending QueryParser
In section 3.5, we introduced QueryParser and showed that it has a few settings to
control its behavior, such as setting the locale for date parsing and controlling the
default phrase slop. QueryParser is also extensible, allowing subclassing to override
parts of the query-creation process. In this section, we demonstrate subclassing Query-
Parser to disallow inefficient wildcard and fuzzy queries, custom date-range handling,
and morphing phrase queries into SpanNearQuerys instead of PhraseQuerys.

6.3.1 Customizing QueryParser’s behavior

Although QueryParser has some quirks, such as the interactions with an analyzer, it
does have extensibility points that allow for customization. Table 6.2 details the meth-
ods designed for overriding and why you may want to do so.

 All of the methods listed return a Query, making it possible to construct something
other than the current subclass type used by the original implementations of these
methods. Also, each of these methods may throw a ParseException, allowing for
error handling.

 QueryParser also has extensibility points for instantiating each query type. These
differ from the points listed in table 6.2 in that they create the requested query type
and return it. Overriding them is useful if you only want to change which Query class
is used for each type of query without altering the logic of what query is con-
structed. These methods are newBooleanQuery, newTermQuery, newPhraseQuery,

Create absolute docID
Record score
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

215Extending QueryParser

newMultiPhraseQuery, newPrefixQuery, newFuzzyQuery, newRangeQuery, newMatch-
AllDocsQuery and newWildcardQuery. For example, if whenever a TermQuery is cre-
ated by QueryParser you’d like to instantiate your own subclass of TermQuery, simply
override newTermQuery.

6.3.2 Prohibiting fuzzy and wildcard queries

The subclass in listing 6.7 demonstrates a custom query parser subclass that disables
fuzzy and wildcard queries by taking advantage of the ParseException option.

Table 6.2 QueryParser’s extensibility points

Method Why override?

getFieldQuery(String
field,
Analyzer analyzer,
String queryText)
or
getFieldQuery(String
field,
Analyzer analyzer,
String queryText, int
slop)

These methods are responsible for the construction of either a
TermQuery or a PhraseQuery. If special analysis is needed,
or a unique type of query is desired, override this method. For
example, a SpanNearQuery can replace PhraseQuery to
force ordered phrase matches.

getFuzzyQuery(String
field,
String termStr, float
minSimilarity)

Fuzzy queries can adversely affect performance. Override and
throw a ParseException to disallow fuzzy queries.

getPrefixQuery(String
field,
String termStr)

This method is used to construct a query when the term ends
with an asterisk. The term string handed to this method doesn’t
include the trailing asterisk and isn’t analyzed. Override this
method to perform any desired analysis.

getRangeQuery(String
field, String start,
String end, boolean
inclusive)

Default range-query behavior has several noted quirks (see
section 3.5.3). Overriding could lowercase the start and end
terms, use a different date format, or handle number ranges by
converting to a NumericRangeQuery (see section 6.3.3).

getBooleanQuery(List
clauses)
or
getBooleanQuery(List
clauses, boolean
disableCoord)

Constructs a BooleanQuery given the clauses.

getWildcardQuery(String
field, String termStr)

Wildcard queries can adversely affect performance, so overrid-
den methods could throw a ParseException to disallow them.
Alternatively, because the term string isn’t analyzed, special han-
dling may be desired.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

216 CHAPTER 6 Extending search

public class CustomQueryParser extends QueryParser {
 public CustomQueryParser(Version matchVersion,
 String field, Analyzer analyzer) {
 super(matchVersion, field, analyzer);
 }

 protected final Query getWildcardQuery(String field, String termStr)
 throws ParseException {
 throw new ParseException("Wildcard not allowed");
 }

 protected Query getFuzzyQuery(String field, String term,
 float minSimilarity)
 throws ParseException {
 throw new ParseException("Fuzzy queries not allowed");
 }
}

To use this custom parser and prevent users from executing wildcard and fuzzy que-
ries, construct an instance of CustomQueryParser and use it exactly as you would Que-
ryParser, as shown in listing 6.8.

public void testCustomQueryParser() {
 CustomQueryParser parser =
 new CustomQueryParser(Version.LUCENE_30,
 "field", analyzer);
 try {
 parser.parse("a?t");
 fail("Wildcard queries should not be allowed");
 } catch (ParseException expected) {
 }

 try {
 parser.parse("xunit~");
 fail("Fuzzy queries should not be allowed");
 } catch (ParseException expected) {
 }
}

With this implementation, both of these expensive query types are forbidden, giving
you peace of mind in terms of performance and errors that may arise from these que-
ries expanding into too many terms. Our next QueryParser extension enables cre-
ation of NumericRangeQuery.

6.3.3 Handling numeric field-range queries

As you learned in chapter 2, Lucene can handily index numeric and date values.
Unfortunately, QueryParser is unable to produce the corresponding NumericRange-
Query instances at search time. Fortunately, it’s simple to subclass QueryParser to do

Listing 6.7 Disallowing wildcard and fuzzy queries

Listing 6.8 Using a custom QueryParser

Expected
so, as shown in listing 6.9.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

217Extending QueryParser

class NumericRangeQueryParser extends QueryParser {
 public NumericRangeQueryParser(Version matchVersion,
 String field, Analyzer a) {
 super(matchVersion, field, a);
 }
 public Query getRangeQuery(String field,
 String part1,
 String part2,
 boolean inclusive)
 throws ParseException {
 TermRangeQuery query = (TermRangeQuery)
 super.getRangeQuery(field, part1, part2,
 inclusive);
 if ("price".equals(field)) {
 return NumericRangeQuery.newDoubleRange(
 "price",
 Double.parseDouble(
 query.getLowerTerm()),
 Double.parseDouble(
 query.getUpperTerm()),
 query.includesLower(),
 query.includesUpper());
 } else {
 return query;
 }
 }
}

Using this approach, you rely on QueryParser to first create the TermRangeQuery, and
from that you construct the NumericRangeQuery as needed. Testing our NumericQuery-
Parser, like this:

public void testNumericRangeQuery() throws Exception {
 String expression = "price:[10 TO 20]";

 QueryParser parser = new NumericRangeQueryParser(Version.LUCENE_30,
 "subject", analyzer);

 Query query = parser.parse(expression);
 System.out.println(expression + " parsed to " + query);
}

yields the expected output (note that the 10 and 20 have been turned into floating
point values):

price:[10 TO 20] parsed to price:[10.0 TO 20.0]

As you’ve seen, extending QueryParser to handle numeric fields was straightforward.
Let’s do the same for date fields next.

Listing 6.9 Extending QueryParser to properly handle numeric fields

Get super()’s default
TermRangeQuery

Create matching
NumericRangeQuery

Return default
TermRangeQuery
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

218 CHAPTER 6 Extending search

6.3.4 Handling date ranges

QueryParser has built-in logic to detect date ranges: if the terms are valid dates,
according to DateFormat.SHORT and lenient parsing within the default or specified
locale, the dates are converted to their internal textual representation. By default, this
conversion will use the older DateField.dateToString method, which renders each
date with millisecond precision; this is likely not what you want. If you invoke Query-
Parser’s setDateResolution methods to state which DateTools.Resolution your
field(s) were indexed with, then QueryParser will use the newer DateTools.dateTo-
String method to translate the dates into strings with the appropriate resolution. If
either term fails to parse as a valid date, they’re both used as is for a textual range.

 But despite these two built-in approaches for handling dates, QueryParsers’s date
handling hasn’t been updated to handle date fields indexed as NumericField, which
is the recommended approach for dates, as described in section 2.6.2. Let’s see how
we can once again override newRangeQuery, this time to translate our date-based
range searches into the corresponding NumericRangeQuery, shown in listing 6.10.

class NumericDateRangeQueryParser extends QueryParser {
 public NumericDateRangeQueryParser(Version matchVersion,
 String field, Analyzer a) {
 super(matchVersion, field, a);
 }
 public Query getRangeQuery(String field,
 String part1,
 String part2,
 boolean inclusive)
 throws ParseException {
 TermRangeQuery query = (TermRangeQuery)
 super.getRangeQuery(field, part1, part2, inclusive);

 if ("pubmonth".equals(field)) {
 return NumericRangeQuery.newIntRange(
 "pubmonth",
 Integer.parseInt(query.getLowerTerm()),
 Integer.parseInt(query.getUpperTerm()),
 query.includesLower(),
 query.includesUpper());
 } else {
 return query;
 }
 }
}

In this case it’s still helpful to use QueryParser’s built-in logic for detecting and pars-
ing dates. You simply build on that logic in your subclass by taking the further step to
convert the query into a NumericRangeQuery. Note that in order to use this subclass
you must call QueryParser.setDateResolution, so that the resulting text terms are
created with DateTools, as shown in listing 6.11.

Listing 6.10 Extending QueryParser to handle date fields
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

219Extending QueryParser

public void testDateRangeQuery() throws Exception {
 String expression = "pubmonth:[01/01/2010 TO 06/01/2010]";

 QueryParser parser = new NumericDateRangeQueryParser(Version.LUCENE_30,
 "subject", analyzer);

 parser.setDateResolution("pubmonth", DateTools.Resolution.MONTH);
 parser.setLocale(Locale.US);

 Query query = parser.parse(expression);
 System.out.println(expression + " parsed to " + query);

 TopDocs matches = searcher.search(query, 10);
 assertTrue(“expecting at least one result !”, matches.totalHits > 0);
}

This test produces the following output:

pubmonth:[05/01/1988 TO 10/01/1988] parsed to pubmonth:[198805 TO 198810]

As you can see, QueryParser first parsed our textual date expressions (05/01/1988)
into normalized form (198805), and then our NumericDateRangeQueryParser sub-
class translated those normalized forms into the equivalent NumericRangeQuery.
CONTROLLING THE DATE-PARSING LOCALE

To change the locale used for date parsing, construct a QueryParser instance and call
setLocale(). Typically the client’s locale would be determined and used instead of
the default locale. For example, in a web application the HttpServletRequest object
contains the locale set by the client browser. You can use this locale to control the
locale used by date parsing in QueryParser, as shown in listing 6.12.

public class SearchServletFragment extends HttpServlet {
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 QueryParser parser = new NumericDateRangeQueryParser(
 Version.LUCENE_30,
 "contents",
 new StandardAnalyzer(Version.LUCENE_30));

 parser.setLocale(request.getLocale());
 parser.setDateResolution(DateTools.Resolution.DAY);

 Query query = null;
 try {
 query = parser.parse(request.getParameter("q"));
 } catch (ParseException e) {
 e.printStackTrace(System.err);
 }

 TopDocs docs = searcher.search(query, 10);
 }

Listing 6.11 Testing date range parsing

Listing 6.12 Using the client locale in a web application

Tell QueryParser
date resolution

Handle exception

Perform search and
render results
}

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

220 CHAPTER 6 Extending search

QueryParser’s setLocale is one way in which Lucene facilitates internationalization
(often abbreviated as I18N) concerns. Text analysis is another, more important, place
where such concerns are handled. Further I18N issues are discussed in section 4.8.

 Our final QueryParser customization shows how to replace the default Phrase-
Query with SpanNearQuery.

6.3.5 Allowing ordered phrase queries

When QueryParser parses a single term, or terms within double quotes, it delegates
the construction of the Query to a getFieldQuery method. Parsing an unquoted term
calls the getFieldQuery method without the slop signature (slop makes sense only on
multiterm phrase query); parsing a quoted phrase calls the getFieldQuery signature
with the slop factor, which internally delegates to the nonslop signature to build the
query and then sets the slop appropriately. The Query returned is either a TermQuery
or a PhraseQuery, by default, depending on whether one or more tokens are returned
from the analyzer.2 Given enough slop, PhraseQuery will match terms out of order in
the original text. There’s no way to force a PhraseQuery to match in order (except
with slop of 0 or 1). However, SpanNearQuery does allow in-order matching. A
straightforward override of getFieldQuery allows us to replace a PhraseQuery with an
ordered SpanNearQuery, shown in listing 6.13.

protected Query getFieldQuery(String field, String queryText,
 int slop)
 throws ParseException {
 Query orig = super.getFieldQuery(field, queryText, slop);

 if (!(orig instanceof PhraseQuery)) {
 return orig;
 }

 PhraseQuery pq = (PhraseQuery) orig;
 Term[] terms = pq.getTerms();
 SpanTermQuery[] clauses = new SpanTermQuery[terms.length];
 for (int i = 0; i < terms.length; i++) {
 clauses[i] = new SpanTermQuery(terms[i]);
 }

 SpanNearQuery query = new SpanNearQuery(
 clauses, slop, true);

 return query;
}

We delegate to QueryParser’s implementation for analysis and determination of
query type.

We override PhraseQuery and return anything else right away.

Listing 6.13 Translating PhraseQuery to SpanNearQuery

B

C

D

E

 B

 C
2 A PhraseQuery could be created from a single term if the analyzer created more than one token for it.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

221Custom filters

We pull all terms from the original PhraseQuery.

We create a SpanNearQuery with all the terms from the original PhraseQuery.

Our test case shows that our custom getFieldQuery is effective in creating a Span-
NearQuery:

public void testPhraseQuery() throws Exception {
 CustomQueryParser parser =
 new CustomQueryParser(Version.LUCENE_30,
 "field", analyzer);

 Query query = parser.parse("singleTerm");
 assertTrue("TermQuery", query instanceof TermQuery);

 query = parser.parse("\"a phrase\"");
 assertTrue("SpanNearQuery", query instanceof SpanNearQuery);
}

Another possible enhancement would be to add a toggle switch to the custom query
parser, allowing the in-order flag to be controlled by the user of the API.

 As you can see, QueryParser is easily extended to alter its logic in producing que-
ries from text. We’ll switch now to an important extensions point for Lucene: custom
filters.

6.4 Custom filters
If all the information needed to perform filtering is in the index, there’s no need to
write your own filter because the QueryWrapperFilter can handle it, as described in
section 5.6.5.

 But there are good reasons to factor external information into a custom filter. In
this section we tackle the following example: using our book example data and pre-
tending we’re running an online bookstore, we want users to be able to search within
our special hot deals of the day.

 You might be tempted to simply store the specials flag as an indexed field, but
keeping this up-to-date might prove too costly. Rather than reindex entire documents
when specials change, we’ll implement a custom filter that keeps the specials flagged
in our (hypothetical) relational database. Then we’ll see how to apply our filter dur-
ing searching, and finally we’ll explore an alternative option for applying the filter.

6.4.1 Implementing a custom filter

We start with abstracting away the source of our specials by defining this interface:

public interface SpecialsAccessor {
 String[] isbns();
}

The isbns() method returns those books that are currently specials. Because we
won’t have an enormous amount of specials at one time, returning all the ISBNs of the
books on special will suffice.

 D

 E
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

222 CHAPTER 6 Extending search

Now that we have a retrieval interface, we can create our custom filter, SpecialsFil-
ter. Filters extend from the org.apache.lucene.search.Filter class and must
implement the getDocIdSet(IndexReader reader) method, returning a DocIdSet.
Bit positions match the document numbers. Enabled bits mean the document for that
position is available to be searched against the query, and unset bits mean the docu-
ment won’t be considered in the search. Figure 6.2 illustrates an example Specials-
Filter that sets bits for books on special (see listing 6.14).

public class SpecialsFilter extends Filter {
 private SpecialsAccessor accessor;

 public SpecialsFilter(SpecialsAccessor accessor) {
 this.accessor = accessor;
 }

 public DocIdSet getDocIdSet(IndexReader reader) throws IOException {
 OpenBitSet bits = new OpenBitSet(reader.maxDoc());

 String[] isbns = accessor.isbns();

 int[] docs = new int[1];
 int[] freqs = new int[1];

 for (String isbn : isbns) {
 if (isbn != null) {
 TermDocs termDocs =
 reader.termDocs(new Term("isbn", isbn));
 int count = termDocs.read(docs, freqs);
 if (count == 1) {
 bits.set(docs[0]);

Listing 6.14 Retrieving filter information from external source with SpecialsFilter

Imperial
Secrets of
Health . . .

Godel
Escher, Bach

eXtreme
Programming

Explained

Pragmatic
Programmer

MindstormsTao Te Ching . . .

Full Index

Tao Te Ching Godel
Escher, Bach

Documents Seen by Searches Using SpecialsFilter

SpecialsFilter

1 0 0 0 1 0

Figure 6.2 A filter provides a bit for every document in the index. Only documents with 1 are accepted.

B

C

D

 }

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

223Custom filters

 }
 }

 return bits;
 }
}

The filter is quite straightforward. First we fetch the ISBNs B of the current specials.
Next, we interact with the IndexReader API to iterate over all documents matching
each ISBN C; in each case it should be a single document per ISBN because this is a
unique field. The document was indexed with Field.Index.NOT_ANALYZED, so we can
retrieve it directly with the ISBN. Finally, we record each matching document in an
OpenBitSet D, which we return to Lucene. Let’s test our filter during searching.

6.4.2 Using our custom filter during searching

To test that our filter is working, we created a simple TestSpecialsAccessor to return
a specified set of ISBNs, giving our test case control over the set of specials:

public class TestSpecialsAccessor implements SpecialsAccessor {
 private String[] isbns;

 public TestSpecialsAccessor(String[] isbns) {
 this.isbns = isbns;
 }

 public String[] isbns() {
 return isbns;
 }
}

Here’s how we test our SpecialsFilter, using the same setUp() that the other filter
tests used:

public void testCustomFilter() throws Exception {
 String[] isbns = new String[] {"9780061142666", "9780394756820"};

 SpecialsAccessor accessor = new TestSpecialsAccessor(isbns);
 Filter filter = new SpecialsFilter(accessor);
 TopDocs hits = searcher.search(allBooks, filter, 10);
 assertEquals("the specials", isbns.length, hits.totalHits);
}

We use a generic query that is broad enough to retrieve all the books, making asser-
tions easier to craft. But because our filter trimmed the search space, only the specials
are returned. With this infrastructure in place, implementing a SpecialsAccessor to
retrieve a list of ISBNs from a database should be easy; doing so is left as an exercise for
the savvy reader.

 Note that we made an important implementation decision not to cache the DocId-
Set in SpecialsFilter. Decorating SpecialsFilter with a CachingWrapperFilter
frees us from that aspect. Let’s see an alternative means of applying a filter during
searching.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

224 CHAPTER 6 Extending search

6.4.3 An alternative: FilteredQuery

To add to the filter terminology overload, one final option is FilteredQuery.3

FilteredQuery inverts the situation that searching with a filter presents. Using a filter,
an IndexSearcher’s search method applies a single filter during querying. Using the
FilteredQuery, though, you can turn any filter into a query, which opens up neat pos-
sibilities, such as adding a filter as a clause to a BooleanQuery.

 Let’s take the SpecialsFilter as an example again. This time, we want a more
sophisticated query: books in an education category on special, or books on Logo.4

We couldn’t accomplish this with a direct query using the techniques shown thus far,
but FilteredQuery makes this possible. Had our search been only for books in the
education category on special, we could’ve used the technique shown in the previous
code snippet instead.

 Our test case, in listing 6.15, demonstrates the described query using a Boolean-
Query with a nested TermQuery and FilteredQuery.

public void testFilteredQuery() throws Exception {
 String[] isbns = new String[] {"9780880105118"};

 SpecialsAccessor accessor = new TestSpecialsAccessor(isbns);
 Filter filter = new SpecialsFilter(accessor);

 WildcardQuery educationBooks =
 new WildcardQuery(new Term("category", "*education*"));
 FilteredQuery edBooksOnSpecial =
 new FilteredQuery(educationBooks, filter);

 TermQuery logoBooks =
 new TermQuery(new Term("subject", "logo"));

 BooleanQuery logoOrEdBooks = new BooleanQuery();
 logoOrEdBooks.add(logoBooks, BooleanClause.Occur.SHOULD);
 logoOrEdBooks.add(edBooksOnSpecial, BooleanClause.Occur.SHOULD);

 TopDocs hits = searcher.search(logoOrEdBooks, 10);
 System.out.println(logoOrEdBooks.toString());
 assertEquals("Papert and Steiner", 2, hits.totalHits);
}

This is the ISBN number for Rudolf Steiner’s A Modern Art of Education.

We construct a query for education books on special, which only includes Steiner’s
book in this example.

We construct a query for all books with logo in the subject, which only includes Mind-
storms in our sample data.

The two queries are combined in an OR fashion.

3 We’re sorry! We know that Filter, QueryWrapperFilter, FilteredQuery, and the completely unrelated
TokenFilter names can be confusing.

Listing 6.15 Using a FilteredQuery

B

C

D

E

 B

 C

 D

 E
4 Erik began his programming adventures with Logo on an Apple IIe.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

225Payloads

The getDocIdSet() method of the nested Filter is called each time a Filtered-
Query is used in a search, so we recommend that you use a caching filter if the query is
to be used repeatedly and the results of a filter don’t change.

 Filtering is a powerful means of overriding which documents a query may match,
and in this section you’ve seen how to create custom filters and use them during
searching, as well as how to wrap a filter as a query so that it may be used wherever a
query may be used. Filters give you a lot of flexibility for advanced searching.

6.5 Payloads
Payloads, an advanced feature in Lucene, enable an application to store an arbitrary
byte array for every occurrence of a term during indexing. This byte array is entirely
opaque to Lucene: it’s simply stored at each term position, during indexing, and then
can be retrieved during searching. Otherwise the core Lucene functionality doesn’t
do anything with the payload or make any assumptions about its contents. This means
you can store arbitrary encoded data that’s important to your application, and then
use it during searching, either to decide which documents are included in the search
results or to alter how matched documents are scored or sorted.

 All sorts of uses cases are enabled with payloads. One example, which we delve into
in this section, is boosting the same term differently depending on where it occurred
in the document. Another example is storing part-of-speech information for each
term in the index, and altering how filtering, scoring, or sorting is done based on that.
By creating a single-term field, you can store document-level metadata, such as an
application-specific unique identifier. Yet another example is storing formatting infor-
mation that was lost during analysis, such as whether a term was bold or italic, or what
font or font size was used.

 Position-specific boosting allows you to alter the score of matched documents
when the specific occurrences of each term were “important.” Imagine we’re indexing
mixed documents, where some of them are bulletins (weather warnings) and others
are more ordinary documents. You’d like a search for “warning” to give extra boost
when it occurs in a bulletin document. Another example is boosting terms that were
bolded or italicized in the original text, or that were contained within a title or header
tag for HTML documents. Although you could use field boosting to achieve this,
that’d require you to separate all the important terms into entirely separate fields,
which is often not feasible or desired. The payloads feature lets you solve this by boost-
ing on a term-by-term basis within a single field.

 Let’s see how to boost specific term occurrences using payloads. We’ll start with the
steps required to add payloads to tokens during analysis. Then, we’ll perform searches
that take our custom payloads into account. Finally, we’ll explore two other ways to
interact with payloads in Lucene: first via SpanQuery and second by directly accessing
Lucene’s TermPositions API.

 Let’s begin with augmenting analysis to produce payloads.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

226 CHAPTER 6 Extending search

6.5.1 Producing payloads during analysis

The first step is to create an analyzer that detects which tokens are important and
attaches the appropriate payloads. The TokenStream for such an analyzer should
define the PayloadAttribute, and then create a Payload instance when appropriate
and set the payload using PayloadAttribute.setPayload inside the incrementToken
method. Payloads are created with the following constructors:

Payload(byte[] data)
Payload(byte[] data, int offset, int length)

It’s perfectly fine to set a null payload for some tokens. In fact, for applications where
there’s a common default value, it’s best to represent that default value as a null pay-
load, instead of a payload with the default value encoded into it, to save space in your
index. Lucene simply records that there’s no payload available at that position.

 The analyzers contrib module includes several useful TokenFilters, as shown in
table 6.3. These classes translate certain existing attributes of a Token, such as type and
start/end offset, into a corresponding payload. The PayloadHelper class, which we’ll
use shortly in our use case, exposes useful functions to encode and decode numeric
values to and from a byte[].

Quite often, as is the case in our example, the logic you need to create a payload
requires more customization. In our case, we want to create a payload for those term
occurrences that should be boosted, containing the boost score, and set no payload
for all other terms. Fortunately, it’s straightforward to create your own TokenFilter to
implement such logic. Listing 6.16 shows our own BulletinPayloadsAnalyzer and
BulletinPayloadsFilter.

 Our logic is quite simple: if the document is a bulletin, which is determined by
checking whether the contents start with the prefix Bulletin:, we attach a payload that
encodes a float boost to any occurrence of the term warning. We use PayloadHelper
to encode the float into an equivalent byte array.

Table 6.3 TokenFilter in contrib/analyzers that encode certain TokenAttributes as payloads

Name Purpose

NumericPayloadTokenFilter Encodes a float payload for those tokens matching the
specified token type

TypeAsPayloadTokenFilter Encodes the token’s type as a payload on every token

TokenOffsetPayloadTokenFilter Encodes the start and end offset of each token into its
payload

PayloadHelper Static methods to encode and decode ints and floats into
byte array payloads
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

227Payloads

public class BulletinPayloadsFilter extends TokenFilter {

 private TermAttribute termAtt;
 private PayloadAttribute payloadAttr;
 private boolean isBulletin;
 private Payload boostPayload;

 BulletinPayloadsFilter(TokenStream in, float warningBoost) {
 super(in);
 payloadAttr = addAttribute(PayloadAttribute.class);
 termAtt = addAttribute(TermAttribute.class);
 boostPayload = new Payload(PayloadHelper.encodeFloat(warningBoost));
 }

 void setIsBulletin(boolean v) {
 isBulletin = v;
 }

 public final boolean incrementToken() throws IOException {
 if (input.incrementToken()) {
 if (isBulletin && termAtt.term().equals("warning")) {
 payloadAttr.setPayload(boostPayload);
 } else {
 payloadAttr.setPayload(null);
 }
 return true;
 } else {
 return false;
 }
 }
}

Using this analyzer, we can get our payloads into the index. But how do we use the
payloads during searching to boost scores for certain matches?

6.5.2 Using payloads during searching

Fortunately, Lucene provides a built-in query PayloadTermQuery, in the package
org.apache.lucene.search.payloads, for precisely this purpose. This query is just
like SpanTermQuery in that it matches all documents containing the specified term
and keeps track of the actual occurrences (spans) of the matches. But then it goes fur-
ther by enabling you to contribute a scoring factor based on the payloads that appear
at each term’s occurrence. To do this, you’ll have to create your own Similarity class
that defines the scorePayload method, like this:

public class BoostingSimilarity extends DefaultSimilarity {
 public float scorePayload(int docID, String fieldName,
 int start, int end, byte[] payload,
 int offset, int length) {
 if (payload != null) {
 return PayloadHelper.decodeFloat(payload, offset);
 } else {

Listing 6.16 Custom filter to add payloads to warning terms inside bulletin documents

Add payload
boost

Clear payload
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

228 CHAPTER 6 Extending search

 return 1.0F;
 }
 }
}

We again use PayloadHelper, this time to decode the byte array back into a float. For
every term occurrence, PayloadTermQuery invokes scorePayload to determine its
payload score. Then, it aggregates these scores across all term matches for each
matching document using a PayloadFunction instance that you provide. Lucene 2.9
offers three functions—MinPayloadFunction, AveragePayloadFunction, and Max-
PayloadFunction—but you can easily create your own subclass if necessary. Finally, by
default the aggregated payload score is multiplied by the normal score that SpanTerm-
Query would otherwise provide, thus “boosting” the score for that document. If you’d
rather entirely replace the score for the matching document with your payload score,
use this constructor:

PayloadTermQuery(Term term, PayloadFunction function,
 boolean includeSpanScore)

If you pass false for includeSpanScore, the score for each match will be the aggre-
gated payload score. Now that we have all the pieces, let’s pull it together into a test
case, as shown in listing 6.17.

public class PayloadsTest extends TestCase {

 Directory dir;
 IndexWriter writer;
 BulletinPayloadsAnalyzer analyzer;

 protected void setUp() throws Exception {
 super.setUp();
 dir = new RAMDirectory();
 analyzer = new BulletinPayloadsAnalyzer(5.0F);
 writer = new IndexWriter(dir, analyzer,
 IndexWriter.MaxFieldLength.UNLIMITED);
 }

 protected void tearDown() throws Exception {
 super.tearDown();
 writer.close();
 }

 void addDoc(String title, String contents) throws IOException {
 Document doc = new Document();
 doc.add(new Field("title",
 title,
 Field.Store.YES,
 Field.Index.NO));
 doc.add(new Field("contents",
 contents,
 Field.Store.NO,

Listing 6.17 Using payloads to boost certain term occurrences

Boost by 5.0
 Field.Index.ANALYZED));

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

229Payloads

 analyzer.setIsBulletin(contents.startsWith("Bulletin:"));
 writer.addDocument(doc);
 }

 public void testPayloadTermQuery() throws Throwable {
 addDoc("Hurricane warning",
 "Bulletin: A hurricane warning was issued " +
 "at 6 AM for the outer great banks");
 addDoc("Warning label maker",
 "The warning label maker is a delightful toy for " +
 "your precocious seven year old's warning needs");
 addDoc("Tornado warning",
 "Bulletin: There is a tornado warning for " +
 "Worcester county until 6 PM today");

 IndexReader r = writer.getReader();
 writer.close();

 IndexSearcher searcher = new IndexSearcher(r);

 searcher.setSimilarity(new BoostingSimilarity());

 Term warning = new Term("contents", "warning");

 Query query1 = new TermQuery(warning);
 System.out.println("\nTermQuery results:");
 TopDocs hits = searcher.search(query1, 10);
 TestUtil.dumpHits(searcher, hits);

 assertEquals("Warning label maker",
 searcher.doc(hits.scoreDocs[0].doc).get("title"));

 Query query2 = new PayloadTermQuery(warning,
 new AveragePayloadFunction());
 System.out.println("\nPayloadTermQuery results:");
 hits = searcher.search(query2, 10);
 TestUtil.dumpHits(searcher, hits);

 assertEquals("Warning label maker",
 searcher.doc(hits.scoreDocs[2].doc).get("title"));
 r.close();
 searcher.close();
 }
}

We index three documents, two of which are bulletins. Next, we do two searches,
printing the results. The first search is a normal TermQuery, which should return the
second document as the top result, because it contains two occurrences of the term
warning. The second query is a PayloadTermQuery that boosts the occurrence of warn-
ing in each bulletin by 5.0 boost (passed as the single argument to BulletinPayload-
sAnalyzer). Running this test produces this output:

TermQuery results:
0.2518424:Warning label maker
0.22259936:Hurricane warning
0.22259936:Tornado warning

Ranks first

Ranks last after boosts
BoostingTermQuery results:

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

230 CHAPTER 6 Extending search

0.7870075:Hurricane warning
0.7870075:Tornado warning
0.17807949:Warning label maker

Indeed, PayloadTermQuery caused the two bulletins (Hurricane warning and Tor-
nado warning) to get much higher scores, bringing them to the top of the results!

 Note that the payloads package also includes PayloadNearQuery, which is just like
SpanNearQuery except it invokes Similarity.scorePayload just like PayloadTerm-
Query. In fact, all of the SpanQuery classes have access to payloads, which we describe
next.

6.5.3 Payloads and SpanQuery

Although using PayloadTermQuery and PayloadNearQuery is the simplest way to use
payloads to alter scoring of documents, all of the SpanQuery classes allow expert access
to the payloads that occur within each matching span returned by the getSpans
method. At this point, none of the SpanQuery classes, besides SpanTermQuery and
SpanNearQuery, have subclasses that make use of the payloads. It’s up to you to sub-
class a SpanQuery class and override the getSpans method if you’d like to filter docu-
ments that match based on payload, or override the SpanScorer class to provide
custom scoring based on the payloads contained within each matched span. These are
advanced use cases, and only a few users have ventured into this territory, so your best
bet for inspiration is to spend some quality time on Lucene’s users list.

 The final exposure of payloads in Lucene’s APIs is TermPositions.

6.5.4 Retrieving payloads via TermPositions

The final Lucene API that has been extended with payloads is the TermPositions iter-
ator. This is an advanced internal API that allows you to step through the documents
containing a specific term, retrieving each document that matched along with all posi-
tions, as well as their payload, of that term’s occurrences in the document. TermPosi-
tions has these added methods:

boolean isPayloadAvailable()
int getPayloadLength()
byte[] getPayload(byte[] data, int offset)

Note that once you’ve called getPayload() you can’t call it again until you’ve
advanced to the next position by calling nextPosition(). Each payload can be
retrieved only once.

 Payloads are still under active development and exploration, in order to provide
more core support to make use of payloads for either result filtering or custom scor-
ing. Until the core support is fully fleshed out, you’ll need to use the extension points
described here to take advantage of this powerful feature. And stay tuned on the
user’s list!
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

231Summary

6.6 Summary
Lucene offers developers extreme flexibility in searching capabilities, so much so that
this is our third (and final!) chapter covering search. Custom sorting is useful when
the built-in sorting by relevance or field values isn’t sufficient. Custom Collector
implementations let you efficiently do what you want with each matched document as
it’s found, while custom Filters allow you to pull in any external information to con-
struct a filter.

 In this chapter, you saw that by extending QueryParser, you can refine how it con-
structs queries, in order to prevent certain kinds of queries or alter how each Query is
constructed. We also showed you how the advanced payloads functionality can be used
for refined control over which terms in a document are more important than others,
based on their positions.

 Equipped with the searching features from this chapter and chapters 3 and 5, you
have more than enough power and flexibility to integrate Lucene searching into your
applications. Our next chapter explains how to extract text from diverse document
formats using the Apache Tika project.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Part 2

Applied Lucene

Lucene itself is just a JAR, with the real fun and power coming from what
you build around it. Part 2 explores ways to leverage Lucene. Projects commonly
demand full-text searching of Microsoft Office, PDF, HTML, XML, and other doc-
ument formats. “Extracting text with Tika” (chapter 7) illuminates ways to index
these document types into Lucene. So many extensions have been developed to
augment and extend Lucene that we dedicate two chapters, “Essential Lucene
Extensions” (chapter 8) and “Further Lucene extensions” (chapter 9) to them.
Although Java is the primary language used with Lucene, the index format is lan-
guage neutral. “Using Lucene from other programming languages,”
(chapter 10) explores Lucene usage from languages such as C++, C#, Python,
Perl, and Ruby. “Lucene administration and performance tuning” (chapter 11
and the final chapter in part 2) dives into the nitty-gritty details for managing
Lucene’s consumption of resources like memory, disk space, and file descriptors.
You’ll also learn how to improve indexing and searching performance metrics.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Extracting text with Tika
One of the more mundane yet vital steps when building a search application is
extracting text from the documents you need to index. You might be lucky to have
an application whose content is already in textual format or whose documents are
always the same format, such as XML files or regular rows in a database. If you’re
unlucky, you must instead accept the surprisingly wide plethora of document for-
mats that are popular today, such as Outlook, Word, Excel, PowerPoint, Visio,
Flash, PDF, Open Office, Rich Text Format (RTF), and even archive file formats like
TAR, ZIP, and BZIP2. Seemingly textual formats, like XML or HTML, present chal-
lenges because you must take care not to accidentally include any tags or JavaScript
sources. The plain text format might seem simplest of all, yet determining its char-
acter set may not be easy.

 In the past it was necessary to “go it alone”: track down your own document fil-
ters, one by one, and interact with their unique and interesting APIs in order to

This chapter covers
Understanding Tika’s logical design

Using Tika’s built-in tool and APIs for text extraction

Parsing XML

Handling known Tika limitations
235

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

236 CHAPTER 7 Extracting text with Tika

extract the text you need. You’d also need to detect the document type and character
encoding yourself. Fortunately, there’s now an open source framework called Tika,
under the Apache Lucene top-level project, that handles most of this work for you.

 Tika has a simple-to-use API for providing a document source and then retrieving
the text filtered from it. In this chapter we’ll start with an overview of Tika, then delve
into its logical design, API, and tools. After showing you how to install Tika, we’ll dis-
cuss useful tools that let you filter a document without writing any Java code. Next
we’ll explore a class that extracts text programmatically and produces a correspond-
ing Lucene document. After that, we’ll examine two approaches for extracting fields
from XML content, and then we’ll wrap up by considering some of Tika’s limitations
and visiting a few alternative document filtering options.

7.1 What is Tika?
Tika was added to the Lucene umbrella in October 2008, after graduating from the
Apache incubator, which is the process newly created projects go through to become
an Apache project. The most recent release as of this writing is 0.6. Development con-
tinues at a rapid pace, and it’s expected there will be non-backward-compatible
changes in the march to the 1.0 release, so be sure to check Tika’s website at http://
lucene.apache.org/tika for the latest documentation.

 Tika is a framework that hosts plug-in parsers for each supported document type.
The framework presents the same standard API to the application for extracting text
and metadata from a document, and under the hood the plug-in parser interacts with
the external library using the custom API exposed by that library. This lets your appli-
cation use the same uniform API regardless of document type. When you need to
extract text from a document, Tika finds the right parser for the document (details on
this shortly).

 As a framework, Tika doesn’t do any of the document filtering itself. Rather, it
relies on external open source projects and libraries to do the heavy lifting. Table 7.1
lists the formats supported as of the 0.6 release, along with which project or library the
document parser is based on. There’s support for many common document formats
and new formats are added frequently, so check online for the latest list.

 In addition to extracting the body text for a document, Tika extracts metadata val-
ues for most document types. Tika represents metadata as a single String <-> String
map, with constants exposed for the common metadata keys, listed in table 7.2. These
constants are defined in the Metadata class in the org.apache.tika.metadata pack-
age. But not all parsers can extract metadata, and when they do, they may extract to
different metadata keys than you expect. In general the area of metadata extraction is
still in flux in Tika, so it’s best to test parsing some samples of your documents to
understand what metadata is exposed.

 Let’s drill down to learn how Tika models a document’s logical structure and what
concrete API is used to expose this.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://lucene.apache.org/tika
http://lucene.apache.org/tika
http://www.it-ebooks.info/

237What is Tika?

Table 7.1 Supported document formats and the library used to parse them

Format Library

Microsoft’s OLE2 Compound Document For-
mat (Excel, Word, PowerPoint, Visio, Outlook)

Apache POI

Microsoft Office 2007 OOXML Apache POI

Adobe Portable Document Format (PDF) PDFBox

Rich Text Format (RTF)—currently body text
only (no metadata)

Java Swing API (RTFEditorKit)

Plain text character set detection ICU4J library

HTML CyberNeko library

XML Java’s javax.xml classes

ZIP Archives Java’s built-in zip classes, Apache Commons Compress

TAR Archives Apache Ant, Apache Commons Compress

AR Archives Apache Commons Compress

CPIO Archives Apache Commons Compress

GZIP compression Java’s built-in support (GZIPInputStream) , Apache
Commons Compress

BZIP2 compression Apache Ant, Apache Commons Compress

Image formats (metadata only) Java’s javax.imageio classes

Java class files ASM library (JCR-1522)

Java JAR files Java’s built-in zip classes and ASM library, Apache Com-
mons Compress

MP3 audio (ID3v1 tags) Implemented directly

Other audio formats (wav, aiff, au) Java’s built-in support (javax.sound.*)

OpenDocument Parses XML directly

Adobe Flash Parses metadata from FLV files directly

MIDI files (embedded text, eg song lyrics) Java’s built-in support (javax.audio.midi.*)

WAVE Audio (sampling metadata) Java’s built-in support (javax.audio.sampled.*)
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

238 CHAPTER 7 Extracting text with Tika

7.2 Tika’s logical design and API
Tika uses the Extensible Hypertext Markup Language (XHTML) standard to model
all documents, regardless of their original format. XHTML is a markup language that
combines the best of XML and HTML: because an XHTML document is valid XML, it
can be programmatically processed using standard XML tools. Further, because
XHTML is mostly compatible with HTML 4 browsers, it can typically be rendered with
a modern web browser. With XHTML, a document is cast to this logical top-level
structure:

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>...</title>
 </head>
 <body>
 ...
 </body>
</html>

Within the <body>...</body> are other tags (such as <p>, <h1>, and <div>) repre-
senting internal document structure.

Table 7.2 Metadata keys that Tika extracts

Metadata Constant Description

RESOURCE_KEY_NAME The name of the file or resource that contains the document. A client
application can set this property to allow the parser to use filename heu-
ristics to determine the format of the document. The parser implementa-
tion may set this property if the file format contains the canonical name of
the file (for example, the GZIP format has a slot for the filename).

CONTENT_TYPE The declared content type of the document. A client application can set
this property based on an HTTP Content-Type header, for example. The
declared content type may help the parser to correctly interpret the docu-
ment. The parser implementation sets this property to the content type
according to which document was parsed.

CONTENT_ENCODING The declared content encoding of the document. A client application can
set this property based on an HTTP Content-Type header, for example. The
declared content type may help the parser to correctly interpret the docu-
ment. The parser implementation sets this property to the content type
according to which document was parsed.

TITLE The title of the document. The parser implementation sets this property if
the document format contains an explicit title field.

AUTHOR The name of the author of the document. The parser implementation sets
this property if the document format contains an explicit author field.

MSOffice.* Defines additional metadata from Microsoft Office: APPLICATION_NAME,
CHARACTER_COUNT, COMMENTS, KEYWORDS, LAST_AUTHOR,
LAST_PRINTED, LAST_SAVED, PAGE_COUNT, REVISION_NUMBER,
TEMPLATE, WORD_COUNT.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

239Tika’s logical design and API

 This is the logical structure of an XHTML document, but how does Tika deliver
that to your application? The answer is SAX (Simple API for XML), another well-estab-
lished standard used by XML parsers. With SAX, as an XML document is parsed, the
parser invokes methods on an instance implementing the org.xml.sax.Conten-
tHandler. This is a scalable approach for parsing XML documents because it enables
the application to choose what should be done with each element as it’s encountered.
Arbitrarily large documents can be processed with minimal consumption of RAM.

 The primary interface to Tika is the surprisingly simple parse method (in the
org.apache.tika.parser.Parser class):

void parse(InputStream stream
 ContentHandler handler,
 Metadata metadata,
 ParseContext context)

Tika reads the bytes for the document from the InputStream but won’t close it. We
recommend you close the stream using a try/finally clause.

 The document parser then decodes the bytes, translates the document into the
logical XHTML structure, and invokes the SAX API via the provided ContentHandler.
The third parameter, metadata, is used bidirectionally: input details, such as specified
Content-Type (from an HTTP server) or filename (if known), are set before invoking
parse, and then any metadata encountered while Tika is processing the document
will be recorded and returned. The last parameter is used to pass in arbitrary pro-
grammatic configuration for parsers that require it.

 You can see that Tika is simply a conduit: it doesn’t do anything with the document
text it encounters except invoke the ContentHandler. It’s then up to your application
to provide a ContentHandler that does something of interest with the resulting ele-
ments and text. But Tika includes helpful utility classes that implement Content-
Handler for common cases. For example, BodyContentHandler gathers all text within
the <body>...</body> part of the document and forwards it to another handler, Out-
putStream, Writer, or an internal string buffer for later retrieval.

 If you know for certain which document type you’re dealing with, you can directly
create the right parser (for example, PDFParser, OfficeParser, or HtmlParser) and
then invoke its parse method. If you’re unsure of the document’s type, Tika provides
an AutoDetectParser, which is a Parser implementation that uses various heuristics
to determine the document’s type and apply the correct parser.

 Tika tries to autodetect things like document format and the encoding of the char-
acter set (for text/plain documents). Still if you have preexisting information about
your documents, such as the original filename (containing a possibly helpful exten-
sion) or the character encoding, it’s best if you provide this information via the meta-
data input so Tika may use this. The filename should be added under Metadata.
RESOURCE_NAME_KEY; content type should be added under Metadata.CONTENT_TYPE,
and the content encoding should be added under Metadata.CONTENT_ENCODING.

 It’s time to get our feet wet! Let’s walk through the installation process for Tika.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

240 CHAPTER 7 Extracting text with Tika

7.3 Installing Tika
You’ll first need a build of Tika. The source code with this book includes the 0.6
release of Tika, in the lib directory, but likely you’re staring at a newer release. The
binary builds for Tika are included in the Maven 2 repository, which you may either
download directly or reference in your application if you’re already using Maven 2.

 Building Tika from sources is also easy, although you should check “Getting
Started” on the Tika website for any changes since this was written. Download the
source release (for example, apache-tika-0.6-src.tar.gz for version 0.6) and extract it.
Tika uses Apache’s Maven 2 build system and requires Java 5 or higher, so you’ll need
to first install those dependencies. Then run mvn install from within the Tika
source directory you unpacked. That command will download a bunch of dependen-
cies into your Maven area, compile Tika’s sources, run tests, and produce the result-
ing JARs. If all goes well, you’ll see BUILD SUCCESSFUL printed at the end. If you
encounter OutOfMemoryError, you can increase the heap size of the JVMs that maven
spawns by setting the environment variable MAVEN_OPTS (for example, type export
MAVEN_OPTS="-Xmx2g" for the bash shell).

 Tika has a modular design, consisting of these components:

tika-core contains the key interfaces and core functionality.
tika-parsers contains all the adapters to external parser libraries.
tika-app bundles everything together in a single executable JAR.

The sources for each of these components live in subdirectories by the same name.
Once your build completes, you’ll find a target subdirectory (under each of the com-
ponent directories) containing the built JAR, such as tika-app-0.6.jar.

 It’s most convenient to use the tika-app-0.6.jar, because it has all dependencies,
including the classes for all external parsers that Tika uses, contained within it. If for
some reason that’s not possible or you’d like to pick which external JARs your applica-
tion requires, you can use Maven to gather all dependency JARs into the target/
dependency directory under each component directory.

NOTE You can gather all required dependency JARs by running mvn depen-
dency:copy-dependencies. This command will copy the required JARs
out of your Maven area and into the target/dependency directory under
each component directory. This command is useful if you intend to use
Tika outside of Maven 2.

Now that we’ve built Tika, it’s time to finally extract some text. We’ll start with Tika’s
built-in text extraction tool.

7.4 Tika’s built-in text extraction tool
Tika comes with a simple built-in tool allowing you to extract text from documents in
the local file system or via URL. This tool creates an AutoDetectParser instance to fil-
ter the document, and then provides a few options for interacting with the results.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

241Tika’s built-in text extraction tool

The tool can run either with a dedicated GUI or in a command line–only mode, allow-
ing you to further process its output, using pipes, using other command-line tools. To
run the tool with a GUI:

java -jar lib/tika-app-0.6.jar --gui

This command brings up a simple GUI window, in which you can drag and drop files
in order to test how the filters work with them. Figure 7.1 shows the window after
dragging the Microsoft Word document for chapter 2 of this book onto the window.
The window has multiple tabs showing different text extracted during filtering:

The Formatted Text tab shows the XHTML, rendered with Java’s built-in
javax.swing.JEditorPane as text/html content.
The Plain Text tab shows only the text and whitespace parts, extracted from the
XHTMLdocument.
The Structured Text tab shows the raw XHTMLsource.
The Metadata tab contains all metadata fields extracted from the document.
The Errors tab describes any errors encountered while parsing the document.

Although the GUI tool is a great way to quickly test Tika on a document, it’s often
more useful to use the command line–only invocation:

cat Document.pdf | java -jar lib/tika-app-0.6.jar -

This command prints the full XHTML output from the parser (the extra – at the end
of the command tells the tool to read the document from the standard input; you
could also provide the filename directly instead of piping its contents into the com-
mand). This tool accepts various command-line options to change its behavior:

 --help or -? prints the full usage.
 --verbose or –v prints debug messages.

Figure 7.1 You can drag and
drop any binary document onto
Tika’s built-in text extraction tool
GUI in order to see what text and

metadata Tika extracts.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

242 CHAPTER 7 Extracting text with Tika

 --gui or –g runs the GUI.
 --encoding=X or –eX specifies the output encoding to use.
 --xml or –x outputs the XHTML content (this is the default behavior). This cor-
responds to the Structured Text tab from the GUI.
 --html or –h outputs the HTML content, which is a simplified version of the
XHTML content. This corresponds to the Formatted text (rendered as HTML)
from the GUI.
 --text or –t outputs the plain-text content. This corresponds to the Plain Text
tab from the GUI.
 --metadata or –m outputs only the metadata keys and values. This corresponds
to the Metadata tab from the GUI.

You could use Tika’s command-line tool as the basis of your text extraction solution.
It’s simple to use and fast to deploy. But if you need more control over which parts of
the text are used, or which metadata fields to keep, you’ll need to use Tika’s program-
matic API, which we cover next.

7.5 Extracting text programmatically
We’ve seen the signature for Tika’s simple parse API, which is the core of any text
extraction based on Tika. But what about the rest of the text extraction process? How
can you build a Lucene document from a SAX ContentHandler? That’s what we’ll do
now. We’ll also see a useful utility class, aptly named Tika, that provides some methods
that are particularly useful for integrating with Lucene. Finally, we’ll show you how to
customize which parser Tika chooses for each MIME type.

NOTE Tika is advancing very quickly, so it’s likely by the time you read this there
is a good out-of-the-box integration of Lucene and Tika, so be sure to
check at http://lucene.apache.org/tika. Solr already has a good integra-
tion: if you POST binary documents, such as PDFs or Microsoft Word doc-
uments, Solr will use Tika under-the-hood to extract and index text with
flexible field mappings.

7.5.1 Indexing a Lucene document

Recall that the Indexer tool from chapter 1 has the serious limitation that it can only
index plain-text files (with the extension .txt). TikaIndexer, shown in listing 7.1, fixes
that! The basic approach is straightforward. You have a source for the document,
which you open as an InputStream. Then you create an appropriate ContentHandler
for your application, or use one of the utility classes provided with Tika. Finally, you
build the Lucene Document instance from the metadata and text encountered by the
ContentHandler.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://lucene.apache.org/tika
http://www.it-ebooks.info/

243Extracting text programmatically

public class TikaIndexer extends Indexer {

 private boolean DEBUG = false;

 static Set<String> textualMetadataFields
 = new HashSet<String>();
 static {
 textualMetadataFields.add(Metadata.TITLE);
 textualMetadataFields.add(Metadata.AUTHOR);
 textualMetadataFields.add(Metadata.COMMENTS);
 textualMetadataFields.add(Metadata.KEYWORDS);
 textualMetadataFields.add(Metadata.DESCRIPTION);
 textualMetadataFields.add(Metadata.SUBJECT);
 }

 public static void main(String[] args) throws Exception {
 if (args.length != 2) {
 throw new IllegalArgumentException("Usage: java " +
 TikaIndexer.class.getName() +
 " <index dir> <data dir>");
 }

 TikaConfig config = TikaConfig.getDefaultConfig();
 List<String> parsers = new ArrayList<String>(config.getParsers()
 .keySet());
 Collections.sort(parsers);
 Iterator<String> it = parsers.iterator();
 System.out.println("Mime type parsers:");
 while(it.hasNext()) {
 System.out.println(" " + it.next());
 }
 System.out.println();

 String indexDir = args[0];
 String dataDir = args[1];

 long start = new Date().getTime();
 TikaIndexer indexer = new TikaIndexer(indexDir);
 int numIndexed = indexer.index(dataDir, null);
 indexer.close();
 long end = new Date().getTime();

 System.out.println("Indexing " + numIndexed + " files took "
 + (end - start) + " milliseconds");
 }

 public TikaIndexer(String indexDir) throws IOException {
 super(indexDir);
 }

 protected Document getDocument(File f) throws Exception {

 Metadata metadata = new Metadata();
 metadata.set(Metadata.RESOURCE_NAME_KEY, f.getName());

 InputStream is = new FileInputStream(f);

Listing 7.1 Class to extract text from arbitrary documents and index it with Lucene

B

C

D

E

F

 Parser parser = new AutoDetectParser(); G

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

C

E

244 CHAPTER 7 Extracting text with Tika

 ContentHandler handler = new BodyContentHandler();
 ParseContext context = new ParseContext();
 context.set(Parser.class, parser);

 try {
 parser.parse(is, handler, metadata,
 new ParseContext());
 } finally {
 is.close();
 }

 Document doc = new Document();

 doc.add(new Field("contents", handler.toString(),
 Field.Store.NO, Field.Index.ANALYZED));

 if (DEBUG) {
 System.out.println(" all text: " + handler.toString());
 }

 for(String name : metadata.names()) {
 String value = metadata.get(name);

 if (textualMetadataFields.contains(name)) {
 doc.add(new Field("contents", value,
 Field.Store.NO, Field.Index.ANALYZED));
 }

 doc.add(new Field(name, value,
 Field.Store.YES, Field.Index.NO));

 if (DEBUG) {
 System.out.println(" " + name + ": " + value);
 }
 }

 if (DEBUG) {
 System.out.println();
 }

 doc.add(new Field("filename", f.getCanonicalPath(),
 Field.Store.YES, Field.Index.NOT_ANALYZED));

 return doc;
 }
}

In TikaIndexer, we simply subclass the original Indexer and override the static main
and getDocument methods:

Set debug flag to true for verbose output.

List the metadata fields that we consider textual. After the document is parsed, we pull
out any of these metadata fields that appeared in the document and include their val-
ues in the contents field on the document.

Iterate through all of Tika’s Parsers and print them, to see what document types it
can currently handle.

Create a Metadata instance using the Tika.getFileMetadata() method, which

H
I

J

1)

1!

1@

1#

1$

 B

 1! 1@

 D

 1# 1$

records the name of our file so Tika can use that to guess the document type. Any

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

H I
245Extracting text programmatically

discovered fields in the document are returned in this same Metadata instance, and
we store them in the document. We also separately store the file path.

Open the file for reading, then use AutoDetectParser to find the appropriate parser.

BodyContentHandler saves us from having to create our own content handler. It gath-
ers all text in the body, which we then add to the contents field for the document. We
set up the ParseContext and invoke the parser’s parse method to do all the real work.

This example will work well, but you should fix a few things before using it in
production:

Catch and handle the exceptions that may be thrown by parser.parse. If the
document is corrupted, you’ll see a TikaException. If there was a problem
reading the bytes from the InputStream, you’ll encounter an IOException. You
may see class loader exceptions if the required parser couldn’t be located or
instantiated.
Be more selective about which metadata fields you want in your index and how
you’d like to index them. Your choices are very much application dependent.
Be more selective about which text is indexed. Right now TikaIndexer simply
appends together all text from the document into the contents field by adding
more than one instance of that field name to the document. You may instead
want to handle different substructures of the document differently, and per-
haps use an analyzer that sets a positionIncrementGap so that phrases and
span queries can’t match across two different contents fields.
Add custom logic to filter out known “uninteresting” portions of text docu-
ments, such as standard headers and footer text that appear in all documents.
If your document’s text could be very large in size, consider using the
Tika.parse utility method (described in the next section) instead.

As you can see, it’s quite simple using Tika’s programmatic APIs to extract text and
build a Lucene document. In our example, we used the parse API from AutoDetect-
Parser, but Tika also provides utility APIs that might be a useful alternate path for
your application.

7.5.2 The Tika utility class

The Tika class, in the org.apache.tika package, is a utility class that exposes a num-
ber of helpful utility methods, shown in Table 7.3.

Table 7.3 Useful methods exposed by the Tika utility class

Method Purpose

String detect(…) Detects the media type of the provided InputStream, file, or
URL, with optional metadata

Reader parse(…) Parses the InputStream, file, or URL, returning a Reader
from which you can read the text

F G

 J 1)
String parseToString(…) Parses the InputStream, file, or URL to a String

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

246 CHAPTER 7 Extracting text with Tika

These methods often let you create a one-liner to extract the text from your docu-
ment. One particularly helpful method for integrating with Lucene is the Reader
parse(…) method, which parses the document but exposes a Reader to read the text.
Lucene can index text directly from a Reader, making this is a simple way to index the
text extracted from a document.

 The returned Reader is an instance of ParsingReader, from the org.apache.
tika.parser package, and it has a clever implementation. When created, it spawns a
background thread to parse the document, using the BodyContentHandler. The
resulting text is written to a PipedWriter (from java.io), and a corresponding
PipedReader is returned to you. Because of this streaming implementation, the full
text of the document is never materialized at once. Instead, the text is created as the
Reader consumes it, with a small shared buffer. This means even documents that parse
to an exceptionally large amount of text will use little memory during filtering.

 During creation, ParsingReader also attempts to process all metadata for the doc-
ument, so after it’s created but before indexing the document you should call the
getMetadata() method and add any important metadata to your document.

 This class may be a great fit for your application. But because a thread is spawned
for every document, and because PipedWriter and PipedReader are used, it’s likely
net indexing throughput is slower than if you simply materialize the full text yourself
up front (say, with StringBuilder). Still, if materializing the full text up front is out of
the question, because your documents may be unbounded in size, this method is a
real lifesaver.

7.5.3 Customizing parser selection

Tika’s AutoDetectParser first determines the MIME type of the document, through
various heuristics, and then uses that MIME type to look up the appropriate parser. To
do that lookup, Tika uses an instance of TikaConfig, which is a simple class that loads
the mapping of MIME type to parser class via an XML file. The default TikaConfig class
can be obtained with the static getDefaultConfig method, which in turn loads the file
tika-config.xml that comes with Tika. Because this is an XML file, you can easily open it
with your favorite text editor to see which MIME types Tika can presently handle. We
also used TikaConfig’s getParsers method in listing 7.1 to list the MIME types.

 If you’d like to change which parser is used for a given MIME type, or add your own
parser to handle a certain MIME type, create your own corresponding XML file and
instantiate your own TikaConfig from that file. Then, when creating AutoDetect-
Parser, pass in your TikaConfig instance.

 Now that we’ve seen all the nice things Tika can do, let’s briefly touch on some
known limitations.

7.6 Tika’s limitations
As a new framework, Tika has a few known challenges that it’s working through. Some
of these issues are a by-product of its design and won’t change with time without major
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

247Indexing custom XML

changes, whereas others are solvable problems and will likely be resolved by the time
you read this.

 The first challenge is loss of document structure in certain situations. In general,
some documents may have a far richer structure than the simple standard XHTML
model used by Tika. In our example, addressbook.xml has a rich structure, containing
two entries, each with rich specific fields. But Tika regularizes this down to a fixed
XHTML structure, thus losing some information. Fortunately, there are other ways to
create rich documents from XML, as you’ll learn in the next section.

 Another limitation is the astounding number of dependencies when using Tika. If
you use the standalone JAR, this results in a large number of classes in that JAR. If
you’re not using the standalone JAR, you’ll need many JAR files on your classpath. In
part, this is because Tika relies on numerous external packages to do the actual pars-
ing. But it’s also because these external libraries often do far more than Tika requires.
For example, PDFBox and Apache POI understand document fonts, layouts, and
embedded graphics, and are able to create new documents in the binary format or
modify existing documents. Tika only requires a small portion of this (the “extract
text” part), yet these libraries don’t typically factor that out as a standalone compo-
nent. As a result, numerous excess classes and JARs end up on the classpath, which
could cause problems if they conflict with other JARs in your application. To put this
in perspective, Tika’s 0.6 JAR weighs in at about 15MB, whereas Lucene’s core JAR is
about 1MB!

 Another challenge is certain document parsers, such as Microsoft’s OLE2 Com-
pound Document Format, require full random access to the document’s bytes, which
InputStream doesn’t expose. In such cases Tika currently copies all bytes from the
stream into a temporary file, which is then opened directly for random access. A
future improvement, possibly already done by the time you read this, will allow you to
pass a random access stream directly to Tika (if your document is already stored and
accessible via a random access file), to avoid this unnecessary copy.

 Next you’ll see how to extract text from XML content while preserving its full
structure.

7.7 Indexing custom XML
XML is a useful markup language for representing document structure using your
own schema or DTD. Unfortunately, Tika only supports simplistic handling of such
content: it strips all tags, and extracts all text between the tags. In short, it discards all
of the document’s structure.

 Typically this is not what you want; instead you need custom control over which
tags within the XML are converted into fields of your document. To do this, you
shouldn’t use Tika at all, but rather build your own logic to extract the tags. In this sec-
tion we’ll describe two approaches for parsing XML content and creating Lucene doc-
uments. The first is to use an XML SAX parser. The second is to build a converter using
the Apache Commons Digester project, which simplifies access to an XML document’s

structure.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

248 CHAPTER 7 Extracting text with Tika

 As our working example throughout this section, listing 7.2 shows an XML snippet
holding a single entry from an imaginary address book. It has a clear structure,
recording the usual details about each contact. Notice, too, that the <contact> ele-
ment has an attribute type. We’ll extract this type, along with the text in all the ele-
ments, as separate fields in a Lucene document.

<?xml version='1.0' encoding='utf-8'?>
<address-book>
 <contact type="individual">
 <name>Zane Pasolini</name>
 <address>999 W. Prince St.</address>
 <city>New York</city>
 <province>NY</province>
 <postalcode>10013</postalcode>
 <country>USA</country>
 <telephone>+1 212 345 6789</telephone>
 </contact>
</address-book>

7.7.1 Parsing using SAX

SAX defines an event-driven interface in which the parser invokes one of several
methods supplied by the caller when a parsing event occurs. Events include begin-
nings and endings of documents and their elements, parsing errors, and so on. List-
ing 7.3 shows our solution for parsing the XML address book and converting it to a
Lucene document.

public class SAXXMLDocument extends DefaultHandler {

 private StringBuilder elementBuffer = new StringBuilder();
 private Map<String,String> attributeMap = new HashMap<String,String> ();

 private Document doc;

 public Document getDocument(InputStream is)
 throws DocumentHandlerException {

 SAXParserFactory spf = SAXParserFactory.newInstance();
 try {
 SAXParser parser = spf.newSAXParser();
 parser.parse(is, this);
 } catch (Exception e) {
 throw new DocumentHandlerException(
 "Cannot parse XML document", e);
 }

 return doc;
 }

 public void startDocument() {
 doc = new Document();

Listing 7.2 XML snippet representing an address book entry

Listing 7.3 Using the SAX API to parse an address book entry

Start parserB

Create new
document

C

 }

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

249Indexing custom XML

 public void startElement(String uri, String localName,
 String qName, Attributes atts)
 throws SAXException {

 elementBuffer.setLength(0);
 attributeMap.clear();
 int numAtts = atts.getLength();
 if (numAtts > 0) {
 for (int i = 0; i < numAtts; i++) {
 attributeMap.put(atts.getQName(i), atts.getValue(i));
 }
 }
 }

 public void characters(char[] text, int start, int length) {
 elementBuffer.append(text, start, length);
 }

 public void endElement(String uri, String localName,
 String qName)
 throws SAXException {
 if (qName.equals("address-book")) {
 return;
 }
 else if (qName.equals("contact")) {
 for (Entry<String,String> attribute : attributeMap.entrySet()) {
 String attName = attribute.getKey();
 String attValue = attribute.getValue();
 doc.add(new Field(attName, attValue, Field.Store.YES,
 Field.Index.NOT_ANALYZED));
 }
 }
 else {
 doc.add(new Field(qName, elementBuffer.toString(), Field.Store.YES,

Field.Index.NOT_ANALYZED));
 }
 }

 public static void main(String args[]) throws Exception {
 SAXXMLDocument handler = new SAXXMLDocument();
 Document doc = handler.getDocument(
 new FileInputStream(new File(args[0])));
 System.out.println(doc);
 }
}

The five key methods in this listing are getDocument, startDocument, startElement,
characters, and endElement. Also note the elementBuffer and the attributeMap.
The former is used to store the textual representation of the CDATA enclosed by the
current document element. Some elements may contain attributes, such as the <con-
tact> element containing the attribute type, in our address book entry. The attrib-
uteMap is used for storing names and the value of the current element’s attributes.

 The getDocument method B doesn’t do much work: it creates a new SAX parser
and passes it a reference to the InputStream of the XML document. From there, the

Record
attributes

D

Gather
text

E

Add fieldsF
parser implementation calls the other four key methods in this class, which together

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

250 CHAPTER 7 Extracting text with Tika

create a Lucene document instance that’s eventually returned by the getDocument
method.

 In startDocument C, which is called when XML document parsing starts, we only
create a new instance of the Lucene Document. This is the Document that we’ll eventu-
ally populate with fields.

 The startElement method D is called whenever the beginning of a new XML ele-
ment is found. We first erase the elementBuffer by setting its length to 0, and clear
the attributeMap to remove data associated with the previous element. If the current
element has attributes, we iterate through them and save their names and values in
the attributeMap. In the case of the XML document in listing 7.2, this happens only
when startElement method is called for the <contact> element, because only that
element has an attribute.

 The characters method E may be called multiple times during the processing of
a single XML element. In it we append to our elementBuffer the element contents
passed into the method.

 The last method of interest is endElement F, where you can finally see more of
Lucene in action. This method is called when the parser processes the closing tag of
the current element. Therefore, this is the method where we have all the information
about the XML element that was just processed. We aren’t interested in indexing the
top-level element, <address-book>, so we immediately return from the method in
that case. Similarly, we aren’t interested in indexing the <contact> element. But we’re
interested in indexing that <contact>’s attributes, so we use attributeMap to get attri-
bute names and values, and add them to the Lucene document. All other elements of
our address book entry are treated equally, and we blindly index them as
Field.Index.NOT_ANALYZED. Attribute values as well element data are indexed.

 The final document returned is a ready-to-index Lucene document populated with
fields whose names are derived from XML elements’ names and whose values corre-
spond to the textual content of those elements. You can run this tool by typing ant
SAXXMLDocument at the command line in the root directory after unpacking the book’s
source code. It will produce output like this, showing you the document it created:

Document<stored,indexed<name:Zane Pasolini>
stored,indexed<address:999 W. Prince St.>
stored,indexed<city:New York>
stored,indexed<province:NY>
stored,indexed<postalcode:10013>
stored,indexed<country:USA>
stored,indexed<telephone:+1 212 345 6789>>

Although this code alone will let you index XML documents, let’s look at another
handy tool for parsing XML: Digester.

7.7.2 Parsing and indexing using Apache Commons Digester

Digester, available at http://commons.apache.org/digester/, is a subproject of the

Apache Commons project. It offers a simple, high-level interface for mapping XML

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://commons.apache.org/digester/
http://www.it-ebooks.info/

251Indexing custom XML

documents to Java objects; some developers find it easier to use than DOM or SAX
XML parsers. When Digester finds developer-defined patterns in an XML document, it
takes developer-specified actions.

 The DigesterXMLDocument class in listing 7.4 parses XML documents, such as our
address book entry (shown in listing 7.2), and returns a Lucene document with XML
elements represented as fields.

public class DigesterXMLDocument {

 private Digester dig;
 private static Document doc;

 public DigesterXMLDocument() {

 dig = new Digester();
 dig.setValidating(false);

 dig.addObjectCreate("address-book", DigesterXMLDocument.class);
 dig.addObjectCreate("address-book/contact", Contact.class);

 dig.addSetProperties("address-book/contact", "type", "type");

 dig.addCallMethod("address-book/contact/name",
 "setName", 0);
 dig.addCallMethod("address-book/contact/address",
 "setAddress", 0);
 dig.addCallMethod("address-book/contact/city",
 "setCity", 0);
 dig.addCallMethod("address-book/contact/province",
 "setProvince", 0);
 dig.addCallMethod("address-book/contact/postalcode",
 "setPostalcode", 0);
 dig.addCallMethod("address-book/contact/country",
 "setCountry", 0);
 dig.addCallMethod("address-book/contact/telephone",
 "setTelephone", 0);

 dig.addSetNext("address-book/contact", "populateDocument");
 }

 public synchronized Document getDocument(InputStream is)
 throws DocumentHandlerException {

 try {
 dig.parse(is);
 }
 catch (IOException e) {
 throw new DocumentHandlerException(
 "Cannot parse XML document", e);
 }
 catch (SAXException e) {
 throw new DocumentHandlerException(
 "Cannot parse XML document", e);
 }

Listing 7.4 Using Apache Commons Digester to parse XML

BCreate
DigesterXMLDocument

CCreate
Contact

D
Set type

attribute

Set name
propertyE

F
Call

populateDocument

Parse XML
InputStreamG
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

252 CHAPTER 7 Extracting text with Tika

 return doc;
 }

 public void populateDocument(Contact contact) {

 doc = new Document();

 doc.add(new Field("type", contact.getType(), Field.Store.YES,
 Field.Index.NOT_ANALYZED));
 doc.add(new Field("name", contact.getName(), Field.Store.YES,
 Field.Index.NOT_ANALYZED));
 doc.add(new Field("address", contact.getAddress(), Field.Store.YES,
 Field.Index.NOT_ANALYZED));
 doc.add(new Field("city", contact.getCity(), Field.Store.YES,
 Field.Index.NOT_ANALYZED));
 doc.add(new Field("province", contact.getProvince(), Field.Store.YES,
 Field.Index.NOT_ANALYZED));
 doc.add(new Field("postalcode", contact.getPostalcode(),
 Field.Store.YES, Field.Index.NOT_ANALYZED));
 doc.add(new Field("country", contact.getCountry(), Field.Store.YES,
 Field.Index.NOT_ANALYZED));
 doc.add(new Field("telephone", contact.getTelephone(),
 Field.Store.YES, Field.Index.NOT_ANALYZED));
 }

 public static void main(String[] args) throws Exception {
 DigesterXMLDocument handler = new DigesterXMLDocument();
 Document doc =
 handler.getDocument(new FileInputStream(new File(args[0])));
 System.out.println(doc);
 }
}

Note that the Contact class is a simple JavaBean (it has setters and getters for each ele-
ment); we left it out of listing 7.4, but you can see it in the book’s source code.

 This is a lengthy piece of code, and it deserves a few explanations. In the Digester-
XMLDocument constructor, we create an instance of Digester and configure it by speci-
fying several rules. Each rule specifies an action and a pattern that will trigger the
action when encountered.

 The first rule B tells Digester to create an instance of the DigesterXMLDocument
class when the pattern address-book is found. It does that by using Digester’s add-
ObjectCreate method. Because <address-book> is the opening element in our XML
document, this rule is triggered first.

 The next rule C instructs Digester to create an instance of class Contact when it
finds the <contact> child element under the <address-book> parent, specified with
the address-book/contact pattern.

 To handle the <contact> element’s attribute, we set the type property of the
Contact instance when Digester finds the type attribute of the <contact> element D.
To accomplish that, we use Digester’s addSetProperties method. The Contact class
is written as an inner class and contains only setter and getter methods.

 Our DigesterXMLDocument class contains several similar-looking rules, all of which

Create Lucene
document

H

call Digester’s addCallMethod method E. They’re used to set various Contact

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

253Alternatives

properties. For instance, a call such as dig.addCallMethod("address-book/contact/
name", "setName", 0) calls the setName method of our Contact instance. It does this
when Digester starts processing the <name> element, found under the parent
<address-book> and <contact> elements. The value of the setName method parame-
ter is the value enclosed by <name> and </name> tags. If you consider our sample
address book from listing 7.2, this would call setName("Zane Pasolini").

 We use Digester’s addSetNext method F to specify that the populate-
Document(Contact) method should be called when the closing </contact> element is
processed. The getDocument method takes an InputStream to the XML document to
parse. Then we begin parsing the XML InputStream G. Finally, we populate a Lucene
document with fields containing data collected by the Contact class during parsing H.

 It’s important to consider the order in which the rules are passed to Digester.
Although we could change the order of various addSetProperties() rules in our class
and still have properly functioning code, switching the order of addObjectCreate()
and addSetNext() would result in an error.

 As you can see, Digester provides a high-level interface for parsing XML documents.
Because we’ve specified our XML parsing rules programmatically, our DigesterXML-
Document can parse only our address book XML format. Luckily, Digester lets you spec-
ify these same rules declaratively using the XML schema described in the digester-rules
DTD, which is included in the Digester distribution. By using such a declarative
approach, you can design a Digester-based XML parser that can be configured at run-
time, allowing for greater flexibility.

 Under the covers, Digester uses Java’s reflection features to create instances of
classes, so you have to pay attention to access modifiers to avoid stifling Digester. For
instance, the inner Contact class (not shown in the listing) is instantiated dynamically,
so it must be public. Similarly, our populateDocument(Contact) method needs to be
public because it, too, will be called dynamically. Digester also required that our
Document instance be declared as static; in order to make DigesterXMLDocument
thread-safe, we have to synchronize access to the getDocument(InputStream) method.

 In our final section we briefly consider alternatives to Tika.

7.8 Alternatives
Although Tika is our favorite way to extract text from documents, there are some
interesting alternatives. The Aperture open source project, hosted by SourceForge at
http://aperture.sourceforge.net, has support for a wide variety of document formats
and is able to extract text content and metadata. Furthermore, whereas Tika focuses
only on text extraction, Aperture also provides crawling support, meaning it can con-
nect to file systems, web servers, IMAP mail servers, Outlook, and iCal files and crawl
for all documents within these systems.

 There are also commercial document filtering libraries, such as Stellent’s filters
(also known as INSO filters, now part of Oracle), ISYS file readers, and KeyView filters
(now part of Autonomy). These are closed solutions, and could be fairly expensive to

license, so they may not be a fit for your application.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://aperture.sourceforge.net
http://www.it-ebooks.info/

254 CHAPTER 7 Extracting text with Tika

 Finally, there are numerous individual open source parsers out there for handling
document types. It’s entirely possible your document type already has a good open
source parser that simply hasn’t yet been integrated with Tika. If you find one, you
should consider building the Tika plug-in for it and donating it back, or even simply
calling attention to the parser on Tika’s developers mailing list.

7.9 Summary
There are a great many popular document formats in the world. In the past, extract-
ing text from these documents was a real sore point in building a search application.
But today, we have Tika, which makes text extraction surprisingly simple. We’ve seen
Tika’s command-line tool, which could be the basis of a quick integration with your
application, as well as an example using Tika’s APIs that with some small modifications
could easily be the core of text extraction for your search application. Using Tika to
handle text extraction allows you to spend more time on the truly important parts of
your search application. In some cases, such as parsing XML, Tika isn’t appropriate,
and you’ve now seen how to create your own XML parser for such cases.

 In the next chapter we’ll look at Lucene’s contrib modules, which provide a wide
selection of interesting functionality that extends or builds on top of Lucene’s core
functionality.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Essential
Lucene extensions
You’ve built an index, but can you browse or query it without writing code? Abso-
lutely! In this chapter, we’ll show you Luke, a useful tool that does just that. Do you
need analysis beyond what the built-in analyzers provide? Several specialized analyz-
ers for many languages are available in Lucene’s contrib modules. How about pro-
viding term highlighting in search results? We’ve got two choices for that! We’ll also
show you how to offer suggestions for misspelled words.

 This chapter examines the essential, most commonly used Lucene extensions,
most of which are housed in the contrib subdirectory within Lucene’s source code.
Deliberate care was taken with the design of Lucene to keep the core source code
cohesive yet extensible. We’re taking the same care in this book by keeping an
intentional separation between what’s in the core of Lucene and the extensions

This chapter covers
Highlighting hits in your search results

Correcting the spelling of search text

Viewing index details using Luke

Using additional query, analyzer, and filter implementations
255

packages that have been developed to augment it.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

256 CHAPTER 8 Essential Lucene extensions

 There are so many interesting packages that we’ve divided our coverage into two
chapters. In this chapter we’ll cover the more frequently used packages, and in the
next chapter we’ll describe the less popular, yet still interesting, long tail. The bench-
mark module is so useful we dedicate a separate appendix (C) to it.

 Each package is at its own stage of development. Some packages are more mature,
have stronger backward compatibility goals, have better documentation, and receive
greater user and developer attention than others. Each package has its own Javadocs,
at different degrees of completeness, so be sure to read them closely. Even if a given
package isn’t quite a drop-in fit for your application, you can always use its source
code as a starting point or for inspiration. If you make improvements, please consider
donating them back! This is how contrib came into existence in the first place.

 If you ever find yourself baffled by why your searches are behaving a certain way,
or you’re confused about just what’s inside your index, Luke, covered next, is a real
life saver.

8.1 Luke, the Lucene Index Toolbox
Andrzej Bialecki created Luke (found at http://code.google.com/p/luke), an elegant
Lucene index browser. This gem provides an intimate view inside a file system-based
index from an attractive desktop Java application. We highly recommend having Luke
handy when you’re developing with Lucene because it allows for ad hoc querying and
provides insight into the terms and structure in an index.

 Luke has become a regular part of our Lucene development toolkit. Its tabbed and
well-integrated UI allows for rapid browsing and experimentation. In this section we’ll
take you through most of what it can do, including browsing the terms and docu-
ments in an index, viewing overall index statistics, running ad hoc searches and seeing
their explanations, and reconstructing documents. Luke can also make changes to the
index, such as deleting or undeleting documents, as well as unlocking and optimizing
the index. This is a tool that’s targeted to developers or perhaps system administra-
tors. And what a wonderful tool it is!

 Luke is simple to use; it requires Java Runtime Environment (JRE) 1.5 or later to
run. It’s a single JAR file that can be launched directly (by double-clicking from a file
system browser, if your system supports that) or by running java –jar lukeall-
<VERSION>.jar from the command line. The latest version at the time of this writ-
ing is 0.9.9.1; it embeds Lucene 2.9.1. A source code release is also available. The
first thing Luke needs is a path to the index file, as shown in the file selection dia-
log box in figure 8.1.

 There are a number of interesting options you can control when opening the
index. Luke’s interface is nicely interconnected so that you can jump from one view to
another in the same context. The interface is divided into five tabs: Overview, Docu-
ments, Search, Files, and Plugins. The Tools menu provides options for optimizing
the current index, undeleting any documents flagged for deletion, and switching the
index between compound and standard format.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://code.google.com/p/luke
http://www.it-ebooks.info/

257Luke, the Lucene Index Toolbox

8.1.1 Overview: seeing the big picture

Luke’s Overview tab shows the major pieces of a Lucene index, including the number
of fields, documents, and terms (figure 8.2). The top terms in one or more selected
fields are shown in the Top Ranking Terms pane. Double-clicking a term opens the
Documents tab for the selected term, where you can browse all documents containing
that term. Right-clicking a term brings up a menu with three options:

Show All Term Docs opens the Search tab for that term so all documents
appear in a list.
Browse Term Docs opens the Documents tab for the selected term.
Copy to Clipboard copies the term to the clipboard so you can then paste it
elsewhere.

8.1.2 Document browsing

The Documents tab is Luke’s most sophisticated screen, where you can browse docu-
ments by document number and by term (see figure 8.3). Browsing by document
number is straightforward; you can use the arrows to navigate through the documents

Figure 8.1 This Luke dialog box provides interesting options for opening the index.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

258 CHAPTER 8 Essential Lucene extensions

sequentially. The table at the bottom of the screen shows all stored fields for the cur-
rently selected document.

 Browsing by term is trickier; you can go about it several ways. Clicking First Term
navigates the term selection to the first term in the index for the specified field. You
can scroll through terms by clicking the Next Term button. The number of docu-
ments containing a given term is shown in parentheses. To select a specific term, type
all but the last character in the text box, click Next Term, and navigate forward until
you find the desired term.

 Just below the term browser is the term document browser, which lets you navigate
through the documents containing the term you selected. The First Doc button
selects the first document that contains the selected term, and as when you’re brows-
ing terms, Next Doc navigates forward.

 The selected document, or all documents containing the selected term, can also
be deleted from this screen (use caution if this is a production index, of course!).

 Another feature of the Documents tab is the Copy Text to Clipboard feature. All
fields shown, or the selected fields, may be copied to the clipboard.

Figure 8.2 Luke’s Overview tab allows you to browse fields and terms.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

259Luke, the Lucene Index Toolbox

NOTE Luke can only work within the constraints of a Lucene index, and
unstored fields don’t have the text available in its original form. The
terms of those fields are navigable with Luke, but those fields aren’t avail-
able in the document viewer or for copying to the clipboard (our con-
tents field in this case).

Clicking the Show All Docs button shifts the view to the Search tab with a search on
the selected term so that all documents containing this term are displayed. If a field’s
term vectors have been stored, the field’s Term Vector button displays a window show-
ing terms and frequencies.

 One final feature of the Documents tab is the Reconstruct & Edit button. Clicking
this button opens a document editor allowing you to edit (delete and readd) the doc-
ument in the index or add a new document.

 Luke reconstructs fields that were tokenized but not stored by aggregating in posi-
tion order all the terms that were indexed. Reconstructing a field is a potentially lossy
operation, and Luke warns of this when you view a reconstructed field (for example, if
stop words were removed or tokens were stemmed during the analysis process, the
original value can’t be reconstructed).

Figure 8.3 Luke’s Documents tab shows all fields for the document you select.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

260 CHAPTER 8 Essential Lucene extensions

8.1.3 Using QueryParser to search

We’ve already shown two ways to automatically arrive at the Search tab: choosing
Show All Term Docs from the right-click menu of the Top Ranking Terms section of
the Overview tab, and clicking Show All Docs from the term browser on the Docu-
ments tab.

 You can also use the Search tab manually, entering QueryParser expression syntax
along with your choice of Analyzer and default field. Click Search when the expres-
sion and other fields are as desired. The bottom table shows all the documents from
the search hits, as shown in figure 8.4.

 Double-clicking a document shifts back to the Documents tab with the appropriate
document preselected. It’s useful to interactively experiment with search expressions
and see how QueryParser reacts to them. Luke shows all analyzers it finds in the class-
path, but only analyzers with no-arg constructors may be used with Luke. Luke also
provides insight into document scoring with the explanation feature.

 To view score explanation, select a result and click the Explanation button; an
example is shown in figure 8.5.

Figure 8.4 Searching: an easy way to experiment with QueryParser
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

261Luke, the Lucene Index Toolbox

8.1.4 Files and plugins view

The files view in Luke displays the files (and their sizes) that make up the internals of
a Lucene index directory. The total index size is also shown.

 As if the features already described about Luke weren’t enough, Andrzej has gone
the extra mile and added a plug-in framework so that others can add tools to Luke.
Six plug-ins come built in, as shown in figure 8.6. Analyzer Tool has the same purpose
as the AnalyzerDemo developed in section 4.2.4, showing the results of the analysis

Figure 8.5 Lucene’s scoring explanation
details how the score for a specified
document was computed.
Figure 8.6 Luke includes several useful built-in plug-ins.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

262 CHAPTER 8 Essential Lucene extensions

process on a block of text. Hadoop Plugin lets you open any Lucene index accessible
via any file system supported by Hadoop. Scripting Luke lets you interactively run
JavaScript code to access Luke’s internals. Custom Similarity allows you to code up
your own Similarity implementation in JavaScript, to customize how Lucene scores
matching documents, which is then compiled and accessible in the Search panel.
Vocabulary Analysis Tool and Zipf distribution are two tools that show graphs of term
statistics from the index.

 Consult the Luke documentation and source code for information on how to
develop your own plug-in. Let’s now switch to the numerous contrib options for
analysis.

8.2 Analyzers, tokenizers, and TokenFilters
The more analyzers, the merrier, we always say. And the contrib modules don’t disap-
point in this area: they house numerous language-specific analyzers, a few related filters
and tokenizers, and the slick Snowball algorithm analyzers. The analyzers are listed in
table 8.1. The prefix org.apache.lucene.analysis is omitted from the class names.

Table 8.1 Contrib analyzers

Analyzer TokenStream and TokenFilter chain

ar.ArabicAnalyzer ArabicLetterTokenizer > LowerCaseFilter >
StopFilter > ArabicNormalizationFilter >
ArabicStemFilter.

br.BrazilianAnalyzer StandardTokenizer > StandardFilter >StopFilter
(custom stop table) > BrazilianStemFilter >
LowerCaseFilter.

cjk.CJKAnalyzer CJKTokenizer > StopFilter (custom English stop words
ironically). Indexes Chinese text using bigrams of adjacent Chi-
nese characters as tokens.

cn.ChineseAnalyzer ChineseTokenizer > ChineseFilter. Indexes Chinese text
by mapping each Chinese character to its own token.

cn.smart.SmartChineseAnalyzer An alternative Chinese analyzer that attempts to segment Chi-
nese text into words using a dictionary-based approach.

compound.* Two different TokenFilters that decompose compound words
you find in many Germanic languages to the word parts. There are
two approaches (one using hyphenation-based grammar to detect
word parts, the other using a word-based dictionary).

cz.CzechAnalyzer StandardTokenizer > StandardFilter >
LowerCaseFilter > StopFilter (custom stop list).

de.GermanAnalyzer StandardTokenizer > StandardFilter >
LowerCaseFilter > StopFilter (custom stop list) >
GermanStemFilter.

el.GreekAnalyzer StandardTokenizer > GreekLowerCaseFilter >
StopFilter (custom stop list).
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

263Analyzers, tokenizers, and TokenFilters

fa.PersianAnalyzer ArabicLetterTokenizer > LowerCaseFilter >
ArabicNormalizationFilter >
PersianNormalizationFilter > StopFilter.

fr.FrenchAnalyzer StandardTokenizer > StandardFilter > StopFilter
(custom stop table) > FrenchStemFilter >
LowerCaseFilter.

miscellaneous.* Collection of miscellaneous TokenStreams and
TokenFilters.

ngram.* Breaks characters of a single word into a series of character
ngrams. This can be useful for spell correction and live auto-
completion.

nl.DutchAnalyzer StandardTokenizer > StandardFilter > StopFilter
(custom stop table)> DutchStemFilter.

ru.RussianAnalyzer RussianLetterTokenizer > RussianLowerCaseFilter >
StopFilter (custom stop list) > RussianStemFilter.

th.ThaiAnalyzer StandardFilter > ThaiWordFilter > StopFilter (Eng-
lish stop words).

analysis.WikipediaTokenizer Similar to StandardTokenizer, except it adds further special-
ization to process the Wikipedia-specific markup that appears in
the XML export of the Wikipedia corpus. This produces additional
Wikipedia-specific token types.

shingle.* Tokenizers that create shingles (ngrams from multiple tokens)
from another TokenStream.

sinks.DateRecognizerSinkTokenizer A SinkTokenizer (see section 4.2.3) that only accepts tokens
that are valid dates (using java.text.DateFormat).

sinks.TokenRangeSinkTokenizer A SinkTokenizer (see section 4.2.3) that only accepts tokens
within a certain range.

sinks.TokenTypeSinkTokenizer A SinkTokenizer (see section 4.2.3) that only accepts tokens
of a specific type as returned by Token.type().

payloads.* TokenFilters that carry over token attributes as payloads;
these are described in section 6.5.

position.PositionFilter Filter to set the position increment for all tokens.

query.QueryAutoStopWordAnalyzer An analyzer that adds a StopFilter to any other analyzer.

snowball.SnowballAnalyzer StandardTokenizer > StandardFilter >
LowerCaseFilter [> StopFilter] > SnowballFilter

ReverseStringFilter Reverses the text of each token that passes through it. For exam-
ple, country becomes yrtnuoc. This is useful for doing efficient
leading wildcard searches.

Table 8.1 Contrib analyzers (continued)

Analyzer TokenStream and TokenFilter chain
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

264 CHAPTER 8 Essential Lucene extensions

The language-specific analyzers vary in how they tokenize. The Brazilian and French
analyzers use language-specific stemming and custom stop-word lists. The Czech ana-
lyzer uses standard tokenization, but also incorporates a custom stop-word list. The
Chinese, CJK, and Smart Chinese analyzers take unique approaches; we saw the analy-
sis of Chinese characters in section 4.8.4, illustrating how these three analyzers work.

 Many of these analyzers, including the SnowballAnalyzer discussed next, let you
customize the stop-word list just as the StopAnalyzer does (see section 4.3.1). Most of
these analyzers do quite a bit in the filtering process. If the stemming or tokenization
is all you need, borrow the relevant pieces, and construct your own custom analyzer
from the parts here. Sections 4.4, 4.5, and 4.6 cover creating custom analyzers.

 Most of the analyzers listed in table 8.1 don’t require further explanation here.
The language-dependent analyzers are straightforward: their purpose is to customize
tokenization for their target language. ReverseStringFilter reverses every token it
sees. DateRecognizerSinkTokenizer, TokenRangeSinkTokenizer, and TokenType-
SinkTokenizer collect tokens fitting certain requirements. WikipediaTokenizer cre-
ates tokens from the Wikipedia XML export. The token filters under the compound
package break words into their compound parts. The payloads package promotes
token attribute values into payloads. We won’t cover these analyzers and tokenizers
any further here; please consult their Javadocs for any interesting gotchas.

 We’ll now give special attention to the snowball analyzers and shingle and ngram
filters, because these analyzers and filters aren’t quite as simple.

8.2.1 SnowballAnalyzer

The SnowballAnalyzer deserves special mention because it serves as a driver of an
entire family of stemmers for different languages. Stemming was introduced in sec-
tion 4.6. Martin Porter, who also developed the Porter stemming algorithm, created
the Snowball algorithm.1 The Porter algorithm was designed for English only; in addi-
tion, many “purported” implementations don’t adhere to the definition faithfully.2 To
address these issues, Dr. Porter rigorously defined the Snowball system of stemming
algorithms. Through these algorithmic definitions, accurate implementations can be
generated. In fact, the snowball contrib module has a build process that can pull the
definitions from Porter’s site and generate the Java implementation.

 One of the test cases demonstrates the result of the English stemmer stripping off
the trailing ming from stemming and the s from algorithms:

public void testEnglish() throws Exception {
 Analyzer analyzer = new SnowballAnalyzer(Version.LUCENE_30,
 "English");
 AnalyzerUtils.assertAnalyzesTo(analyzer,
 "stemming algorithms",
 new String[] {"stem", "algorithm"});
}

1 The name Snowball is a tribute to the string-manipulation language SNOBOL.

2 From http://snowball.tartarus.org/texts/introduction.html

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://snowball.tartarus.org/texts/introduction.html
http://www.it-ebooks.info/

265Analyzers, tokenizers, and TokenFilters

SnowballAnalyzer has two constructors; both accept the stemmer name, and one
specifies a String[] stop-word list to use. Many unique stemmers exist for various lan-
guages. The non-English stemmers are Danish, Dutch, Finnish, French, German,
German2, Hungarian, Italian, Kp (Kraaij-Pohlmann algorithm for Dutch), Norwe-
gian, Portuguese, Romanian, Russian, Spanish, Swedish, and Turkish. There are a few
English-specific stemmers named English, Lovins, and Porter. These exact names are
the valid argument values for the name argument to the SnowballAnalyzer construc-
tors. Here’s an example using the Spanish stemming algorithm:

public void testSpanish() throws Exception {
 Analyzer analyzer = new SnowballAnalyzer(Version.LUCENE_30,
 "Spanish");
 AnalyzerUtils.assertAnalyzesTo(analyzer,
 "algoritmos",
 new String[] {"algoritm"});
}

If your project demands stemming, we recommend that you give the Snowball ana-
lyzer your attention first because an expert in the stemming field developed it. And, as
already mentioned but worth repeating, you may want to use the clever piece of this
analyzer (the SnowballFilter) wrapped in your own custom analyzer implementa-
tion. Sections 4.4, 4.5, and 4.6 discuss writing custom analyzers in great detail.

8.2.2 Ngram filters

The ngram filters take a single token and emit a series of letter ngram tokens, which
are combinations of adjacent letters as separate tokens. Listing 8.1 shows how to use
these unusual filters.

public class NGramTest extends TestCase {

 private static class NGramAnalyzer extends Analyzer {
 public TokenStream tokenStream(String fieldName, Reader reader) {
 return new NGramTokenFilter(new KeywordTokenizer(reader), 2, 4);
 }
 }

 private static class FrontEdgeNGramAnalyzer extends Analyzer {
 public TokenStream tokenStream(String fieldName, Reader reader) {
 return new EdgeNGramTokenFilter(new KeywordTokenizer(reader),
 EdgeNGramTokenFilter.Side.FRONT, 1, 4);
 }
 }

 private static class BackEdgeNGramAnalyzer extends Analyzer {
 public TokenStream tokenStream(String fieldName, Reader reader) {
 return new EdgeNGramTokenFilter(new KeywordTokenizer(reader),
 EdgeNGramTokenFilter.Side.BACK, 1, 4);
 }
 }

Listing 8.1 Creating combinations of adjacent letters with ngram filters
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

266 CHAPTER 8 Essential Lucene extensions

 public void testNGramTokenFilter24() throws IOException {
 AnalyzerUtils.displayTokensWithPositions(new NGramAnalyzer(), "lettuce");
 }

 public void testEdgeNGramTokenFilterFront() throws IOException {
 AnalyzerUtils.displayTokensWithPositions(new FrontEdgeNGramAnalyzer(),
 "lettuce");
 }

 public void testEdgeNGramTokenFilterBack() throws IOException {
 AnalyzerUtils.displayTokensWithPositions(new BackEdgeNGramAnalyzer(),
 "lettuce");
 }
}

The testNGramTokenFilter24 method creates an NGramTokenFilter to generate all
letter ngrams of length 2, 3, or 4, on the word lettuce. The resulting output looks like
this:

 1: [le]
 2: [et]
 3: [tt]
 4: [tu]
 5: [uc]
 6: [ce]
 7: [let]
 8: [ett]
 9: [ttu]
10: [tuc]
11: [uce]
12: [lett]
13: [ettu]
14: [ttuc]
15: [tuce]

Note that each larger ngram series is positioned after the previous series. A more nat-
ural approach would be to have the ngram’s position set to the character position
where it starts in the word, but unfortunately at this time there’s no option to do this
(it’s a known limitation, though, so maybe by the time you read this it’ll be fixed).

 The EdgeNGramFilter is similar, except it only generates ngrams anchored to the
start or end of the word. Here’s the output of the testEdgeNGramTokenFilterFront:

1: [l]
2: [le]
3: [let]
4: [lett]

And testEdgeNGramTokenFilterBack:

1: [e]
2: [ce]
3: [uce]
4: [tuce]

Next we consider shingle filters.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

267Analyzers, tokenizers, and TokenFilters

8.2.3 Shingle filters

Shingles are single tokens constructed from multiple adjacent tokens. They’re similar
to letter ngrams, used by the spellchecker package (section 8.5) and the ngram
tokenizers (section 8.2.2) in that they make new tokens by combining multiple adja-
cent things. But whereas the ngram tokenizers operate on letters, shingles operate on
whole words. For example, the sentence “please divide this sentence into shingles”
might be tokenized into the shingles “please divide,” “divide this,” “this sentence,”
“sentence into,” and “into shingles.”

 Why would you ever want to do such a thing? One common reason is to speed up
phrase searches, especially for phrases involving common terms. Consider a search for
the exact phrase “Wizard of Oz.” Since the word of is incredibly common, including it
in the phrase search will require Lucene to visit and filter out a great many occur-
rences that don’t match the phrase, which is costly. If, instead, you’d indexed the
tokens “wizard of” and “of oz,” your phrase search would run quickly because those
tokens occur far less frequently. The Nutch search engine, covered in section 4.9, cre-
ates shingles for exactly this reason. Because no stop words are discarded during
indexing, shingles allows you to provide precisely correct phrase searching even for
phrases containing stop words.

 Another interesting use of shingles is document clustering, which lets you group
similar or near-duplicate documents together. This is important for large collections
of documents where duplicates may accidentally sneak in, which happens frequently
when crawling for content through web servers that construct documents dynamically.
Often slightly different URLs can yield the same underlying content, perhaps with a
different header added in. Much like using term vectors to find similar documents
(section 5.9.1), the approach is to represent each document by its salient shingles and
then search for other documents that have similar shingles with similar frequency.

8.2.4 Obtaining the contrib analyzers

Depending on your needs, you may want JAR binary distributions of these analyzers or
raw source code from which to borrow ideas. Section 8.7 provides details on how to
access the contrib source code and build binary distributions. In the repository, the
Snowball analyzer resides in contrib/snowball; the other analyzers discussed here are
in contrib/analyzers. There are no external dependencies for these analyzers other
than Lucene itself, so they’re easy to incorporate. A test program called TestApp is
included for the Snowball project. It’s run in this manner:

> java -cp lib/lucene-snowball-3.0.1.jar org.tartarus.snowball.TestApp
Usage: TestApp <stemmer name> <input file> [-o <output file>]

> java -cp lib/lucene-snowball-3.0.1.jar org.tartarus.snowball.TestApp
 Lovins spoonful.txt
... output of stemmer applied to specified file

The Snowball TestApp bypasses SnowballAnalyzer. Only the Snowball stemmer itself

is used with rudimentary text splitting at whitespace.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

268 CHAPTER 8 Essential Lucene extensions

 Next we show how to highlight matches in search results using the Highlighter
package.

8.3 Highlighting query terms
The contrib highlighter module fragments and highlights text based on a Lucene
query. Highlighter was originally contributed by Mark Harwood, but many others
have since joined in. Giving end users some context around specific term hits from
their searches is a powerful way for them to judge how relevant each hit is. Often, a
brief glimpse of the surrounding context of the search terms is enough to know if that
result is worth investigating further. Each hit includes some number of fragments of
the matching document highlighting the terms of the query. Figure 8.7 shows an
example of highlighting part of the text from chapter 3, based on a term query for
term. The source code for this is shown in listing 8.2. Like spell correction, covered in
section 8.5, the web search engines have established this feature as a baseline require-
ment that all other search engines are expected to have.

 What’s commonly referred to as highlighting in fact consists of two separate func-
tions. First is dynamic fragmenting, which means picking a few choice sentences out
of a large text that best match the search query. Some search applications skip this
step and instead fall back on a static abstract or summary for each document, but that
generally gives a worse user experience because it’s static. The second function is
highlighting, whereby specific words in context of their surrounding text are called
out, often with bolding and a colored background, so the user’s eyes can quickly jump
to specific words that matched.

 These two functions are fully inde-
pendent. For example, you may apply
highlighting to a title field without
deriving fragments from it, because you
always present the full title. Or, for a
field that has a large amount of text,
you’d first fragment it and then apply
the highlighting. We’ll begin with an
overview of the components used dur-
ing highlighting, and then show a simple example of highlighter in action, including
how to use Cascading Style Sheets (CSS) to control the client-side mechanics of high-
lighting. We’ll wrap up by showing you how to highlight search results.

8.3.1 Highlighter components

The Highlighter code is a sophisticated and flexible utility, and is well factored to
break out the separate steps necessary during fragmentation and highlighting.
Figure 8.8 shows the steps used by the Highlighter class to compute the highlighted
text. Let’s walk through each step.

Figure 8.7 Highlighting matching query terms
within text
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

269Highlighting query terms

TOKENSOURCES

Highlighting requires two separate inputs: the actual
full original text (a String) to work on, and a Token-
Stream derived from that text. Typically you’d store the
full text as a stored field in the index, but if you have an
alternate external store—for example, a database—that
works fine as well. Just be sure that source can deliver
the text for a page’s worth of results quickly enough.

 To create the TokenStream, you could reanalyze the
text, using the same analyzer you had used during
indexing. Alternatively, because you presumably had
already analyzed the text during indexing, you can
derive the TokenStream from previously stored term vec-
tors (see section 2.4.3), as long as you used Field.
TermVector.WITH_POSITIONS_OFFSETS. The convenient
TokenSources class in the Highlighter package has
static convenience methods that will extract a Token-
Stream from an index using whichever of these sources
is available. You can also create your own TokenStream
separately if you’d like. Generally, term vectors will give
you the fastest performance, but they do consume addi-
tional space in the index.

 Highlighter relies on the start and end offset of
each token from the token stream to locate the exact
character slices to highlight in the original input text.
So it’s crucial that your analyzer sets startOffset and
endOffset on each token correctly as character offsets!
If these aren’t right, you’ll see nonword pieces of text
highlighted, or you may hit an InvalidTokenOffsets-
Exception during highlighting. The core Lucene analyzers all set the offsets properly,
so this normally isn’t a problem unless you’ve created your own analyzer. The next
component, Fragmenter, breaks the original text into small pieces called fragments.
FRAGMENTER

Fragmenter is a Java interface in the Highlighter package whose purpose is to split
the original string into separate fragments for consideration. NullFragmenter is one
concrete class implementing this interface that returns the entire string as a single
fragment. This is appropriate for title fields and other short text fields, where you wish
to show the full text. SimpleFragmenter is another concrete class that breaks up the
text into fixed-size fragments by character length, with no effort to spot sentence
boundaries. You can specify how many characters per fragment (the default is 100).
But this fragmenter is a little too simple: it doesn’t take into account positional con-
straints of the query when creating the fragments, which means for phrase queries

TokenSources

Text Term Vectors

Fragmenter

Scorer

Encoder

Formatter

Highlighted Text

Figure 8.8 Java classes and
interfaces used by Highlighter
and span queries, a matching span will easily be broken across two fragments.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

270 CHAPTER 8 Essential Lucene extensions

 Fortunately, the final fragmenter, SimpleSpanFragmenter, resolves that problem
by attempting to make fragments that always include the spans matching each docu-
ment. You’ll have to pass in a QueryScorer (see the next section) so it knows where
the span matches are.

 If you don’t set a Fragmenter on your Highlighter instance, it uses Simple-
Fragmenter by default. Although it doesn’t exist currently in the Highlighter pack-
age, a good implementation of Fragmenter would be one that attempts to produce
fragments on sentence boundaries. Solr, covered in section 10.8, has RegexFragmenter
(which fragments based on a provided regular expression) that could be used for rudi-
mentary fragmenting by sentence.

 Highlighter then takes each fragment produced by the fragmenter and passes
each to the Scorer.
SCORER

The output of the Fragmenter is a series of text fragments from which Highlighter
must pick the best one(s) to present. To do this, Highlighter asks the Scorer, a Java
interface, to score each fragment. The Highlighter package provides two concrete
implementations: QueryTermScorer, which scores each fragment based on how many
terms from the provided Query appear in the fragment, and QueryScorer, which
attempts to only assign scores to actual term occurrences that contributed to the
match for the document. When combined with SimpleSpanFragmenter, QueryScorer
is usually the best option because true matches are highlighted.

 QueryTermScorer uses the terms from the query; it extracts them from primitive
term, phrase, and Boolean queries and weighs them based on their corresponding
boost factor. A query must be rewritten in its most primitive form for Query-
TermScorer to be happy. For example, wildcard, fuzzy, prefix, and range queries
rewrite themselves to a BooleanQuery of all the matching terms. Call Query.
rewrite(IndexReader), which translates the query into primitive form, to rewrite a
query prior to passing the Query to QueryTermScorer (unless you’re sure the query is
already a primitive one).

 QueryScorer extracts matching spans for the query, then uses these spans to score
each fragment. Fragments that didn’t match the query, even if they contain a subset of
the terms from the query, receive a score of 0.0. If you use the simpler Query-
TermScorer, you’ll find that a PhraseQuery can show fragments that don’t show the
entire phrase, which is terribly disconcerting and trust eroding to the end user. Note
that QueryScorer is specific to each matching document (because it enumerates that
document’s matching spans), so it must be instantiated for every document you need
to highlight. Because of these benefits, we strongly recommend that you use Query-
Scorer instead of the simpler QueryTermScorer. All of the following examples use
QueryScorer. The field name argument to QueryScorer specifies which field should
be used for scoring the fragments; if you pass null, QueryScorer derives the field
name(s) from the incoming Query.

 At this point Highlighter chooses the best scoring fragments to present to the

user. All that remains is to properly format them.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

271Highlighting query terms

ENCODER

The Encoder Java interface has a simple purpose: to encode the original text into the
external format. There are two concrete implementations: DefaultEncoder, which is
used by default in Highlighter, does nothing with the text. SimpleHTMLEncoder
encodes the text as HTML, escaping any special characters such as < and > and &, and
non-ASCII characters. Once the encoder is done, the final step is to format the frag-
ments for presentation.
FORMATTER

The Formatter Java interface takes each fragment of text as a String, as well as the
terms to be highlighted, and renders the highlighting. Highlighter provides three
concrete classes to choose from. SimpleHTMLFormatter wraps a begin and end tag
around each hit. The default constructor will use the (bold) HTML tag. Gradient-
Formatter uses different shades of background color to indicate how strong each hit
was, using the HTML tag. SpanGradientFormatter does the same thing but
uses the HTML tag because some browsers may not render the tag cor-
rectly. You can also create your own class implementing the Formatter API.

 Now that we’ve explored all the components that go into highlighting, let’s exam-
ine a complete example.

8.3.2 Standalone highlighter example

You understand the logical steps of the highlighting process, so let’s look at some con-
crete examples. The simplest example of Highlighter returns the best fragment, sur-
rounding each matching term with HTML tags:

String text = "The quick brown fox jumps over the lazy dog";

TermQuery query = new TermQuery(new Term("field", "fox"));

TokenStream tokenStream =
 new SimpleAnalyzer().tokenStream("field",
 new StringReader(text));

QueryScorer scorer = new QueryScorer(query, "field");
Fragmenter fragmenter = new SimpleSpanFragmenter(scorer);
Highlighter highlighter = new Highlighter(scorer);
highlighter.setTextFragmenter(fragmenter);
assertEquals("The quick brown fox jumps over the lazy dog",
 highlighter.getBestFragment(tokenStream, text));

The previous code produces this output:

The quick brown fox jumps over the lazy dog

In this simple example, our text was a fixed string and we derived a TokenStream by
using SimpleAnalyzer. To successfully highlight terms, the terms in the Query need to
match Tokens emitted from the TokenStream. The same text must be used to generate
the TokenStream as is used for the original text to highlight.

 We then create a QueryScorer to score fragments. QueryScorer requires you to

wrap the TokenStream in a CachingTokenFilter because it needs to process the

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

272 CHAPTER 8 Essential Lucene extensions

tokens more than once. Using the QueryScorer, we create a SimpleSpanFragmenter
to break the text into fragments. In this example, the text is small, so the fragmenter is
pointless: the entire text will become the one and only fragment. We could’ve used
NullFragmenter instead. Finally, we create Highlighter, set our fragmenter, and
then ask it for the best scoring fragment.

 Next we show how to use CSS to control how highlighting is done.

8.3.3 Highlighting with CSS

Using tags to surround text that will be rendered by browsers is a reasonable
default. Fancier styling should be done with CSS instead. Listing 8.2 shows our next
example, HighlightIt, and was used to generate the highlighted result shown in fig-
ure 8.7. It uses custom begin and end tags to wrap highlighted terms with a
using the custom CSS class highlight. Using CSS attributes, the color and formatting of
highlighted terms is decoupled from highlighting, permitting much more control
over the end-user consumability of the interface.

 Listing 8.2 also demonstrates the use of a custom Fragmenter, setting the fragment
size to 70, and a custom Formatter to style highlights with CSS. Note that this is a con-
trived example; the content to be highlighted is a static string in the source code. In
our first example, only the best fragment was returned, but Highlighter shines in
returning multiple fragments. In this example we concatenate the best fragments with
an ellipsis (…) separator; you could also have a String[] returned by not passing in a
separator, so that your code could handle each fragment individually.

public class HighlightIt {
 private static final String text =
 "In this section we'll show you how to make the simplest " +
 "programmatic query, searching for a single term, and then " +
 "we'll see how to use QueryParser to accept textual queries. " +
 "In the sections that follow, we’ll take this simple example " +
 "further by detailing all the query types built into Lucene. " +
 "We begin with the simplest search of all: searching for all " +
 "documents that contain a single term.";

 public static void main(String[] args) throws Exception {

 if (args.length != 1) {
 System.err.println("Usage: HighlightIt <filename-out>");
 System.exit(-1);
 }

 String filename =
args[0];

 String searchText = "term";
 QueryParser parser = new QueryParser(Version.LUCENE_30,
 "f",
 new StandardAnalyzer(Version.LUCENE_30));

Listing 8.2 Highlighting terms using CSSs

Create the query
 Query query = parser.parse(searchText);

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

273Highlighting query terms

 SimpleHTMLFormatter formatter =
 new SimpleHTMLFormatter("",
 "");

 TokenStream tokens = new StandardAnalyzer(Version.LUCENE_30)
 .tokenStream("f", new StringReader(text));

 QueryScorer scorer = new QueryScorer(query, "f");

 Highlighter highlighter
 = new Highlighter(formatter, scorer);

 highlighter.setTextFragmenter(
 new SimpleSpanFragmenter(scorer));

 String result =
 highlighter.getBestFragments(tokens, text, 3, "...");

 FileWriter writer = new FileWriter(filename);
 writer.write("<html>");
 writer.write("<style>\n" +
 ".highlight {\n" +
 " background: yellow;\n" +
 "}\n" +
 "</style>");
 writer.write("<body>");
 writer.write(result);
 writer.write("</body></html>");
 writer.close();
 }
}

In neither of our examples did we perform a search and highlight actual hits. The text
to highlight was hard-coded. This brings up an important issue when dealing with the
Highlighter: where do you get the text to highlight in a real search application? We
address this in the next section.

8.3.4 Highlighting search results

Whether to store the original field text in the index is up to you (see section 2.4 for
field indexing options). If the original text isn’t stored in the index (generally because
of size considerations), you’ll have to retrieve the text to be highlighted from its origi-
nal source. Take care to ensure that the retrieved text is always identical to the text
that had been indexed. This is a great reason to simply store the text during indexing.
If the original text is stored with the field, it can be retrieved directly from the docu-
ment obtained from the search, as shown in listing 8.3.

public void testHits() throws Exception {
 IndexSearcher searcher = new

IndexSearcher(TestUtil.getBookIndexDirectory());
 TermQuery query = new TermQuery(new Term("title", "action"));
 TopDocs hits = searcher.search(query, 10);

Listing 8.3 Highlighting matches in search results

Customize
surrounding
tags

Tokenize
text

Create QueryScorer

Create
highlighter

Use
SimpleSpanFragmenter

Highlight best
3 fragments

Write
highlighted
HTML
 QueryScorer scorer = new QueryScorer(query, "title");

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

274 CHAPTER 8 Essential Lucene extensions

 Highlighter highlighter = new Highlighter(scorer);
 highlighter.setTextFragmenter(
 new SimpleSpanFragmenter(scorer));

 Analyzer analyzer = new SimpleAnalyzer();

 for (ScoreDoc sd : hits.scoreDocs) {
 Document doc = searcher.doc(sd.doc);
 String title = doc.get("title");

 TokenStream stream =
TokenSources.getAnyTokenStream(searcher.getIndexReader(),

 sd.doc,
 "title",
 doc,
 analyzer);
 String fragment =
 highlighter.getBestFragment(stream, title);

 System.out.println(fragment);
 }
}

With our sample book index, the output is

Ant in Action
Tapestry in Action
Lucene in Action, Second Edition
JUnit in Action, Second Edition

Notice that we use the convenient TokenSources.getAnyTokenStream method to
derive a TokenStream from our original text. Under the hood, this method first tries
to retrieve the term vectors from the index. As long as you indexed the document’s
field with Field.TermVector.WITH_POSITIONS_OFFSETS, term vectors are used to
reconstruct the TokenStream. Otherwise, the analyzer you pass in is used to reanalyze
the text. Whether to index term vectors or reanalyze the text is an application-depen-
dent decision: run your own tests to measure the difference in runtime and index size
for each approach. In our case, we did index the title field with term vectors in the
books index, so term vectors are used to create the token stream. Note that by default,
Highlighter will only process the first 50 KB characters in your document text. Use
the setMaxDocCharsToAnalyze API to change this, but note that performance will be
slower if you increase it. Note also that if the field is multivalued, as described in sec-
tion 2.4.7, the tokens for all fields are logically concatenated as if they were one field.
For highlighting to work correctly for such fields, you must ensure the start and end
offsets of each token, as well as the end offset for each field value, are accurately set
during analysis, as described in section 4.7.1.

 Now let’s visit an alternative highlighter, FastVectorHighlighter, which offers
improved performance especially for larger documents.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

275FastVectorHighlighter

8.4 FastVectorHighlighter
Contributed by KOJI SEKIGUCHI

As we saw in the previous section, Highlighter is one of the most fundamental tools
for users to assess whether each result is worth investigating further. Highlighter is
popular and widely used by Lucene applications, but when the documents are large,
Highlighter can be quite time consuming if you increase the number of characters to
analyze with setMaxDocCharsToAnalyze. An alternative highlighter, FastVectorHigh-
lighter, was first added in Lucene’s 2.9 release and offers faster performance.

 As its name implies, FastVectorHighlighter is a fast highlighting tool, at the
expense of more disk space consumption, because it relies on term vectors being pres-
ent in the index. In contrib/benchmark (covered in appendix C), there’s an algo-
rithm file called highlight-vs-vector-highlight.alg that lets you see the difference
between two highlighters in processing time. As of version 2.9, with modern hardware,
that algorithm shows that FastVectorHighlighter is about two and a half times faster
than Highlighter.

 The advantages of FastVectorHighlighter over Highlighter are not only speed
but also functionality. First, FastVectorHighlighter can support fields that are token-
ized by ngram tokenizers. Highlighter can’t support such fields very well. Second,
more interesting is that FastVectorHighlighter can output the multicolored tag
highlighting out of the box, as shown in figure 8.9. Third, FastVectorHighlighter
can support “per phrase” tagging, rather than
the “per term” tagging that Highlighter sup-
ports. For instance, if you search the phrase
“lazy dog,” FastVectorHighlighter produces
lazy dog whereas Highlighter pro-
duces lazy dog.

 Let’s see how to use FastVectorHigh-
lighter. After you run the program in
listing 8.4, you should see the HTML page
shown in figure 8.9.

public class FastVectorHighlighterSample {

 static final String[] DOCS = {
 "the quick brown fox jumps over the lazy dog",
 "the quick gold fox jumped over the lazy black dog",
 "the quick fox jumps over the black dog",
 "the red fox jumped over the lazy dark gray dog"
 };
 static final String QUERY = "quick OR fox OR \"lazy dog\"~1";
 static final String F = "f";
 static Directory dir = new RAMDirectory();
 static Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_30);

Listing 8.4 Highlighting terms using FastVectorHighlighter

Index these
documents

Run this query

Figure 8.9 FastVectorHighlighter
supports multicolored hit highlighting out
of the box.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

276 CHAPTER 8 Essential Lucene extensions

 public static void main(String[] args) throws Exception {
 if (args.length != 1) {
 System.err.println("Usage: FastVectorHighlighterSample <filename>");
 System.exit(-1);
 }
 makeIndex();
 searchIndex(args[0]);
 }

 static void makeIndex() throws IOException {
 IndexWriter writer = new IndexWriter(dir, analyzer,
 true, MaxFieldLength.UNLIMITED);
 for(String d : DOCS){
 Document doc = new Document();
 doc.add(new Field(F, d, Store.YES, Index.ANALYZED,
 TermVector.WITH_POSITIONS_OFFSETS));
 writer.addDocument(doc);
 }
 writer.close();
 }

 static void searchIndex(String filename) throws Exception {
 QueryParser parser = new QueryParser(Version.LUCENE_30,
 F, analyzer);
 Query query = parser.parse(QUERY);
 FastVectorHighlighter highlighter = getHighlighter();
 FieldQuery fieldQuery = highlighter.getFieldQuery(query);
 IndexSearcher searcher = new IndexSearcher(dir);
 TopDocs docs = searcher.search(query, 10);

 FileWriter writer = new FileWriter(filename);
 writer.write("<html>");
 writer.write("<body>");
 writer.write("<p>QUERY : " + QUERY + "</p>");
 for(ScoreDoc scoreDoc : docs.scoreDocs) {
 String snippet = highlighter.getBestFragment(
 fieldQuery, searcher.getIndexReader(),
 scoreDoc.doc, F, 100);
 if (snippet != null) {
 writer.write(scoreDoc.doc + " : " + snippet + "
");
 }
 }
 writer.write("</body></html>");
 writer.close();
 searcher.close();
 }

 static FastVectorHighlighter getHighlighter() {
 FragListBuilder fragListBuilder = new SimpleFragListBuilder();
 FragmentsBuilder fragmentBuilder =
 new ScoreOrderFragmentsBuilder(
 BaseFragmentsBuilder.COLORED_PRE_TAGS,
 BaseFragmentsBuilder.COLORED_POST_TAGS);
 return new FastVectorHighlighter(true, true,
 fragListBuilder, fragmentBuilder);
 }

Get
FastVectorHighlighter

Create FieldQuery

Highlight top
fragment

Create
FastVectorHighlighter
}

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

277Spell checking

The makeIndex method adds four static documents that are held in DOCS variable into
the index. Note that any fields that will be highlighted must be indexed with TermVec-
tor.WITH_POSITIONS_OFFSETS. The searchIndex method searches for quick OR fox
OR "lazy dog"~1 that’s set in a constant QUERY and displays the highlighted results.

 To get highlighted fragments, first you must get an instance of FastVectorHigh-
lighter. Once you have the instance, create a FieldQuery from it. The FieldQuery
will be necessary during highlighting (passed as the fieldQuery argument to get-
BestFragment). To get an instance of FastVectorHighlighter, you can simply use the
default constructor as follows:

FastVectorHighlighter highlighter = new FastVectorHighlighter();

You can’t use the multicolored tag feature by using such highlighter, though.
Because of this, we’ve provided the getHighlighter method in listing 8.4. In the
method, to support the multicolored tag feature, COLORED_PRE_TAGS and
COLORED_POST_TAGS constants are passed as arguments to the ScoreOrderFragments-
Builder constructor; then the instance of the FragmentsBuilder is passed as an argu-
ment to FastVectorHighlighter.

 As you’ve seen, FastVectorHighlighter has some compelling advantages over
Highlighter. So should you always use FastVectorHighlighter and forget High-
lighter? No, you can’t, because FastVectorHighlighter also has some disadvan-
tages. One of them is the additional consumption of disk space because the
highlighting fields must be indexed with TermVector.WITH_POSITIONS_OFFSETS. Fur-
thermore, the default FragmentsBuilder ignores word boundaries when building
fragments. You can see this limitation in figure 8.9, with the last fragment that starts
with the “e” from the word the. To avoid this inconvenience, you could implement a
custom FragmentsBuilder that takes the word boundaries into account. Finally, Fast-
VectorHighlighter can only support basic queries such as TermQuery and Phrase-
Query. A BooleanQuery that consists of these basic queries is also supported.
Highlighter supports almost all the queries in Lucene, including WildcardQuery and
SpanQuery.

 Each of the highlighters has strengths and weaknesses; you’ll have to make an
informed decision based on what’s important to your application and your users.

 Next we’ll cover an important package that implements spell checking.

8.5 Spell checking
Spell checking is something users now take for granted in today’s search engines.
Enter a misspelled word into Google and you’ll get back a helpful and nearly always
accurate “Did you mean…?” with your typo corrected as a link that you can then click.
Google’s spell checking is so effective that you can rely on it to correct your typos.
Spell checking is such a wonderfully simple and intuitive must-have feature to the end
user. But, as a developer, just how do you implement it? Fortunately, Lucene has the
spellchecker contrib module, created by David Spencer, for just this purpose.

 Web search engines spend a lot of energy tuning their spell-checking algorithms,

and it shows. Generally you get a good experience, and this sets a high bar for how all

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

278 CHAPTER 8 Essential Lucene extensions

the world’s search applications are expected to behave. Let’s walk through the typical
steps during spell checking, including generating possible suggestions, selecting the
best one for each misspelled word, and presenting the choice to the user. We’ll wrap
up with some other possible ideas to explore. Along the way we’ll see how the
spellchecker contrib module tackles each.

8.5.1 Generating a suggestions list

You might assume the first step is to decide whether or not spell checking is even nec-
essary. But that’s hard to determine up front, and it’s usually more effective to always
run through the steps and then use the score of each potential suggestion to decide
whether they should be presented to the user. The first step is to generate a raw set of
possible suggestions. The spellchecker module works with one term at a time, so if the
query has multiple terms you’ll have to consider each separately (but see section 8.5.4
for some ideas on handling multiterm queries).

 You’ll need a source dictionary of “valid” words. You can try to use a generic known
accurate dictionary, but it’s difficult to find such dictionaries that will exactly match
your search domain, and it’s even harder to keep such a dictionary current over time.
A more powerful means of deriving a dictionary is to use your search index to gather
all unique terms seen during indexing from a particular field. This is the approach
used by the spellchecker module.

 Given the dictionary, you must enumerate the suggestions. You could use a pho-
netic approach, such as the “sounds like” matching we explored in section 4.4.
Another approach, which is the one used by the spellchecker module, is to use letter
ngrams to identify similar words. A letter ngram is all subsequences of adjacent letters
in length, varying between a minimum and a maximum size. Using this approach, the
ngrams for all words in the dictionary are indexed into a separate spellchecker index.
This is usually a fast operation, and so the application’s indexing process would
rebuild the entire spellchecker index when-
ever the main index is updated.

 Let’s walk through an example. Say our dic-
tionary contains the word lettuce. Table 8.2
shows the 3grams and 4grams that are added
into the spellchecker index. In this case, our
“document” is the word lettuce whose indexed
tokens are the generated 3grams and 4grams.
Next, imagine the user searches for letuce,
whose ngrams are shown in table 8.3. To find
the suggestions, the ngrams for letuce are used
to run a search against the spellchecker index.
Because many of the ngrams are shared (let,
tuc, uce, and tuce), the correct word lettuce will
be returned with a high relevance score.

Table 8.2 The ngrams for the word lettuce

Word Lettuce

3gram let, ett, ttu, tuc, uce

4gram lett, ettu, ttuc, tuce

Table 8.3 The ngrams for the misspelled
word letuce

Word Lettuce

3gram let, etu, tuc, uce

4gram letu, etuc, tuce
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

279Spell checking

 Fortunately, the spellchecker module handles all this ngram processing for you,
under the hood (though the NGramTokenizer and EdgeNGramTokenizer, described in
section 8.2.2, let you create your own ngrams if you want to take a more custom
approach). Creating the spellchecker index is surprisingly simple. Listing 8.5 shows
how to do it, using the terms from an existing Lucene index. Run it with ant Create-
SpellCheckerIndex. This creates a spellchecker index, stored in the local directory
indexes/spellchecker, by enumerating all unique terms seen in the word field of the
wordnet index, by default.

 It produces output like this:

Now build SpellChecker index...
took 2431 milliseconds

public class CreateSpellCheckerIndex {

 public static void main(String[] args) throws IOException {

 if (args.length != 3) {
 System.out.println("Usage: java lia.tools.SpellCheckerTest " +
 "SpellCheckerIndexDir IndexDir IndexField");
 System.exit(1);
 }

 String spellCheckDir = args[0];
 String indexDir = args[1];
 String indexField = args[2];

 System.out.println("Now build SpellChecker index...");
 Directory dir = FSDirectory.open(new File(spellCheckDir));
 SpellChecker spell = new SpellChecker(dir);
 long startTime = System.currentTimeMillis();

 Directory dir2 = FSDirectory.open(new File(indexDir));
 IndexReader r = IndexReader.open(dir2);
 try {
 spell.indexDictionary(
 new LuceneDictionary(r, indexField));
 } finally {
 r.close();
 }
 dir.close();
 dir2.close();
 long endTime = System.currentTimeMillis();
 System.out.println(" took " + (endTime-startTime) + " milliseconds");
 }
}

Note that if you have an alternate source of words, or perhaps you’d like to use
terms from a Lucene index but filter certain ones out, you can create your own class
implementing the Dictionary interface (in the org.apache.lucene.search.spell
package) and pass that to the SpellChecker instance instead. The next step is to

Listing 8.5 Creating the spellchecker index

Create
SpellChecker

Open
IndexReader

Add all words
pick the best suggestion.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

280 CHAPTER 8 Essential Lucene extensions

8.5.2 Selecting the best suggestion

From the first step, using the letter ngram approach, we can now generate a set of sug-
gestions for each term in the user’s query. Listing 8.6 shows how to generate respellings
with spellchecker, using the spellchecker index created by listing 8.5. Run it with ant
SpellCheckerExample, which by default searches for corrections of the word letuce:

5 suggestions for 'letuce':
 lettuce
 letch
 deduce
 letup
 seduce

Not bad! Lettuce was the first choice. But how do we handle the other choices?

public class SpellCheckerExample {

 public static void main(String[] args) throws IOException {

 if (args.length != 2) {
 System.out.println("Usage: java lia.tools.SpellCheckerTest " +
 "SpellCheckerIndexDir wordToRespell");
 System.exit(1);
 }

 String spellCheckDir = args[0];
 String wordToRespell = args[1];

 Directory dir = FSDirectory.open(new File(spellCheckDir));
 if (!IndexReader.indexExists(dir)) {
 System.out.println("\nERROR: No spellchecker index at path \"" +
 spellCheckDir +
 "\"; please run CreateSpellCheckerIndex first\n");
 System.exit(1);
 }
 SpellChecker spell = new SpellChecker(dir);

 spell.setStringDistance(new LevensteinDistance());

 String[] suggestions = spell.suggestSimilar(
 wordToRespell, 5);
 System.out.println(suggestions.length +
 " suggestions for '" +
 wordToRespell + "':");
 For (String suggestion : suggestions)
 System.out.println(" " + suggestion);
 }
}

Unfortunately, you don’t usually have the luxury of showing many spelling suggestions
to the user. Typically you can either present no choice (if you determine all terms in
the query seem properly spelled, or there were no good spelling candidates found),
or a single suggestion, back to the user.

Listing 8.6 Finding the list of candidates using the spellchecker index

Create
SpellChecker

Set distance
metric

Generate
candidates
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

281Spell checking

 Although the ngram approach is good for enumerating potential respellings, its
relevance ranking is generally not good for selecting the best one. Typically, a different
distance metric is used to resort the suggestions according to how similar each is to the
original term. One common metric is the Levenshtein metric, which we used in sec-
tion 3.4.8 to search for similar terms using FuzzyQuery. This is the default metric used
by spellchecker, and generally it works well. You can also use the JaroWinkler class to
select the Jaro-Winkler distance (see http://en.wikipedia.org/wiki/Jaro-Winkler),
which is provided in the spellchecker package, or you could implement your own
string similarity metric. The array of suggestions returned by SpellChecker.suggest-
Similar is sorted by decreasing similarity according to the distance metric, so you sim-
ply pick the first result to present as the suggested spelling.

 The final step is to present the spelling option to the user.

8.5.3 Presenting the result to the user

Once you have your single best spelling candidate, you first need to decide if it’s good
enough to present to the user. The SpellChecker class doesn’t return the distance
between each suggestion and the original user’s term, though you could recompute
that by calling the getDistance method on the StringDistance instance you’re
using. SpellChecker also has an alternative suggestSimilar method that takes addi-
tional arguments in order to restrict the suggestions to those terms that are more fre-
quent than the original term; this way, you’ll present a suggested spelling only if it
occurred more frequently than the original term, which is a reasonable way to decide
whether a candidate is worth presenting. It also has a setAccuracy method to set the
minimum relevance of each suggestion.

 Next, assuming you have a suggestion worth presenting, what exactly should your
application do? One option, if you’re confident of the spelling suggestion, is to auto-
matically respell the term. But be sure to clearly tell the user at the top of the search
results that this was done, and give the user a quick link to forcefully revert to her orig-
inal search. Alternatively, you could search exactly as the user requested but present a
“Did you mean…” with the spelling suggestion, as Google often does. Finally, you
could search for both the original query plus the respelled query, OR’d together per-
haps with different boosts.

 Typically a search application will choose one of these options up front. But mod-
ern web search engines seem to make this choice dynamically, per query, depending
on some measure of confidence of the spelling suggestion. Go ahead and try some
searches in http://www.google.com and http://www.bing.com!

8.5.4 Some ideas to improve spell checking

Implementing spell checking is challenging, and we’ve touched on a few of the issues.
The spellchecker contrib module gives you a great start. But you may want to explore
some of the following improvements for your application:
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://en.wikipedia.org/wiki/Jaro-Winkler
http://www.google.com
http://www.bing.com
http://www.it-ebooks.info/

282 CHAPTER 8 Essential Lucene extensions

If you have high search traffic, consider using the terms from your user’s que-
ries to help rank the best suggestion. In applications whose dictionary changes
quickly with time, such as a news search engine for current events, this strategy
is especially compelling. This approach makes the assumption that most users
know how to spell well, which so far seems to be a correct assumption!
Instead of respelling each term separately, consider factoring in the other terms
to bias the suggestions of each term. One way is to compute term co-occurrence
statistics up front for every pair of terms X and Y, to measure how many docu-
ments or queries contain both terms X and Y. Then, when sorting the sugges-
tions take these statistics into account with the other terms in the user’s query. If
a user enters the misspelled query “harry poter,” you’d like to suggest “harry
potter” instead of other choices like “harry poster.”
The dictionary you use for spell checking is critical. When you use terms from
an existing index, you can easily import misspellings from the content you’d
indexed if the content is “dirty.” You can also accidentally import terms that
you may never want to suggest, such as SKU numbers or stock ticker symbols.
Try to filter such terms out, or only accept terms that occurred above a certain
frequency.
If you have high search traffic, you can train your spell checker according to
how users click on the “Did you mean…” link, biasing future suggestions based
on how users have accepted suggestions in the past. Use this as well to gather a
test set for testing other improvements to your spell checking.
If your search application has entitlements (restricting which content a user
can see based on her entitlement), then take care to keep the spell-checker dic-
tionary separate for different user classes. A single global dictionary can acci-
dentally “leak” information across entitlement classes, which could cause
serious problems.
Tweak how you compute the confidence of each suggestion. The spellchecker
module currently relies entirely on the StringDistance score for this, but you
could imagine improving this by combining StringDistance with the fre-
quency of this term in the index to gain a better confidence.
One way to determine whether it’s necessary to even present corrections is to
first run the user’s original search, and then if it returns 0, or very few, results, try
the respelled search to see if it returns more, and use that to bias the decision.

As you’ve seen, despite seeming so simple when you use it, under the hood spell
checking is quite challenging to implement. The spellchecker contrib module does
much of this work for you, including creating a separate spellchecker index, enumer-
ating candidate corrections, and ranking them by edit distance. Although it gives you
a great start, we’ve left you with some suggestions on how to further improve on it.

 Next we cover a slew of interesting Query implementations.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

283Fun and interesting Query extensions

8.6 Fun and interesting Query extensions
The queries contrib module provides interesting additions to Lucene’s core queries,
contributed by Mark Harwood, including MoreLikeThis, FuzzyLikeThisQuery,
BoostingQuery, TermsFilter, and DuplicateFilter.

8.6.1 MoreLikeThis

The MoreLikeThis class captures all the logic for finding similar documents to an
existing document. In section 5.9.1 we saw the BooksLikeThis example to accomplish
the same functionality, but MoreLikeThis is more general and will work with any
Lucene index. Listing 8.7 shows how to do the same thing as BooksLikeThis using
MoreLikeThis.

 The approach is exactly the same: enumerate terms from the provided document
and build a Query to find similar documents. MoreLikeThis is more flexible: if you
give it a docID and an IndexReader instance, it will iterate through any field that’s
stored or that has indexed term vectors, to locate the terms for that document. For
stored fields it must reanalyze the text, so be sure to set the analyzer first if the default
StandardAnalyzer isn’t appropriate. MoreLikeThis is able to find documents similar
to an arbitrary String or the contents of a provided file or url as well.

 Remember MoreLikeThis will usually return the same document (if your search
was based on a document in the index), so be sure to filter it out in your presentation.

public class BooksMoreLikeThis {
 public static void main(String[] args) throws Throwable {

 String indexDir = System.getProperty("index.dir");
 FSDirectory directory = FSDirectory.open(new File(indexDir));
 IndexReader reader = IndexReader.open(directory);

 IndexSearcher searcher = new IndexSearcher(reader);

 int numDocs = reader.maxDoc();

 MoreLikeThis mlt = new MoreLikeThis(reader);
 mlt.setFieldNames(new String[] {"title", "author"});
 mlt.setMinTermFreq(1);
 mlt.setMinDocFreq(1);

 for (int docID = 0; docID < numDocs; docID++) {
 System.out.println();
 Document doc = reader.document(docID);
 System.out.println(doc.get("title"));

 Query query = mlt.like(docID);
 System.out.println(" query=" + query);

 TopDocs similarDocs = searcher.search(query, 10);
 if (similarDocs.totalHits == 0)
 System.out.println(" None like this");
 for(int i=0;i<similarDocs.scoreDocs.length;i++) {

Listing 8.7 Using MoreLikeThis to find similar documents

Instantiate
MoreLikeThis

Lower default
minimums

Iterate through all
docs in index

Build query to find
similar docs

Don’t show

 if (similarDocs.scoreDocs[i].doc != docID) { same doc

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

284 CHAPTER 8 Essential Lucene extensions

 doc = reader.document(similarDocs.scoreDocs[i].doc);
 System.out.println(" -> " + doc.getField("title").stringValue());
 }
 }
 }

 searcher.close();
 reader.close();
 directory.close();
 }
}

8.6.2 FuzzyLikeThisQuery

FuzzyLikeThisQuery combines MoreLikeThis and FuzzyQuery. It allows you to build
a query by adding arbitrary text, which is analyzed by default with StandardAnalyzer.
The tokens derived from that analysis are then “fuzzed” using the same process that
FuzzyQuery uses. Finally, from these terms the most differentiating terms are selected
and searched on. This query can be a useful alternative when end users are unfamiliar
with the standard QueryParser Boolean search syntax.

8.6.3 BoostingQuery

BoostingQuery allows you to run a primary Query but selectively demote search
results matching a second Query. Use it like this:

Query balancedQuery = new BoostingQuery(positiveQuery,
 negativeQuery, 0.01f);

where positiveQuery is your primary query, negativeQuery matches those docu-
ments you’d like to demote, and 0.01f is the factor you’d like use when demoting. All
documents matching negativeQuery alone won’t be included in the results. All docu-
ments matching positiveQuery alone will be included with their original score. All
documents matching both will have their score demoted by the specified factor.

 BoostingQuery is similar to creating a Boolean query with the negativeQuery
added as a NOT clause, except instead of excluding outright those documents match-
ing negativeQuery, BoostingQuery still includes those documents, just with a weaker
score.

8.6.4 TermsFilter

TermsFilter is a filter that matches any arbitrary set of terms you specify. It’s like a
TermRangeFilter that doesn’t require the terms to be in a contiguous sequence. You
simply construct the TermsFilter, add the terms one by one you’d like to filter on by
calling the addTerm method, and then use that filter when searching. An example
might be a collection of primary keys from a database query result or perhaps a choice
of “category” labels picked by the end user.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

285Fun and interesting Query extensions

8.6.5 DuplicateFilter

DuplicateFilter is a Filter that removes documents that have the same value for a
specific unanalyzed field. For example, say you have a field KEY, which isn’t analyzed
but is indexed. Suppose a given document could be indexed multiple times in
Lucene, perhaps once with only its “current version” and again with the “full revision
history.” There would now be two Lucene documents, each sharing the same KEY
value. You could then do something like this:

DuplicateFilter df = new DuplicateFilter("KEY");
df.setKeepMode(DuplicateFilter.KM_USE_LAST_OCCURRENCE);
TopDocs hits = searcher.search(query, df, 10);

And the filter will keep only the last document added to the index that shares the
same KEY value.

8.6.6 RegexQuery

RegexQuery, which is in the contrib/regex directory, allows you to specify an arbitrary
regular expression for matching terms. Any document containing a term matching
that regular expression will match. It’s like WildcardQuery on steroids. Here’s a sim-
ple example:

public void testRegexQuery() throws Exception {
 Directory directory = TestUtil.getBookIndexDirectory();
 IndexSearcher searcher = new IndexSearcher(directory);
 RegexQuery q = new RegexQuery(new Term("title", ".*st.*"));
 TopDocs hits = searcher.search(q, 10);
 assertEquals(2, hits.totalHits);
 assertTrue(TestUtil.hitsIncludeTitle(searcher, hits,
 "Tapestry in Action"));
 assertTrue(TestUtil.hitsIncludeTitle(searcher, hits,
 "Mindstorms: Children, Computers, And Powerful Ideas"));
 searcher.close();
 directory.close();
}

There are two books that match the cryptic regular expression .*st.*. By default
RegexQuery uses Java’s built-in regular expression syntax, from java.util.regex, but
you can switch to Apache Jakarta’s regular expression syntax (org.apache.regexp) by
calling

RegexQuery.setRegexImplementation(new JakartaRegexpCapabilities());

The contrib/regex package also contains SpanRegexQuery, which combines Regex-
Query and SpanQuery so that all matches also include the matching spans. The Span-
Query family is described section 5.5.

 Let’s now see how to build contrib modules.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

286 CHAPTER 8 Essential Lucene extensions

8.7 Building contrib modules
Most of Lucene’s contrib modules are included in the standard Lucene releases,
under the contrib directory. Each package generally has its own JAR files for the
classes and the Javadocs.

 Still, some packages aren’t part of the build and release process. Further, there
may be recent improvements not yet released that you’d like to use. To handle these
cases, you’ll need to access the source code and build the packages yourself. Fortu-
nately, this is straightforward; you can easily obtain Lucene’s source code directly (via
Apache’s SVN access or from the source code release). You can then either build the
JAR files and incorporate the resulting binaries into your project or copy the desired
source code into your project and build it directly into your own binaries.

8.7.1 Get the sources

The simplest way to obtain the sources for the contrib modules is to download the
source release from http://lucene.apache.org. If you’d like to instead use the latest
and greatest version you can check out the source code using a Subversion client (see
http://subversion.tigris.org). Follow the instructions provided at the Apache site:
http://wiki.apache.org/lucene-java/SourceRepository. Specifically, this step involves
executing the following command from the command line:

svn checkout http://svn.apache.org/repos/asf/lucene/java/trunk lucene

This is read-only access to the repository. In your current directory, you’ll now have a
subdirectory named lucene-trunk. Under that directory is a contrib directory where
all the goodies discussed here, and more, reside. Let’s build the JARs.

8.7.2 Ant in the contrib directory

Next, let’s build the components. You’ll need Ant 1.7.0 or later in order to run the
contrib build files. At the root of the lucene-trunk directory is a build.xml file. From
the command line, with the current directory lucene-trunk, execute the following:

ant build-contrib

Most of the components will build and create a distributable JAR file in the build sub-
directory. Now is also a good time to execute the Ant test, which runs all core and con-
trib unit tests, to confirm all Lucene’s tests are passing.

 Some components aren’t currently integrated into this build process, so you may
need to copy the necessary files into your project. Some outdated contributions are
still there as well (these are the ones we didn’t mention in this chapter), and addi-
tional contributions will probably arrive after we’ve written this.

 Each contrib subdirectory, such as analyzers and Ant, has its own build.xml file.
To build a single component, set your current working directory to the desired com-
ponent’s directory and execute ant. This is still a fairly crude way of getting your
hands on these add-ons to Lucene, but it’s useful to have direct access to the source.
You may want to use the contrib modules for ideas and inspiration, not necessarily

for the exact code.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://lucene.apache.org
http://subversion.tigris.org
http://wiki.apache.org/lucene-java/SourceRepository
http://www.it-ebooks.info/

287Summary

8.8 Summary
Don’t reinvent the wheel. Someone has no doubt encountered the same situation
you’re struggling with. The contrib modules and the other resources listed on the
Lucene website should be your first stops.

 In this chapter we’ve covered the truly essential extensions to Lucene. Google
clearly sets a high bar as the baseline expectation of search users when it comes to
spell checking and hit highlighting. Fortunately, Lucene’s contrib modules include
the spellchecker package and two packages for performing hit highlighting, giving
you an excellent starting point for providing these functions to your users.

 We saw Luke, which is an incredibly useful graphical tool for peeking into your
index to see what terms and documents are present, as well as for running queries and
basic index operations like optimization. Luke is an invaluable Swiss army knife of a
tool that all Lucene applications should make use of.

 If you’re working with languages other than English, take advantage of the numer-
ous analyzers for non-English languages; often you can choose from more than one
analyzer to try per language. Beyond language-specific analyzers, we saw some other
interesting analyzers like ngram, which creates tokens out of adjacent letters in each
word, and shingle, which creates single tokens out of multiple adjacent words. Using
the shingle filter is a particularly useful approach to allow phrase searches to include
stop words.

 We also saw a slew of interesting new Query implementations, including a generic
MoreLikeThis class for finding documents similar to a specified original; Fuzzy-
LikeThisQuery, which combines MoreLikeThis and FuzzyQuery; BoostingQuery, for
mixing the scores of a positive and negative query; and RegexQuery, for matching doc-
uments containing terms that match a provided regular expression. The queries pack-
age also provides TermsFilter, to accept documents containing any of an arbitrary set
of terms, and DuplicateFilter, to remove documents that seem to be duplicates of
one another according to a specified field.

 In the next chapter we continue our coverage of Lucene’s contrib modules, visit-
ing some of the less commonly used contrib modules.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Further
Lucene extensions
In the previous chapter we explored a number of commonly used extensions to
Lucene. In this chapter we’ll round out that coverage by detailing some of the less
popular yet still interesting and useful extensions.

 ChainedFilter lets you logically chain multiple filters together into one Filter.
The Berkeley DB package enables storing a Lucene index within a Berkeley data-
base. There are two options for storing an index entirely in memory, which provide
far faster search performance than RAMDirectory. We’ll show three alternative
QueryParser implementations, one based on XML, another designed to produce
SpanQuery instances (something the core QueryParser can’t do), and a final new
query parser that’s very modular. Spatial Lucene enables sorting and filtering based
on geographic distance. You can perform remote searching (over RMI) using the

This chapter covers
Searching indexes remotely using RMI

Chaining multiple filters into one

Storing an index in Berkeley DB

Sorting and filtering according to geographic distance
288

contrib/remote module.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

289Chaining filters

 This chapter completes our coverage of Lucene’s contrib modules, but remember
that Lucene’s sources are fast moving so it’s likely new packages are available by the
time you read this. If in doubt, you should always check Lucene’s source code reposi-
tory for the full listing of what new goodies are available.

 Let’s begin with chaining filters.

9.1 Chaining filters
Using a search filter, as we’ve discussed in section 5.6, is a powerful mechanism for
selectively narrowing the document space to be searched by a query. The contrib
directory contains an interesting meta-filter in the misc project, contributed by Kelvin
Tan, which chains other filters together and performs AND, OR, XOR, and ANDNOT
bit operations between them. ChainedFilter, like the built-in CachingWrapperFil-
ter, isn’t a concrete filter; it combines a list of filters and performs a desired bit-wise
operation for each successive filter, allowing for sophisticated combinations.

 Listing 9.1 shows the base test case we’ll use to show ChainedFilter’s functionality.
It’s slightly involved because it requires a diverse enough data set to showcase how the
various scenarios work. We’ve set up an index with 500 documents, including a key
field, with values 1 through 500; a date field, with successive days starting from January
1, 2009; and an owner field, with the first half of the documents owned by Bob and the
second half owned by Sue.

public class ChainedFilterTest extends TestCase {
 public static final int MAX = 500;
 private RAMDirectory directory;
 private IndexSearcher searcher;
 private Query query;
 private Filter dateFilter;
 private Filter bobFilter;
 private Filter sueFilter;

 public void setUp() throws Exception {
 directory = new RAMDirectory();
 IndexWriter writer =
 new IndexWriter(directory, new WhitespaceAnalyzer(),
 IndexWriter.MaxFieldLength.UNLIMITED);

 Calendar cal = Calendar.getInstance();
 cal.set(2009, 1, 1, 0, 0);

 for (int i = 0; i < MAX; i++) {
 Document doc = new Document();
 doc.add(new Field("key", "" + (i + 1),
 Field.Store.YES, Field.Index.NOT_ANALYZED));
 doc.add(new Field("owner", (i < MAX / 2) ? "bob" : "sue",
 Field.Store.YES, Field.Index.NOT_ANALYZED));
 doc.add(new Field("date", DateTools.timeToString(
 cal.getTimeInMillis(),
 DateTools.Resolution.DAY),

Listing 9.1 Base test case to see ChainedFilter in action

Set date to Jan 1 2009
 Field.Store.YES, Field.Index.NOT_ANALYZED));

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

290 CHAPTER 9 Further Lucene extensions

 writer.addDocument(doc);

 cal.add(Calendar.DATE, 1);
 }

 writer.close();

 searcher = new IndexSearcher(directory);

 BooleanQuery bq = new BooleanQuery();
 bq.add(new TermQuery(new Term("owner", "bob")),
 BooleanClause.Occur.SHOULD);
 bq.add(new TermQuery(new Term("owner", "sue")),
 BooleanClause.Occur.SHOULD);
 query = bq;

 cal.set(2099, 1, 1, 0, 0);
 dateFilter = TermRangeFilter.Less("date",
 DateTools.timeToString(
 cal.getTimeInMillis(),
 DateTools.Resolution.DAY));

 bobFilter = new CachingWrapperFilter(
 new QueryWrapperFilter(
 new TermQuery(new Term("owner", "bob"))));

 sueFilter = new CachingWrapperFilter(
 new QueryWrapperFilter(
 new TermQuery(new Term("owner", "sue"))));
 }
}

In addition to the test index, setUp defines an all-encompassing query and some fil-
ters for our examples. The query searches for documents owned by either Bob or Sue;
used without a filter it will match all 500 documents. An all-encompassing DateFilter
is constructed, as well as two QueryFilters, one to filter on owner Bob and the other
on Sue.

 Using a single filter nested in a ChainedFilter has no effect beyond using the fil-
ter without ChainedFilter, as shown here with two of the filters:

public void testSingleFilter() throws Exception {
 ChainedFilter chain = new ChainedFilter(
 new Filter[] {dateFilter});
 TopDocs hits = searcher.search(query, chain, 10);
 assertEquals(MAX, hits.totalHits);

 chain = new ChainedFilter(new Filter[] {bobFilter});
 assertEquals(MAX / 2, TestUtil.hitCount(searcher, query, chain),

hits.totalHits);
}

The real power of ChainedFilter comes when we chain multiple filters together. The
default operation is OR, combining the filtered space as shown when filtering on Bob
or Sue:

public void testOR() throws Exception {
 ChainedFilter chain = new ChainedFilter(

Match all docs

Match all docs,
by date

Match only
Bob’s docs

Match only
Sue’s docs
 new Filter[] {sueFilter, bobFilter});

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

291Chaining filters

 assertEquals("OR matches all", MAX, TestUtil.hitCount(searcher, query,
chain));

}

Rather than increase the document space, you can use AND to narrow the space:

public void testAND() throws Exception {
 ChainedFilter chain = new ChainedFilter(
 new Filter[] {dateFilter, bobFilter}, ChainedFilter.AND);
 TopDocs hits = searcher.search(query, chain, 10);
 assertEquals("AND matches just Bob", MAX / 2, hits.totalHits);
 Document firstDoc = searcher.doc(hits.scoreDocs[0].doc);
 assertEquals("bob", firstDoc.get("owner"));
}

The testAND test case shows that the dateFilter is AND’d with the bobFilter, effec-
tively restricting the search space to documents owned by Bob because the dateFil-
ter is all encompassing. In other words, the intersection of the provided filters is the
document search space for the query. Filter bit sets can be XOR’d (exclusively OR’d,
meaning one or the other, but not both) :

public void testXOR() throws Exception {
 ChainedFilter chain = new ChainedFilter(
 new Filter[]{dateFilter, bobFilter}, ChainedFilter.XOR);
 TopDocs hits = searcher.search(query, chain, 10);
 assertEquals("XOR matches Sue", MAX / 2, hits.totalHits);
 Document firstDoc = searcher.doc(hits.scoreDocs[0].doc);
 assertEquals("sue", firstDoc.get("owner"));
}

The dateFilter XOR’d with bobFilter effectively filters for owner Sue in our test
data. The ANDNOT operation allows only documents that match the first filter but not
the second filter to pass through:

public void testANDNOT() throws Exception {
 ChainedFilter chain = new ChainedFilter(
 new Filter[]{dateFilter, sueFilter},
 new int[] {ChainedFilter.AND, ChainedFilter.ANDNOT});

 TopDocs hits = searcher.search(query, chain, 10);
 assertEquals("ANDNOT matches just Bob",
 MAX / 2, hits.totalHits);
 Document firstDoc = searcher.doc(hits.scoreDocs[0].doc);
 assertEquals("bob", firstDoc.get("owner"));
}

In testANDNOT, given our test data, all documents in the date range except those
owned by Sue are available for searching, which narrows it down to only documents
owned by Bob.

 Depending on your needs, the same effect can be obtained by combining query
clauses into a BooleanQuery or using FilteredQuery (see section 6.4.3). Keep in
mind the performance caveats to using filters; and, if you’re reusing filters without
changing the index, be sure you’re using a caching filter. ChainedFilter doesn’t
cache, but wrapping it in a CachingWrappingFilter will take care of that.
 Let’s look at an alternative Directory implementation next.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

292 CHAPTER 9 Further Lucene extensions

9.2 Storing an index in Berkeley DB
The Chandler project (http://chandlerproject.org) is an ongoing effort to build an
open source personal information manager. Chandler aims to manage diverse types
of information such as email, instant messages, appointments, contacts, tasks, notes,
web pages, blogs, bookmarks, photos, and much more. It’s an extensible platform, not
just an application. Search is a crucial component to the Chandler infrastructure.

 The Chandler codebase uses Python primarily, with hooks to native code where
necessary. We’re going to jump right to how the Chandler developers use Lucene;
refer to the Chandler site for more details on this fascinating project. Andi Vajda, one
of Chandler’s key developers, created PyLucene to enable full access to Lucene’s APIs
from Python. PyLucene is an interesting port of Lucene to Python; we cover it in full
detail in section 10.7.

 Chandler’s underlying repository uses Oracle’s Berkeley DB in a vastly different
way than a traditional relational database, inspired by Resource Description Frame-
work (RDF) and associative databases. Andi created a Lucene directory implementa-
tion that uses Berkeley DB as the underlying storage mechanism. An interesting side
effect of having a Lucene index in a database is the transactional support it provides.
Andi donated his implementation to the Lucene project, and it’s maintained in the
db/bdb area of the contrib directory.

 Berkeley DB, at release 4.7.25 as of this writing, is written in C, but provides full
Java API access via Java Native Interface (JNI). The db/bdb contrib module provides
access via this API. Berkeley DB also has a Java edition, which is written entirely in Java,
so no JNI access is required and the code exists in a single JAR file. Aaron Donovan
ported the contrib/db/bdb to the “Java edition” under the contrib/db/bdb-je direc-
tory. Listing 9.2 shows how to use the Java edition version of Berkeley DB, but the API
for the original Berkeley DB is similar. We provide the corresponding examples for
both indexing and searching with the source code that comes with this book.

 JEDirectory, which is a Directory implementation that stores its files in the
Berkeley DB Java Edition, is more involved to use than the built-in RAMDirectory and
FSDirectory. It requires constructing and managing two Berkeley DB Java API objects,
EnvironmentConfig and DatabaseConfig. Listing 9.2 shows JEDirectory being used
for indexing.

public class BerkeleyDbJEIndexer {
 public static void main(String[] args)
 throws IOException, DatabaseException {
 if (args.length != 1) {
 System.err.println("Usage: BerkeleyDbIndexer <index dir>");
 System.exit(-1);
 }

 File indexFile = new File(args[0]);

Listing 9.2 Storing an index in Berkeley DB, using JEDirectory
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://chandlerproject.org
http://www.it-ebooks.info/

293Storing an index in Berkeley DB

 if (indexFile.exists()) {
 File[] files = indexFile.listFiles();
 for (int i = 0; i < files.length; i++)
 if (files[i].getName().startsWith("__"))
 files[i].delete();
 indexFile.delete();
 }

 indexFile.mkdir();

 EnvironmentConfig envConfig = new EnvironmentConfig();
 DatabaseConfig dbConfig = new DatabaseConfig();

 envConfig.setTransactional(true);
 envConfig.setAllowCreate(true);
 dbConfig.setTransactional(true);
 dbConfig.setAllowCreate(true);B

 Environment env = new Environment(indexFile, envConfig);

 Transaction txn = env.beginTransaction(null, null);
 Database index = env.openDatabase(txn, "__index__", dbConfig);
 Database blocks = env.openDatabase(txn, "__blocks__", dbConfig);
 txn.commit();
 txn = env.beginTransaction(null, null);

 JEDirectory directory = new JEDirectory(txn, index, blocks);

 IndexWriter writer = new IndexWriter(directory,
 new StandardAnalyzer(Version.LUCENE_30),
 true,
 IndexWriter.MaxFieldLength.UNLIMITED);

 Document doc = new Document();
 doc.add(new Field("contents", "The quick brown fox...",
 Field.Store.YES, Field.Index.ANALYZED));
 writer.addDocument(doc);

 writer.optimize();
 writer.close();

 directory.close();
 txn.commit();

 index.close();
 blocks.close();
 env.close();

 System.out.println("Indexing Complete");
 }
}

As you can see, there’s a lot of Berkeley DB–specific setup required to initialize the
database. Once you have an instance of JEDirectory, however, using it with Lucene is
no different than using the built-in Directory implementations. Searching with
JEDirectory uses the same mechanism (see BerkeleyDBJESearcher in the source
code with this book). The next section describes using the WordNet database to
include synonyms in your index.

Remove
existing index,
if present

Configure BDB’s
environment, db

Open db, transaction

Create JEDirectory
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

294 CHAPTER 9 Further Lucene extensions

9.3 Synonyms from WordNet
What a tangled web of words we weave. A system developed at Princeton University’s
Cognitive Science Laboratory, driven by psychology professor George Miller, illus-
trates the net of synonyms.1 WordNet represents word forms that are interchangeable,
both lexically and semantically. Google’s define feature (type define: word as a
Google search and see for yourself) often refers users to the online WordNet system,
allowing you to navigate word interconnections. Figure 9.1 shows the results of search-
ing for search at the WordNet site.

 What does all this mean to developers using Lucene? With Dave Spencer’s contri-
bution to Lucene’s contrib modules, the WordNet synonym database can be churned
into a Lucene index. This allows for rapid synonym lookup—for example, for syn-
onym injection during indexing or querying (see section 4.5 for such an implementa-
tion). We first see how to build an index containing WordNet’s synonyms, then how to
use these synonyms during analysis.

1 Interestingly, this is the same George Miller who reported on the phenomenon of seven plus or minus two

Figure 9.1 WordNet shows word interconnections, such as this entry for the word search.
chunks in immediate memory.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

295Synonyms from WordNet

9.3.1 Building the synonym index

To build the synonym index, follow these steps:

1 Download and expand the Prolog version of WordNet, currently distributed as
the file WNprolog-3.0.tar.gz from the WordNet site at http://wordnet.prince-
ton.edu/wordnet/download.

2 Obtain the binary (or build from source; see section 8.7) of the contrib Word-
Net package.

3 Un-tar the file you downloaded. It should produce a subdirectory, prolog, that
has many files. We’re only interested in the wn_s.pl file. Build the synonym
index using the Syns2Index program from the command line. The first param-
eter points to the wn_s.pl file and the second argument specifies the path where
the Lucene index will be created:
java org.apache.lucene.wordnet.Syns2Index prolog/wn_s.pl wordnetindex

The Syns2Index program converts the WordNet Prolog synonym database into a stan-
dard Lucene index with an indexed field word and unindexed fields syn for each doc-
ument. WordNet 3.0 produces 44,930 documents, each representing a single word;
the index size is approximately 2.9MB, making it compact enough to load as a RAM-
Directory for speedy access.

 A second utility program in the WordNet contrib module lets you look up syn-
onyms of a word. Here’s a sample lookup of a word near and dear to our hearts:

java org.apache.lucene.wordnet.SynLookup indexes/wordnet search

Synonyms found for "search":
explore
hunt
hunting
look
lookup
research
seek

Figure 9.2 shows these same synonyms graphically using Luke.
 To use the synonym index in your applications, borrow the relevant pieces from

SynLookup, as shown in listing 9.3.

public static void main(String[] args) throws IOException {
 if (args.length != 2) {
 System.out.println(
 "java org.apache.lucene.wordnet.SynLookup <index path> <word>");
 }

 FSDirectory directory = FSDirectory.open(new File(args[0]));
 IndexSearcher searcher = new IndexSearcher(directory);

 String word = args[1];

Listing 9.3 Looking up synonyms from a WordNet-based index
 Query query = new TermQuery(new Term(Syns2Index.F_WORD, word));

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://wordnet.princeton.edu/wordnet/download
http://wordnet.princeton.edu/wordnet/download
http://www.it-ebooks.info/

296 CHAPTER 9 Further Lucene extensions

 CountingCollector countingCollector = new CountingCollector();
 searcher.search(query, countingCollector);

 if (countingCollector.numHits == 0) {
 System.out.println("No synonyms found for " + word);
 } else {
 System.out.println("Synonyms found for \"" + word + "\":");
 }

 ScoreDoc[] hits = searcher.search(query,
countingCollector.numHits).scoreDocs;

 for (int i = 0; i < hits.length; i++) {
 Document doc = searcher.doc(hits[i].doc);

 String[] values = doc.getValues(Syns2Index.F_SYN);

 for (int j = 0; j < values.length; j++) {
 System.out.println(values[j]);
 }
 }

 searcher.close();
 directory.close();
}

Enumerate
synonyms for
word
Figure 9.2 Viewing the synonyms for search using Luke’s documents tab

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

297Synonyms from WordNet

The SynLookup program was written for this book, but it has been added into the
WordNet contrib codebase.

9.3.2 Tying WordNet synonyms into an analyzer

The custom SynonymAnalyzer from section 4.5 can easily hook into WordNet syn-
onyms using the SynonymEngine interface. Listing 9.4 contains the WordNetSynonym-
Engine, which is suitable for use with the SynonymAnalyzer.

public class WordNetSynonymEngine implements SynonymEngine {
 IndexSearcher searcher;
 Directory fsDir;

 public WordNetSynonymEngine(File index) throws IOException {
 fsDir = FSDirectory.open(index);
 searcher = new IndexSearcher(fsDir);
 }

 public void close() throws IOException {
 searcher.close();
 fsDir.close();
 }

 public String[] getSynonyms(String word) throws IOException {

 List<String> synList = new ArrayList<String>();

 AllDocCollector collector = new AllDocCollector();

 searcher.search(new TermQuery(new Term("word", word)), collector);

 for (ScoreDoc hit : collector.getHits()) {
 Document doc = searcher.doc(hit.doc);

 String[] values = doc.getValues("syn");

 for (String syn : values) {
 synList.add(syn);
 }
 }

 return synList.toArray(new String[0]);
 }
}

We use the AllDocCollector from section 6.2.3 to keep all synonyms.
 Adjusting the SynonymAnalyzerViewer from section 4.5.2 to use the WordNetSyn-

onymEngine, our sample output looks like this:

1: [quick] [warm] [straightaway] [spry] [speedy] [ready] [quickly]
 [promptly] [prompt] [nimble] [immediate] [flying] [fast] [agile]
2: [brown] [embrown] [brownness] [brownish] [browned]
3: [fox] 2[trick] [throw] [slyboots] [fuddle] [fob] [dodger]

Listing 9.4 WordNetSynonymEngine generates synonyms from WordNet’s database

2 We’ve apparently befuddled or outfoxed the WordNet synonym database because the synonyms injected for

Collect every
matching document

Iterate over
matching documents

Record synonyms
fox don’t relate to the animal noun we intended.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

298 CHAPTER 9 Further Lucene extensions

 [discombobulate] [confuse] [confound] [befuddle] [bedevil]
4: [jumps]
5: [over] [terminated] [o] [ended] [concluded] [complete]
6: [lazy] [slothful] [otiose] [indolent] [faineant]
7: [dogs]

Interestingly, WordNet synonyms do exist for jump and dog, but only in singular form.
Perhaps stemming should be added to our SynonymAnalyzer prior to the Synonym-
Filter, or maybe the WordNetSynonymEngine should be responsible for stemming
words before looking them up in the WordNet index. These are issues that need to be
addressed based on your environment. This emphasizes again the importance of the
analysis process and the fact that it deserves your attention.

 We’ll next see some alternative options for holding an index in RAM.

9.4 Fast memory-based indices
In section 2.10 we showed you how to use RAMDirectory to load an index entirely in
RAM. This is especially convenient if you have a prebuilt index living on disk and
you’d like to slurp the whole thing into RAM for faster searching. But because RAM-
Directory still treats all data from the index as files, there’s significant overhead dur-
ing searching for Lucene to decode this file structure for every query. This is where
two interesting contrib modules come in: MemoryIndex and InstantiatedIndex.

 MemoryIndex, contributed by Wolfgang Hoschek, is a fast RAM-only index designed
to test whether a single document matches a query. It’s only able to index and search
a single document. You instantiate the MemoryIndex, then use its addField method to
add the document’s fields into it. Then, use its search methods to search with an arbi-
trary Lucene query. This method returns a float relevance score; 0.0 means there was
no match.

 InstantiatedIndex, contributed by Karl Wettin, is similar, except it’s able to index
and search multiple documents. You first create an InstantiatedIndex, which is anal-
ogous to RAMDirectory in that it’s the common store that a writer and reader share.
Then, create an InstantiatedIndexWriter to index documents. Alternatively, you
can pass an existing IndexReader when creating the InstantiatedIndex, and it will
copy the contents of that index. Finally, create an InstantiatedIndexReader, and
then an IndexSearcher from that, to run arbitrary Lucene searches.

 Under the hood, both of these contributions represent all aspects of a Lucene
index using linked in-memory Java data structures, instead of separate index files like
RAMDirectory. This makes searching much faster than RAMDirectory, at the expense
of more RAM consumption. In many cases, especially if the index is small, the docu-
ments you’d like to search have high turnover, the turnaround time after indexing
and before searching must be low, and you have plenty of RAM, one of these classes
may be a perfect fit.

 Next we show how to build queries represented with XML.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

299XML QueryParser: Beyond “one box” search interfaces

9.5 XML QueryParser:
Beyond “one box” search interfaces
Contributed by MARK HARWOOD

The standard Lucene QueryParser is ideal for creating the classic single text input
search interface provided by web search engines such as Google. But many search
applications are more complex than this and require a custom search form to capture
criteria with widgets such as the following:

Drop-down list boxes, such as Gender: Male/Female
Radio buttons or check boxes, such as Include Fuzzy Matching?
Calendars for selecting dates or ranges of dates
Maps for defining locations
Separate free-text input boxes for targeting various fields, such as title or author

All of the criteria from these HTML form elements must be brought together to form
a Lucene search request. There are fundamentally three approaches to constructing
this request, as shown in figure 9.3.

 Options 1 and 2 in figure 9.3 have drawbacks. The standard QueryParser syntax
can only be used to instantiate a limited range of Lucene’s available queries and fil-
ters. Option 2 embeds all the query logic in Java code, where it can be hard to read or
maintain. Generally it’s desirable to avoid using Java code to assemble complex collec-
tions of objects. Often a domain-specific text file provides a cleaner syntax and eases
maintenance. Further examples include Spring configuration files, XML (Extensible
Markup Language) UI (User Interface) Language (XUL) frameworks, Ant build files,
or Hibernate database mappings. The contrib XmlQueryParser does exactly this,
enabling option 3 from figure 9.3 for Lucene.

User Input

Application Code

XML
Query Parser

Query/Filter Objects

Lucene Code

Query String

Java Call

XML

Options for Constructing Lucene Queries

Lucene
Query Parser

Custom XSL
Query Template

3

Java Code
2

Any Language
1

Figure 9.3 Three common options for building a Lucene query from a search UI
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

300 CHAPTER 9 Further Lucene extensions

 We’ll start with a brief example, and then show a full example of how XmlQuery-
Parser is used. We’ll end with options for extending XmlQueryParser with new Query
types. Here’s a simple example XML query that combines a Lucene query and filter,
enabling you to express a Lucene Query without any Java code:

<FilteredQuery>
 <Query>
 <UserQuery fieldName="text">"Swimming pool"</UserQuery>
 </Query>
 <Filter>
 <TermsFilter fieldName="dayOfWeek">monday friday</TermsFilter>
 </Filter>
</FilteredQuery>

XmlQueryParser parses such XML and produces a Query object for you, and the con-
trib module includes a full document type definition (DTD) to formally specify the out-
of-the-box tags, as well as full HTML documentation, including examples, for all tags.

 But how can you produce this XML from a web search UI in the first place? There
are various approaches; one simple approach is to use the Extensible Stylesheet Lan-
guage (XSL) to define query templates as text files that can be populated with user
input at runtime. Let’s walk through an example web application. This example is
derived from the web demo available in the XmlQueryParser contrib sources.

9.5.1 Using XmlQueryParser

Consider the web-based form UI shown in figure 9.4. Let’s create a servlet that can
handle this job search form. The good news is this code should also work, unchanged,
with your own choice of form.

 Our Java servlet begins with some initialization code:

public void init(ServletConfig config) throws ServletException {
 super.init(config);
 try {
 openExampleIndex();

 queryTemplateManager = new QueryTemplateManager(
 getServletContext().getResourceAsStream("/WEB-INF/query.xsl"));

 xmlParser = new CorePlusExtensionsParser(defaultFldName,analyzer);

 } catch (Exception e) {
 throw new ServletException("Error loading query template",e);
 }
}

Figure 9.4 Advanced search user
interface for a job search site, implemented

with XmlQueryParser

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

301XML QueryParser: Beyond “one box” search interfaces

The initialization code performs three basic operations:

Opening the search index—Our method (not shown here) simply opens a stan-
dard IndexSearcher and caches it in our servlet’s instance data.
Loading a Query template using the QueryTemplateManager class—This class will
be used later to help construct queries.
Creating an XML query parser—The CorePlusExtensionsParser class used here
provides an XML query parser that is preconfigured with support for all the
core Lucene queries and filters and also those from Lucene’s contrib modules
(we’ll examine how to add support for custom queries later).

Having initialized our servlet, we now add code to handle search requests, shown in
listing 9.5.

protected void doPost(HttpServletRequest request, HttpServletResponse
response)

 throws ServletException, IOException {

 Properties completedFormFields=new Properties();
 Enumeration pNames = request.getParameterNames();
 while(pNames.hasMoreElements()){
 String propName=(String) pNames.nextElement();
 String value=request.getParameter(propName);
 if((value!=null)&&(value.trim().length()>0)){
 completedFormFields.setProperty(propName, value);
 }
 }

 try{
 org.w3c.dom.Document xmlQuery=
 queryTemplateManager.getQueryAsDOM(completedFormFields);

 Query query=xmlParser.getQuery(xmlQuery.getDocumentElement());

 TopDocs topDocs = searcher.search(query,10);

 if(topDocs!=null) {
 ScoreDoc[] sd = topDocs.scoreDocs;
 Document[] results=new Document[sd.length];
 for (int i = 0; i < results.length; i++) {
 results[i]=searcher.doc(sd[i].doc);
 }
 request.setAttribute("results", results);
 }
 RequestDispatcher dispatcher =
 getServletContext().getRequestDispatcher("/index.jsp");
 dispatcher.forward(request,response);
 }
 catch(Exception e){
 throw new ServletException("Error processing query",e);
 }
}

Listing 9.5 Search request handler using XML query parser

Create
Properties
object

Create XML document

Parse into
Lucene Query

Store
search
results
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

302 CHAPTER 9 Further Lucene extensions

First, a java.util.Properties object is populated with all the form values where the
user provided some choice of criteria. If getParameter is used, only one value for a
given parameter is allowed; you could switch to getParameterValues instead to relax
this limitation. The Properties object is then passed to the QueryTemplateManager to
populate the search template and create an XML document that represents our query
logic. The XML document is then passed to the query parser to create a Query object
for use in searching. The remainder of the method is typical Servlet code used to
package results and pass them on to a JavaServer Page (JSP) for display.

 Having set up our servlet, we can now take a closer look at the custom query logic
we need for our job search and how this is expressed in the query.xsl query template.
The XSL language in the query template allows us to perform the following operations:

Test for the presence of input values with if statements
Substitute input values in the output XML document
Manipulate input values, such as splitting strings and zero-padding numbers
Loop around sections of content using for each statements

We won’t attempt to document all the XSL language here, but clearly the previous list
lets us perform the majority of operations that we typically need to transform user
input into queries. The XSL statements that control the construction of our query
clauses can be differentiated from the query clauses because they’re all prefixed with
the <xsl: tag. Our query.xsl is shown in listing 9.6.

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/Document">
 <BooleanQuery>
 <xsl:if test="type">
 <Clause occurs="must">
 <ConstantScoreQuery>
 <CachedFilter>
 <TermsFilter fieldName="type">
 <xsl:value-of select="type"/>
 </TermsFilter>
 </CachedFilter>
 </ConstantScoreQuery>
 </Clause>
 </xsl:if>

 <xsl:if test="description">
 <Clause occurs="must">
 <UserQuery fieldName="description">
 <xsl:value-of select="description"/>
 </UserQuery>
 </Clause>
 </xsl:if>

Listing 9.6 Using XSL to transform the user’s input into the corresponding XML query

B

C

 <xsl:if test="South|North|East|West"> D

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

303XML QueryParser: Beyond “one box” search interfaces

 <Clause occurs="must">
 <ConstantScoreQuery>
 <BooleanFilter>
 <xsl:for-each select="South|North|East|West">
 <Clause occurs="should">
 <CachedFilter>
 <TermsFilter fieldName="location">
 <xsl:value-of select="name()"/>
 </TermsFilter>
 </CachedFilter>
 </Clause>
 </xsl:for-each>
 </BooleanFilter>
 </ConstantScoreQuery>
 </Clause>
 </xsl:if>

 <xsl:if test="salaryRange">
 <Clause occurs="must">
 <ConstantScoreQuery>
 <RangeFilter fieldName="salary" >
 <xsl:attribute name="lowerTerm">
 <xsl:value-of
 select='format-number(substring-before(salaryRange,"-"), "000")' />
 </xsl:attribute>
 <xsl:attribute name="upperTerm">
 <xsl:value-of
 select='format-number(substring-after(salaryRange,"-"), "000")' />
 </xsl:attribute>
 </RangeFilter>
 </ConstantScoreQuery>
 </Clause>
 </xsl:if>
 </BooleanQuery>
 </xsl:template>
</xsl:stylesheet>

If the user selects a preference for type of job, apply choice of permanent/contract fil-
ter and cache.

Use standard Lucene query parser for any job description input.

If any of the location fields are set, OR them all in a Boolean filter and cache individ-
ual filters.

Translate salary range into a constant score range filter.

The template in listing 9.6 conditionally outputs clauses depending on the presence
of user input. The logic behind each of the clauses is as follows:

Job type—As a field with only two possible values (permanent or contract), this
can be an expensive query clause to run because a search will typically match
half of all the documents in our search index. If our index is very large, this can
involve reading millions of document IDs from the disk. For this reason we use
a cached filter for these search terms. Any filter can be cached in memory for

E

 B

 C

 D

 E
reuse simply by wrapping it in a <CachedFilter> tag.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

304 CHAPTER 9 Further Lucene extensions

Job description—As a free-text field, the standard Lucene query syntax is useful
for allowing the user to express his criteria. The contents of the <UserQuery>
tag are passed to a standard Lucene QueryParser to interpret the user’s search.
Job location—Like the job type field, the job location field is a field with a limited
choice of values, which benefit from caching as a filter. Unlike the job type
field, however, multiple choices of field values can be selected for a location. We
use a BooleanFilter to OR multiple filter clauses together.
Job salary—Job salaries are handled as a RangeFilter clause, which produces a
Lucene TermRangeFilter. The input field from the search form requires some
manipulation in the XSL template before it can be used. The salary range value
arrives from our search form as a single string value such as 90–100. Before we
can construct a Lucene request, we must split this into an Upper and Lower
value, and make sure both values are zero-padded to comply with Lucene’s
requirement for these to be lexicographically ordered. Fortunately these opera-
tions can be performed using built-in XSL functions.

Let’s see how to extend XmlQueryParser.

9.5.2 Extending the XML query syntax

Adding support for new tags in the query syntax or changing the classes that support
the existing tags is a relatively simple task. As an example, we’ll add support for a new
XML tag to simplify the creation of date-based filters. Our new tag allows us to express
date ranges in relation to today’s date, such as “last week’s news” or “people aged
between 30 and 40.” For example, in our job search application we might want to add
a filter using syntax like this:

<Ago fieldName="dateJobPosted" timeUnit="days" from="0" to="7"/>

Each tag in the XML syntax has an associated Builder class, which is used to parse the
content. The Builders are registered by adding the object with the name of the tag it
supports to the parser. So in order to register a new builder for the Ago tag, we’d need
to include a line like the following in the initialization method of our servlet:

xmlParser.addFilterBuilder("Ago", new AgoFilterBuilder());

The AgoFilterBuilder class, shown in listing 9.7, is a simple object that’s used to
parse any XML tags with the value Ago. For those familiar with the XML DOM interface,
the code should be straightforward.

public class AgoFilterBuilder implements FilterBuilder {

 static HashMap<String,Integer> timeUnits=new HashMap<String,Integer>();

 @Override
 public Filter getFilter(Element element) throws ParserException {
 String fieldName = DOMUtils.getAttributeWithInheritanceOrFail(element,

Listing 9.7 Extending the XML query parser with a custom FilterBuilder

Extract field, time unit, from and to
 "fieldName");

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

305XML QueryParser: Beyond “one box” search interfaces

 String timeUnit = DOMUtils.getAttribute(element, "timeUnit", "days");
 Integer calUnit = timeUnits.get(timeUnit);
 if (calUnit == null) {
 throw new ParserException("Illegal time unit:"
 +timeUnit+
 " - must be days, months or years");
 }
 int agoStart = DOMUtils.getAttribute(element, "from",0);
 int agoEnd = DOMUtils.getAttribute(element, "to", 0);
 if (agoStart < agoEnd) {
 int oldAgoStart = agoStart;
 agoStart = agoEnd;
 agoEnd = oldAgoStart;
 }
 SimpleDateFormat sdf = new SimpleDateFormat("yyyyMMdd");

 Calendar start = Calendar.getInstance();
 start.add(calUnit, agoStart*-1);

 Calendar end = Calendar.getInstance();
 end.add(calUnit, agoEnd*-1);

 return NumericRangeFilter.newIntRange(
 fieldName,
 Integer.valueOf(sdf.format(start.getTime())),
 Integer.valueOf(sdf.format(end.getTime())),
 true, true);
 }

 static {
 timeUnits.put("days", Calendar.DAY_OF_YEAR);
 timeUnits.put("months",Calendar.MONTH);
 timeUnits.put("years", Calendar.YEAR);
 }
}

Our AgoFilterBuilder is called by the XML parser every time an Ago tag is encoun-
tered, and it’s expected to return a Lucene Filter object given an XML DOM ele-
ment. The class DOMUtils simplifies the code involved in extracting parameters. Our
AgoFilterBuilder reads the to, from, and timeUnit attributes using DOMUtils to pro-
vide default values if no attributes are specified. Our code simplifies application logic
for specifying to and from values by swapping the values if they’re out of order.

 An important consideration in coding Builder classes is that they should be
thread-safe. For this reason our class creates a SimpleDateFormat object for each
request rather than holding a single object in instance data because SimpleDate-
Format isn’t thread-safe.

 Our Builder is relatively simple because the XML tag doesn’t permit any child que-
ries or filters to be nested inside it. The BooleanQueryBuilder class in Lucene’s con-
trib module provides an example of a more complex XML tag that supports nested
Query objects. These sorts of Builder classes must be initialized with a QueryBuilder-
Factory, which is used to find the appropriate Builder to handle each of the nested
query tags.

Extract field, time
unit, from and to

Parse
date/
times

Create
NumericRangeFilter
 Next we look at an alternate QueryParser that can produce span queries.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

306 CHAPTER 9 Further Lucene extensions

9.6 Surround query language
Contributed by PAUL ELSCHOT

As you saw in section 5.5, span queries offer some advanced possibilities for positional
matching. Unfortunately, Lucene’s QueryParser is unable to produce span queries.
That’s where the Surround QueryParser comes in. The Surround QueryParser
defines an advanced textual language to create span queries.

 Let’s walk through an example to get a sense of the query language accepted by
the Surround QueryParser. Suppose a meteorologist wants to find documents on
“temperature inversion.” In the documents, this “inversion” can also be expressed as
“negative gradient,” and each word can occur in various inflected forms.

 This query in the Surround query language can be used for the “temperature
inversion” concept:

5n(temperat*, (invers* or (negativ* 3n gradient*)))

This query will match the following sample texts:

Even when the temperature is high, its inversion would...
A negative gradient for the temperature.

But this won’t match the following text, because there’s nothing to match “gradient”:
A negative temperature.

This shows the power of spans: they allow word combinations in proximity (“negative
gradient”) to be treated as synonyms of single words (“inversion”) or of other words in
proximity.

 You’ll notice the Surround syntax is different from Lucene’s built-in QueryParser.
Operators, such as 5n, may be in prefix notation, meaning they come first, followed by
their subqueries in parentheses—for example, 5n(…,…). The parentheses for the pre-
fix form gave the name Surround to the language, as they surround the underlying
Lucene spans.

 The 3n operator is used in infix notation, meaning it’s written between the two
subqueries. Either notation is allowed in the Surround query language. The 5n and
3n operators create an unordered SpanNearQuery containing the specified subque-
ries, meaning they only match when their subqueries have spans within five or three
positions of one another. If you replace n with w, then an ordered SpanNearQuery is
created. The prefixed number may be from 1 to 99; if you leave off the number (and
just type n or w), then the default is 1, meaning the subqueries have adjacent match-
ing spans.

 Continuing the example, suppose the meteorologist wants to find documents that
match “negative gradient” and two more concepts: “low pressure” and “rain.” In the
documents, these concepts can be also expressed in plural or verb form and by syn-
onyms such as “depression” for “low pressure” and “precipitation” for “rain.” Also, all
three concepts should occur at most 50 words away from each other:
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

307Surround query language

50n((low w pressure*) or depression*,
5n(temperat*, (invers* or (negativ* 3n gradient*))),
rain* or precipitat*)

This matches the following sample texts:

Low pressure, temperature inversion, and rain.
When the temperature has a negative height gradient above a depression no
precipitation is expected.

But it won’t match this text because the word “gradient” is in the wrong place (further
than three positions away), leading to improved precision in query results:

When the temperature has a negative height above a depression no precipita-
tion gradient is expected.

Just like the built-in QueryParser, Surround accepts parentheses to nest queries;
field:text syntax to restrict the following search term to a specific field; * and ? as
wildcards; Boolean AND, OR, and NOT operators; and the caret (^) for boosting sub-
queries. When no proximity is used, the Surround QueryParser produces the same
Boolean and term queries as the built-in QueryParser. In proximity subqueries, wild-
cards and or map to SpanOrQuery, and single terms map to SpanTermQuery. Due to
limitations of the Lucene spans package, the operators and, not, and ^ can’t be used
in subqueries of the proximity operators.

 Note that the Lucene spans package is generally not as efficient as the phrase que-
ries used by the standard query parser. And the more complex the query, the higher
its execution time. Because of this, we recommend that you provide the user with the
possibility of using filters.

 Unlike the standard QueryParser, the Surround parser doesn’t use an analyzer.
This means that the user will have to know precisely how terms are indexed. For
indexing texts to be queried by the Surround language, we recommend that you use a
lowercasing analyzer that removes only the most frequently occurring punctuations.
Such an analyzer is assumed in the previous examples. Using analyzers this way gives
you good control over the query results, at the expense of having to use more wild-
cards during searching.

 With the possibility of nested proximity queries; the need to know precisely what’s
indexed; the need to use parentheses, commas, and wildcards; and the preference for
additional use of filters, the Surround query language isn’t intended for the casual
user. But for those users who are willing to spend more effort on their queries so they
can achieve higher-precision results, this query language can be a good fit.

 For a more complete description of the Surround query language, have a look at
the README.txt file that comes with the source code. To use Surround, make sure that
the surround contrib module is on the classpath and follow the example Java code to
obtain a normal Lucene query:

String queryText = "5d(temperat*, (invers* or (negativ* 3d gradient*)))";
SrndQuery srndQuery = QueryParser.parse(queryText);
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

308 CHAPTER 9 Further Lucene extensions

int maxBasicQueries = 1000;

BasicQueryFactory bqFactory = new BasicQueryFactory(maxBasicQueries);

String defaultFieldName = "txt";

Query luceneQuery = srndQuery.makeLuceneQueryField(
 defaultFieldName, bqFactory);

Our next contrib module is called Spatial Lucene.

9.7 Spatial Lucene
Contributed by PATRICK O’LEARY

Over the past decade, web search has transformed itself from finding a basic web
page to finding specific results in a certain topic. Video search, medical search, image
search, news, sports: each of these is referred to as a vertical search. One that stands
out is local search, the use of specialized search techniques that allow users to submit
geographically constrained searches against a structured database of local business
listings.3

 Lucene now contains a contrib module to enable local search: called Spatial
Lucene, it started with the donation of local lucene from Patrick O’Leary (http://
www.gissearch.com) and is expected to grow in capabilities over time. If you need to
find “shoe stores that exist within 10 miles of location X,” Spatial Lucene will do that.

 Though by no means a full GIS (geographical information system) solution, Spa-
tial Lucene supports these functions:

Radial-based searching; for example, “show me only restaurants within 2 miles
from a specified location.” This defines a filter covering a circular area.
Sorting by distance, so locations closer to a specified origin are sorted first.
Boosting by distance, so locations closer to a specified origin receive a larger
boost.

The real challenge with spatial search is that for every query that arrives, a different
origin is required. Life would be simple if the origin were fixed, as we could compute
and store all distances in the index. But because distance is a dynamic value, changing
with every query as the origin changes, Spatial Lucene must take a dynamic approach
that requires special logic during indexing as well as searching. We’ll visit this logic
here, as well as touch on some of the performance consideration implied by Spatial
Lucene’s approach. Let’s first see how to index documents for spatial search.

9.7.1 Indexing spatial data

To use Spatial Lucene, you must first geo-code locations in your documents. This
means a textual location, such as “77 Massachusetts Ave” or “the Louvre” must be
translated into its corresponding latitude and longitude. Some methods for geo-cod-
ing are described at http://www.gissearch.com/geocode. This process must be done
3 Wikipedia provides more details at http://en.wikipedia.org/wiki/Local_search_(Internet).

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.gissearch.com
http://www.gissearch.com/geocode
http://en.wikipedia.org/wiki/Local_search_(Internet)
http://www.gissearch.com
http://www.it-ebooks.info/

309Spatial Lucene

outside of Spatial Lucene, which only operates on locations represented as latitudes
and longitudes.

 Now what does Spatial Lucene do with each location? One simple approach would
be to load each document’s location, compute its distance on the fly, and use that for
filtering, sorting, or boosting. This approach will work, but it results in rather poor
performance. Instead, Spatial Lucene implements interesting transformations during
indexing, including both projection and hierarchical tries and grids, that allow for
faster searching.
PROJECTING THE GLOBE

To compute distances, we first must “flatten”
the globe using a mathematical process called
projection, depicted in figure 9.5. This is a nec-
essary precursor so that we can represent any
location on the surface of the earth using an
equivalent two-dimensional coordinate sys-
tem. This process is similar to having a light
shine through a transparent globe and “pro-
jected” onto a flat canvas. By unfolding the
globe into a flat surface, we make the methods
for selecting bounding boxes much more uniform.

 There are two common projections. The first is the sinusoidal projection (http://
en.wikipedia.org/wiki/Sinusoidal_projection), which keeps an even spacing of the
projection. It will cause a distortion of the image, though, giving it a pinched look.
The second projection is the Mercator projection (http://en.wikipedia.org/wiki/
Mercator_projection), used because it gives a regular rectangular view of the globe.
But it doesn’t correctly scale to certain areas of the planet. If, for example, you look at
a global projection of the earth on Google Maps and compare it to the spherical pro-
jection in Google Earth, you’ll see that Greenland in Google Maps’ rectangular pro-
jection is about the size of North America, whereas in Google Earth, it’s about one
third the size. Spatial Lucene has a built-in implementation for the sinusoidal projec-
tion, which we’ll use in our example.

 The next step is to map each location to a series of grid boxes.
TIERS AND GRID BOXES

Once each location is flattened through projection, it’s mapped a hierarchical series
of tiers and grid boxes as shown in figure 9.6. Tiers divide the 2D grid into smaller and
smaller square grid boxes. Each grid box is assigned a unique ID; as each tier gets
higher, the grid boxes become finer.

 This arrangement allows for quick retrieval of locations stored at various levels of
granularity. For instance, imagine you have 1 million documents representing differ-
ent parts of the United States, and you want every document that has a location on the
West Coast. If you were storing just the raw document locations, you’d have to iterate
through every one of those million documents to see if its location is inside your

Figure 9.5 Projecting the globe’s three-
dimensional surface into two dimensions is
necessary for spatial search.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://en.wikipedia.org/wiki/Sinusoidal_projection
http://en.wikipedia.org/wiki/Mercator_projection
http://en.wikipedia.org/wiki/Sinusoidal_projection
http://en.wikipedia.org/wiki/Mercator_projection
http://www.it-ebooks.info/

310 CHAPTER 9 Further Lucene extensions

search radius. But using grids, you can say, “My search radius is about 1,000 miles, so
the tier that can best fit a 1,000-mile radius is tier 9, and grid reference –3.004 and
–3.005 contain all the items I need.” You then simply retrieve by two terms in Lucene
to find the corresponding items. Two term retrievals versus 1 million iterations is a
major cost and time savings.

 Listing 9.8 shows how to index documents with Spatial Lucene. We use Cartesian-
TierPlotter to create grid boxes for tiers 5 through 15.

public class SpatialLuceneExample {

 String latField = "lat";
 String lngField = "lon";
 String tierPrefix = "_localTier";

 private Directory directory;
 private IndexWriter writer;

 SpatialLuceneExample() throws IOException {
 directory = new RAMDirectory();
 writer = new IndexWriter(directory, new WhitespaceAnalyzer(),
 MaxFieldLength.UNLIMITED);
 }

 private void addLocation(IndexWriter writer, String name, double lat,
 double lng) throws IOException {

 Document doc = new Document();
 doc.add(new Field("name", name, Field.Store.YES,
 Field.Index.ANALYZED));

 doc.add(new Field(latField,
 NumericUtils.doubleToPrefixCoded(lat),
 Field.Store.YES, Field.Index.NOT_ANALYZED));
 doc.add(new Field(lngField,
 NumericUtils.doubleToPrefixCoded(lng),

Listing 9.8 Indexing a document for spatial search

Figure 9.6 Tiers and grid boxes
recursively divide two dimensions into
smaller and smaller areas.

Encode lat/lng
as doubles
 Field.Store.YES, Field.Index.NOT_ANALYZED));

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

311Spatial Lucene

 doc.add(new Field("metafile", "doc", Field.Store.YES,
 Field.Index.ANALYZED));

 IProjector projector = new SinusoidalProjector();

 int startTier = 5;
 int endTier = 15;

 for (; startTier <= endTier; startTier++) {
 CartesianTierPlotter ctp;
 ctp = new CartesianTierPlotter(startTier,
 projector, tierPrefix);

 double boxId = ctp.getTierBoxId(lat, lng);
 System.out.println("Adding field " + ctp.getTierFieldName() + ":"
 + boxId);
 doc.add(new Field(ctp.getTierFieldName(), NumericUtils
 .doubleToPrefixCoded(boxId), Field.Store.YES,
 Field.Index.NOT_ANALYZED_NO_NORMS));

 }

 writer.addDocument(doc);
 System.out.println("===== Added Doc to index ====");
 }
}

The most important part is the loop that creates the tiers for each location to be
indexed. You start by creating a CartesianTierPlotter for the current tier:

ctp = new CartesianTierPlotter(startTier, projector, tierPrefix);

The parameters are as follows:

tierLevel, in our case starting at 5 and going to 15.
projector is the SinusoidalProjector, which is the method to project latitude
and longitude to a flat surface.
tierPrefix is the string used as the prefix of the field name, in our case
"_localTier".

We then call ctp.getTierBoxId(lat, lng) with the latitude and longitude values.
This returns the ID of the grid box that will contain the latitude and longitude values
at this tier level, which is a double representing x,y coordinates. For example, adding
field _localTier11:-12.0016 would mean at zoom level 11, box –12.0016 contains
the location you’ve added, at grid position x = –12, y = 16. This provides a rapid
method for looking up values in an area and finding its nearest neighbors. The
method addLocation is simple to use:

addLocation(writer, "TGIFriday", 39.8725000, -77.3829000);

This method will add somewhere called "TGIFriday" with its latitude and longitude
coordinates to a Lucene spatial index. Let’s now see how to search the spatial index.

Use sinusoidal
projection

Index around 1
to 1000 miles

Compute
bounding
box ID

Add tier field
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

312 CHAPTER 9 Further Lucene extensions

9.7.2 Searching spatial data

Once you have your data indexed, you’ll need to retrieve it; listing 9.9 shows how.
We’ll create a method to perform a normal text search that filters and sorts according
to distance from a specific origin. This is the basis of a standard local search.

public void findNear(String what, double latitude, double longitude,
 double radius)
 throws CorruptIndexException, IOException {
 IndexSearcher searcher = new IndexSearcher(directory);

 DistanceQueryBuilder dq;
 dq = new DistanceQueryBuilder(latitude,
 longitude,
 radius,
 latField,
 lngField,
 tierPrefix,
 true);

 Query tq;
 if (what == null)
 tq = new TermQuery(new Term("metafile", "doc"));
 else
 tq = new TermQuery(new Term("name", what));

 DistanceFieldComparatorSource dsort;
 dsort = new DistanceFieldComparatorSource(
 dq.getDistanceFilter());
 Sort sort = new Sort(new SortField("foo", dsort));

 TopDocs hits = searcher.search(tq, dq.getFilter(), 10, sort);

 int numResults = hits.totalHits;

 Map<Integer,Double> distances =
 dq.getDistanceFilter().getDistances();

 System.out.println("Number of results: " + numResults);
 System.out.println("Found:");
 for(int i =0 ; i < numResults; i++) {
 int docID = hits.scoreDocs[i].doc;
 Document d = searcher.doc(docID);

 String name = d.get("name");
 double rsLat = NumericUtils.prefixCodedToDouble(d.get(latField));
 double rsLng = NumericUtils.prefixCodedToDouble(d.get(lngField));
 Double geo_distance = distances.get(docID);

 System.out.printf(name +": %.2f Miles\n", geo_distance);
 System.out.println("\t\t("+ rsLat +","+ rsLng +")");
 }
}

The key component during searching is DistanceQueryBuilder. The parameters are

Listing 9.9 Sorting and filtering by spatial criteria

Create
distance
query

Match all
documents

Create
distance sort

Get distances map
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

313Spatial Lucene

latitude and longitude of the center location (origin) for the search
radius of your search
latField and lngField, the names of the latitude and longitude fields in the
index
tierPrefix, the prefix of the spatial tiers in the index, which must match the
tierPrefix used during indexing
needPrecise, which is true if you intend to filter precisely by distance

Probably the only parameter whose purpose isn’t obvious is needPrecise. To ensure
that all results fit in a radius, the distance from the center location of your search may
be calculated for every potential result. Sometimes that precision isn’t needed. For
instance, to filter for all locations on the West Coast, which is a fairly arbitrary request,
a minimal bounding box could suffice in which case you’d leave needPrecise as
false. If you need precisely filtered results, or you intend to sort by distance, you must
specify true.

 Distance is a dynamic field and not part of the index. That means we must use
Spatial Lucene’s DistanceSortSource, which takes the distanceFilter from the
DistanceQueryBuilder, because it contains all the distances for the query. Note that
the field name (foo, in our example) is unused; DistanceSortSource provides the
sorting information. See section 6.1 to learn more about custom sorting. Let’s finish
our example.
FINDING THE NEAREST RESTAURANT

We’ve seen how to populate an index with the necessary information for spatial
searching and how to construct a query that filters and sorts by distance. Let’s put the
finishing touches on it, combining what we’ve done so far with some spatial data, as
shown in listing 9.10. We’ve added an addData method—to enroll a bunch of bars,
clubs, and restaurants into the index—along with a main function that creates the
index and then does a search for the nearest restaurant.

public static void main(String[] args) throws IOException {
 SpatialLuceneExample spatial = new SpatialLuceneExample();
 spatial.addData();
 spatial.findNear("Restaurant", 39.8725000, -77.3829000, 8);
}

private void addData() throws IOException {
 addLocation(writer, "McCormick & Schmick's Seafood Restaurant",
 39.9579000, -77.3572000);
 addLocation(writer, "Jimmy's Old Town Tavern", 39.9690000, -77.3862000);
 addLocation(writer, "Ned Devine's", 39.9510000, -77.4107000);
 addLocation(writer, "Old Brogue Irish Pub", 39.9955000, -77.2884000);
 addLocation(writer, "Alf Laylah Wa Laylah", 39.8956000, -77.4258000);
 addLocation(writer, "Sully's Restaurant & Supper", 39.9003000, -

77.4467000);
 addLocation(writer, "TGIFriday", 39.8725000, -77.3829000);

Listing 9.10 Finding restaurants near home with Spatial Lucene
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

314 CHAPTER 9 Further Lucene extensions

 addLocation(writer, "Potomac Swing Dance Club", 39.9027000, -77.2639000);
 addLocation(writer, "White Tiger Restaurant", 39.9027000, -77.2638000);
 addLocation(writer, "Jammin' Java", 39.9039000, -77.2622000);
 addLocation(writer, "Potomac Swing Dance Club", 39.9027000, -77.2639000);
 addLocation(writer, "WiseAcres Comedy Club", 39.9248000, -77.2344000);
 addLocation(writer, "Glen Echo Spanish Ballroom", 39.9691000, -77.1400000);
 addLocation(writer, "Whitlow's on Wilson", 39.8889000, -77.0926000);
 addLocation(writer, "Iota Club and Cafe", 39.8890000, -77.0923000);
 addLocation(writer, "Hilton Washington Embassy Row", 39.9103000,
 -77.0451000);
 addLocation(writer, "HorseFeathers, Bar & Grill", 39.01220000000001,
 -77.3942);
 writer.close();
}

We add a list of named locations using addData. Then, we search for the word Restau-
rant in our index within 8 miles from location (39.8725000, –77.3829000). You can
run search this by entering ant SpatialLucene at the command prompt. You should
see the following result:

Number of results: 3
Found:
Sully's Restaurant & Supper: 3.94 Miles
 (39.9003,-77.4467)
McCormick & Schmick's Seafood Restaurant: 6.07 Miles
 (39.9579,-77.3572)
White Tiger Restaurant: 6.74 Miles
 (39.9027,-77.2638)

As our final topic, let’s look at the performance of Spatial Lucene.

9.7.3 Performance characteristics of Spatial Lucene

Unlike standard text search, which relies heavily on an inverted index where duplica-
tion in words reduces the size of an index and improves retrieval time, spatial loca-
tions have a tendency to be unique. The introduction of a Cartesian grid with tiers
provides the ability to “bucketize” the locations into nonunique grids of different size,
thus improving retrieval time. But calculating distance still relies on visiting individual
locations in the index. This presents several problems:

Memory consumption can be high as both the latitude and longitude fields are
accessed through the field cache (see section 5.1).
Results can have varying density.
Distance calculations are by nature complex and slow.

MEMORY

Memory can be reduced by using the org.apache.lucene.spatial.geohash meth-
ods, which condense the latitude and longitude fields into a single hash field.4 The
DistanceQueryBuilder supports geohash with its constructor:
4 See http://en.wikipedia.org/wiki/Geohash for a good description of what a geohash is.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://en.wikipedia.org/wiki/Geohash
http://www.it-ebooks.info/

315Spatial Lucene

DistanceQueryBuilder(double lat, double lng, double miles,
 String geoHashFieldPrefix,
 String tierFieldPrefix,
 boolean needPrecise)

There’s a trade-off in the additional processing overhead, though, for encoding and
decoding the geohash fields.
DENSITY OF RESULTS

As you can imagine, searches for pizza restaurants in Death Valley and New York City
will have different characteristics. The more results you have, the more distance calcu-
lations you’ll need to perform. Distribution and multithreading help; the more con-
current work you can spread across threads and CPUs, the quicker the response.
Caching doesn’t help here, although Spatial Lucene does cache overlapping loca-
tions, because the center location of your search may change more frequently than
your search term.

NOTE Don’t index all your data by regions—you’ll find an uneven distribution
of load. Cities will generally have more data than suburbs, thus taking
more processing time. Furthermore, more people will search for results
in cities compared to suburbs.

PERFORMANCE NUMBERS

As a rough performance test, we evaluated a textual query that filters and sorts by dis-
tance. A single thread was used, running on a 3.06 GHz, 1.5 Java virtual machine with
a 500MB heap. The searcher was first warmed with 5 queries, and the time averaged
five requests for all documents with varying radii. There were 647,860 total documents
in the index.

 Table 9.1 shows the results. The first column holds the number of documents
returned by the query; the second column holds the amount of time for the boundary
box calculation, without the precise distance calculation; and the third column indi-
cates the additional time required to get the precise result.

It’s clear from table 9.1 that large sets of spatial data can be retrieved from the index
rapidly: 12 ms for 80,900 items in a Cartesian boundary box is quite fast. But a signifi-
cant amount of time is consumed by calculating all the precise result distances to filter
out any that might exist outside the radius and to enable sorting.

Table 9.1 Searching and filtering time with varying result counts

Number of results Time to find results Time to filter by distance

 9,959 7 ms 520 ms

14,019 10 ms 807 ms

80,900 12 ms 1,650 ms
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

316 CHAPTER 9 Further Lucene extensions

NOTE If your main concern is the search score, and a rough bounding box will
suffice for precision—for example, all documents in the West Coast com-
pared to all documents precisely within 1,000 miles sorted by dis-
tance—then use the DistanceQueryBuilder with needPrecise set to
false. You can calculate distances at display time with DistanceUtils.
getInstance().getDistanceMi(search_lat, search_long, result_
lat, result_lng);.

Let’s see a contrib module that enables remote searching using Java’s RMI.

9.8 Searching multiple indexes remotely
The contrib directory includes remote index searching capability through Remote
Method Invocation (RMI), under contrib/remote. Although it used to be core func-
tionality inside Lucene, this capability was moved into the contrib area as of the 2.9
release. There are numerous other alternatives to exposing search remotely, such as
through web services. This section focuses solely on Lucene’s contrib capabilities;
other implementations are left to your innovation.

 An RMI server binds to an instance of RemoteSearchable, which is an implementa-
tion of the Searchable interface just like IndexSearcher and MultiSearcher. The
server-side RemoteSearchable delegates to a concrete Searchable, such as a regular
IndexSearcher instance.

 Clients to the RemoteSearchable invoke search methods identically to search
through an IndexSearcher or MultiSearcher, as shown throughout chapters 3, 5,
and 6. Figure 9.7 illustrates one possible remote-searching configuration.

 Other configurations are possible, depending on your needs. The client could
instantiate a ParallelMultiSearcher over multiple remote (and/or local) indexes,
and each server could search only a single index.

 To demonstrate RemoteSearchable, we put
together a multi-index server configuration,
similar to figure 9.7, using both Multi-

Searcher and ParallelMultiSearcher in
order to compare performance. We split the
WordNet index (a database of nearly 44,000
words and their synonyms) into 26 indexes
representing A through Z, with each word in
the index corresponding to its first letter. The
server exposes two RMI client-accessible Remo-
teSearchables, allowing clients to access
either the serial MultiSearcher or the Paral-
lelMultiSearcher.

 SearchServer is shown in listing 9.11.

Client

RemoteSearchable

a b z

Server

MultiSearcher

. . .

Figure 9.7 Remote searching through RMI,
with the server searching multiple indexes
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

317Searching multiple indexes remotely

public class SearchServer {
 private static final String ALPHABET =
 "abcdefghijklmnopqrstuvwxyz";

 public static void main(String[] args) throws Exception {
 if (args.length != 1) {
 System.err.println("Usage: SearchServer <basedir>");
 System.exit(-1);
 }

 String basedir = args[0];
 Directory[] dirs = new Directory[ALPHABET.length()];
 Searchable[] searchables = new Searchable[ALPHABET.length()];
 for (int i = 0; i < ALPHABET.length(); i++) {
 dirs[i] = FSDirectory.open(new File(basedir, ""+ALPHABET.charAt(i)));
 searchables[i] = new IndexSearcher(
 dirs[i]);
 }

 LocateRegistry.createRegistry(1099);

 Searcher multiSearcher = new MultiSearcher(searchables);
 RemoteSearchable multiImpl =
 new RemoteSearchable(multiSearcher);
 Naming.rebind("//localhost/LIA_Multi", multiImpl);

 Searcher parallelSearcher =
 new ParallelMultiSearcher(searchables);
 RemoteSearchable parallelImpl =
 new RemoteSearchable(parallelSearcher);
 Naming.rebind("//localhost/LIA_Parallel", parallelImpl);

 System.out.println("Server started");

 for (int i = 0; i < ALPHABET.length(); i++) {
 dirs[i].close();
 }
 }
}

Twenty-six indexes reside under the basedir, each named for a letter of the alphabet.

A plain IndexSearcher is opened for each index.

An RMI registry is created.

A MultiSearcher over all indexes, named LIA_Multi, is created and published
through RMI.

A ParallelMultiSearcher over the same indexes, named LIA_Parallel, is created
and published.

Querying through SearchServer remotely involves mostly RMI glue, as shown in
SearchClient in listing 9.12. Because our access to the server is through a Remote-
Searchable, which is a lower-level API than we want to work with, we wrap it inside a
MultiSearcher. Why MultiSearcher? Because it’s a wrapper over Searchables, mak-

Listing 9.11 SearchServer: a remote search server using RMI

B

C

D

E

F

 B

 C

 D

 E

 F
ing it as friendly to use as IndexSearcher.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

318 CHAPTER 9 Further Lucene extensions

public class SearchClient {
 private static HashMap searcherCache = new HashMap();

 public static void main(String[] args) throws Exception {
 if (args.length != 1) {
 System.err.println("Usage: SearchClient <query>");
 System.exit(-1);
 }

 String word = args[0];

 for (int i=0; i < 5; i++) {
 search("LIA_Multi", word);
 search("LIA_Parallel", word);
 }
 }

 private static void search(String name, String word)
 throws Exception {
 TermQuery query = new TermQuery(new Term("word", word));

 MultiSearcher searcher =
 (MultiSearcher) searcherCache.get(name);

 if (searcher == null) {
 searcher =
 new MultiSearcher(
 new Searchable[]{lookupRemote(name)});
 searcherCache.put(name, searcher);
 }

 long begin = new Date().getTime();
 TopDocs hits = searcher.search(query, 10);
 long end = new Date().getTime();

 System.out.print("Searched " + name +
 " for '" + word + "' (" + (end - begin) + " ms): ");

 if (hits.scoreDocs.length == 0) {
 System.out.print("<NONE FOUND>");
 }

 for (ScoreDoc sd : hits.scoreDocs) {
 Document doc = searcher.doc(sd.doc);
 String[] values = doc.getValues("syn");
 for (String syn : values) {
 System.out.print(syn + " ");
 }
 }
 System.out.println();
 System.out.println();

 }

 private static Searchable lookupRemote(String name)
 throws Exception {
 return (Searchable) Naming.lookup("//localhost/" + name);
 }

Listing 9.12 SearchClient accesses RMI-exposed objects from SearchServer

B

C

D

E

F

G

}

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

319Searching multiple indexes remotely

We perform multiple identical searches to warm up the JVM and get a good sample of
response time. The MultiSearcher and ParallelMultiSearcher are each searched.

The searchers are cached, to be as efficient as possible.

The remote Searchable is located and wrapped in a MultiSearcher.

The searching process is timed.

We don’t close the searcher because it closes the remote searcher, thereby prohibiting
future searches.

Look up the remote interface.

WARNING Don’t close() the RemoteSearchable or its wrapping MultiSearcher.
Doing so will prevent future searches from working because the server
side will have closed its access to the index.

Let’s see our remote searcher in action. For demonstration purposes, we ran it on a
single machine in separate console windows. The server is started:

% ant SearchServer

Running lia.tools.remote.SearchServer...
Server started
Running lia.tools.remote.SearchClient...
Searched LIA_Multi for 'java' (78 ms): coffee

Searched LIA_Parallel for 'java' (36 ms): coffee

Searched LIA_Multi for 'java' (13 ms): coffee

Searched LIA_Parallel for 'java' (11 ms): coffee

Searched LIA_Multi for 'java' (11 ms): coffee

Searched LIA_Parallel for 'java' (16 ms): coffee

Searched LIA_Multi for 'java' (32 ms): coffee

Searched LIA_Parallel for 'java' (21 ms): coffee

Searched LIA_Multi for 'java' (8 ms): coffee

Searched LIA_Parallel for 'java' (15 ms): coffee

It’s interesting to note the search times reported by each type of server-side searcher.
The ParallelMultiSearcher is sometimes slower and sometimes faster than the Mul-
tiSearcher in our environment (four CPUs, single disk). Also, you can see the reason
why we chose to run the search multiple times: the first search took much longer rela-
tive to the successive searches, which is probably due to JVM warmup and OS I/O cach-
ing. These results point out that performance testing is tricky business, but it’s
necessary in many environments. Because of the strong effect your environment has
on performance, we urge you to perform your own tests with your own environment.
Performance testing is covered in more detail in section 11.1.

 If you choose to expose searching through RMI in this manner, you’ll likely want to
create a bit of infrastructure to coordinate and manage issues such as closing an index

 B

 C

 D

 E

 F

 G
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

320 CHAPTER 9 Further Lucene extensions

and how the server deals with index updates (remember, the searcher sees a snapshot
of the index and must be reopened to see changes).

 Let’s explore yet another alternative for parsing queries, the newly added flexible
QueryParser.

9.9 Flexible QueryParser
New in the 2.9 release is a modular alternative to Lucene’s core QueryParser, under
contrib/queryparser. This flexible QueryParser was donated to Lucene by IBM, where
it’s used in a number of internal products in order to share common query parsing
infrastructure even when the supported syntax and query production vary substan-
tially. By the time you read this, it’s possible the core QueryParser will have been
replaced with this more flexible one.

 So what makes this new parser so flexible? It strongly decouples three phases of
producing a Query object from an input String:

1 QueryParser—The incoming String is converted into a tree structured repre-
sentation, where each Query is represented as a query node. This phase is inten-
tionally kept minimal and hopefully is easily reused across many use cases. It’s
meant to be a thin veneer that does the initial rote translation of String into a
rich query node tree.

2 QueryNodeProcessor—The query nodes are transformed into other query
nodes or have their configuration altered. This phase is meant to do most of the
heavy lifting—for example, taking into account what query types are allowed,
what their default settings areand so forth.

3 QueryBuilder—This phase translates nodes in the query tree into the final
Query instances that Lucene requires for searching. Like QueryParser, this is
meant to be a thin veneer whose sole purpose is to render the query nodes into
the appropriate Lucene Query objects.

There are two packages within the flexible QueryParser. First is the core framework,
located under org.apache.lucene.queryParser.core. This package contains all the
infrastructure for implementing the three phases of parsing. The second package
contains the StandardQueryParser, located under org.apache.lucene.query-

Parser.standard, and defines components for each of the three core phases of pars-
ing for that match Lucene’s core QueryParser. The StandardQueryParser is nearly a
drop-in for any place that currently uses Lucene’s core QueryParser:

Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_30);
StandardQueryParser parser = new StandardQueryParser(analyzer);
Query q = parser.parse("(agile OR extreme) AND methodology", "subject");
System.out.println("parsed " + q);

Although the new parser is pluggable and modular, it does consist of many more
classes than the core QueryParser, which can make initial customization more chal-
lenging. Listing 9.13 shows how to customize the flexible QueryParser to reject wild-

card and fuzzy queries and produce span queries instead of phrase queries. We made

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

321Flexible QueryParser

these same changes in section 6.3.2 using the core QueryParser. Whereas the core
QueryParser allows you to override one method to customize how each query is cre-
ated, the flexible query parser requires you to create separate query processor or
builder classes.

public class CustomFlexibleQueryParser extends StandardQueryParser {

 public CustomFlexibleQueryParser(Analyzer analyzer) {
 super(analyzer);

 QueryNodeProcessorPipeline processors = (QueryNodeProcessorPipeline)
 getQueryNodeProcessor();
 processors.addProcessor(new NoFuzzyOrWildcardQueryProcessor());

 QueryTreeBuilder builders = (QueryTreeBuilder) getQueryBuilder();
 builders.setBuilder(TokenizedPhraseQueryNode.class,
 new SpanNearPhraseQueryBuilder());
 builders.setBuilder(SlopQueryNode.class, new SlopQueryNodeBuilder());
 }

 private final class NoFuzzyOrWildcardQueryProcessor
 extends QueryNodeProcessorImpl {
 protected QueryNode preProcessNode(QueryNode node)
 throws QueryNodeException {
 if (node instanceof FuzzyQueryNode ||
 node instanceof WildcardQueryNode) {
 throw new QueryNodeException(new MessageImpl("no"));
 }
 return node;
 }
 protected QueryNode postProcessNode(QueryNode node)
 throws QueryNodeException {
 return node;
 }
 protected List<QueryNode> setChildrenOrder(List<QueryNode> children) {
 return children;
 }
 }

 private class SpanNearPhraseQueryBuilder implements StandardQueryBuilder {
 public Query build(QueryNode queryNode) throws QueryNodeException {
 TokenizedPhraseQueryNode phraseNode =
 (TokenizedPhraseQueryNode) queryNode;
 PhraseQuery phraseQuery = new PhraseQuery();

 List<QueryNode> children = phraseNode.getChildren();

 SpanTermQuery[] clauses;
 if (children != null) {
 int numTerms = children.size();
 clauses = new SpanTermQuery[numTerms];
 for (int i=0;i<numTerms;i++) {
 FieldQueryNode termNode = (FieldQueryNode) children.get(i);
 TermQuery termQuery = (TermQuery) termNode

Listing 9.13 Customizing the flexible query parser

Install custom
node processor

Install two custom
query builders

Prevent fuzzy,
wildcard queries

Pull all terms
for phrase
 .getTag(QueryTreeBuilder.QUERY_TREE_BUILDER_TAGID);

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

322 CHAPTER 9 Further Lucene extensions

 clauses[i] = new SpanTermQuery(termQuery.getTerm());
 }
 } else {
 clauses = new SpanTermQuery[0];
 }

 return new SpanNearQuery(clauses, phraseQuery.getSlop(), true);
 }
 }

 public class SlopQueryNodeBuilder implements StandardQueryBuilder {

 public Query build(QueryNode queryNode) throws QueryNodeException {
 SlopQueryNode phraseSlopNode = (SlopQueryNode) queryNode;

 Query query = (Query) phraseSlopNode.getChild().getTag(
 QueryTreeBuilder.QUERY_TREE_BUILDER_TAGID);

 if (query instanceof PhraseQuery) {
 ((PhraseQuery) query).setSlop(phraseSlopNode.getValue());
 } else if (query instanceof MultiPhraseQuery) {
 ((MultiPhraseQuery) query).setSlop(phraseSlopNode.getValue());
 }

 return query;
 }
 }
}

In section 6.3 we were able to override single methods in QueryParser. But with the
flexible QueryParser we create either a node processor, as we did to reject fuzzy and
wildcard queries, or our own node builder, as we did to create a span query instead of
a phrase query. Finally, we subclass StandardQueryParser to install our processors
and builders.

 In our last section, we’ll cover some odds and ends available in the contrib/mis-
cellaneous package.

9.10 Odds and ends
There are a great many other small packages available in the contrib/miscellaneous
package, which we’ll list briefly here:

IndexSplitter and MultiPassIndexSplitter are two tools for taking an exist-
ing index and breaking it into multiple parts. IndexSplitter can only break
the index according to its existing segments, but is fast because it does simple
file-level copying. MultiPassIndexSplitter can break at arbitrary points
(equally by document count), but is slower because it visits documents one at a
time and makes multiple passes.
BalancedSegmentMergePolicy is a custom MergePolicy that tries to avoid cre-
ating large segments while also avoiding allowing too many small segments to
accumulate in the index. The idea is to prevent enormous merges from occur-
ring, which because they are I/O- and CPU-intensive can affect ongoing search
performance in a near-real-time search application. MergePolicy is covered in

Create
SpanNearQuery

Override
built-in builder
section 2.13.6.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

323Summary

TermVectorAccessor enables you to access term vectors from an index even in
cases where the document wasn’t indexed with term vectors. You pass in a Term-
VectorMapper, described in section 5.9.3, that will receive the term vectors. If
term vectors were stored in the index, they’re loaded directly and sent to the
mapper. If not, the information is regenerated by visiting every term in the
index and skipping to the requested document. Note that this regeneration
process can be very slow on a large index.
FieldNormModifier is a standalone tool (defines a static main method) that
allows you to recompute all norms in your index according to a specified simi-
larity class. It visits all terms in the inverted index for the field you specify, com-
puting the length in terms of that field for all nondeleted documents, and then
uses the provided similarity class to compute and set a new norm for each docu-
ment. This is useful for fast experimentation of different ways to boost fields
according to their length by using a custom Similarity class.
HighFreqTerms is a standalone tool that opens the index at the directory path
you provide, optionally also taking a specific field, and then prints out the top
100 most frequent terms in the index.
IndexMergeTool is a standalone tool that opens a series of indexes at the paths
you provide, merging them together using IndexWriter.addIndexes. The first
argument is the directory that all subsequent directories will be merged into.
SweetSpotSimilarity is an alternative Similarity implementation that pro-
vides a plateau of equally good lengths when computing field boost. You have to
configure it to see the “sweet spot” typical length of your documents, but this can
result in solid improvements to Lucene’s relevance. http://wiki.apache.org/
lucene-java/TREC_2007_Million_Queries_Track_IBM_Haifa_Team describes a
set of experiments on the Trec 2007 Million Queries Track, including Sweet-
SpotSimilarity, that provided sizable improvements to Lucene’s relevance.
PrecedenceQueryParser is an alternative QueryParser that tries to handle
operator precedence in a more consistent manner.
AnalyzingQueryParser is an extension to QueryParser that also passes the text
for FuzzyQuery, PrefixQuery, TermRangeQuery, and WildcardQuery instances
through the analysis process (the core QueryParser doesn’t).
ComplexPhraseQueryParser is an extension to QueryParser that permits
embedding of wildcard and fuzzy queries within a phrase query, such as (john
jon jonathan~) peters*.

9.11 Summary
This completes our coverage of all of Lucene’s contrib modules!

 Spatial Lucene is a delightful package that allows you to add geographic distance
filters and sorting to your search application. ChainedFilter allows you to logically
combine multiple filters into one.

 We saw three alternative query parsers. XmlQueryParser aims to simplify creation of

a rich search user interface by parsing XML into queries. The surround QueryParser

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://wiki.apache.org/lucene-java/TREC_2007_Million_Queries_Track_IBM_Haifa_Team
http://wiki.apache.org/lucene-java/TREC_2007_Million_Queries_Track_IBM_Haifa_Team
http://www.it-ebooks.info/

324 CHAPTER 9 Further Lucene extensions

enables a rich query language for span queries. The flexible QueryParser is a modular
approach that strongly decouples three phases of query parsing and provides a drop-in
replacement for the core QueryParser. Fast in-memory indices can be created using
either MemoryIndex or InstantiatedIndex, or you can easily store your index in a
Berkeley DB directory, giving you all the features of BDB, such as full transactions.

 If you end up rolling up your sleeves and creating something new and generally
useful, please consider donating it to the Lucene contrib repository or making it avail-
able to the Lucene community. We’re all more than grateful for Doug Cutting’s gener-
osity for open sourcing Lucene itself. By also contributing, you benefit from a large
number of skilled developers who can help review, debug, and maintain it; and, most
important, you can rest easy knowing you have made the world a better place!

 In the next chapter we’ll cover the Lucene ports, which provide access to Lucene’s
functionality from programming languages and environments other than Java.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Using Lucene from other
programming languages
Today, Lucene is the de facto standard open source IR library. Although Java is cer-
tainly a popular programming language, not everyone uses it. Many people prefer
dynamic languages (such as Python, Ruby, Perl, or PHP). What do you do if you
love Lucene but not Java? Fear not: you’re in good company! Luckily, a number of
options are available for accessing Lucene functionality from different program-
ming languages, and we discuss them in this chapter.

 Before we get started, let’s discuss what we mean by the word port, as we’re defi-
nitely taking liberty in broadening its usual meaning. We use the word port to mean
any software that makes it possible to access Lucene’s functionality from program-
ming languages other than Java. Although port traditionally means a complete
translation of the source code from one programming language to another, for this

This chapter covers
Accessing Lucene from other programming languages

Different styles of ports

Comparing ports’ APIs, features, and performance
325

chapter we’ve been forced to modernize this definition. Many creative ways now

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

326 CHAPTER 10 Using Lucene from other programming languages

exist for interacting with software from alternative programming languages. We’ll first
detail the four types of ports, and then we’ll step through the popular Lucene ports
we’re aware of, in order by port type. In each case, we’ll show which programming lan-
guage(s) the port enables, and briefly describe the history, status, and trade-offs of
that port. Please keep in mind that each port is an independent project with its own
mailing lists, documentation, tutorials, user, and developer community that will be
able to provide more detailed information.

10.1 Ports primer
Table 10.1 lists the different types of ports we’ll see in this chapter.

 A native port translates all of Lucene’s sources into the target run time environ-
ment. This port type matches the traditional definition of the word port. Lucene.Net,
which rewrites all of Lucene in C#, is a good example. Another example is Kino-
Search, which provides Lucene-like functionality with a C core and Perl bindings.
Because C or C++ is the accepted extensions language for many dynamic languages,
such as Perl and Python, we count this as a native port. A native port can be a loose
port, which means it doesn’t precisely match all APIs of Lucene but retains the same
general approach.

Table 10.1 Types of Lucene ports

Port type Description Ports Pros Cons

Native port All of Lucene’s sources
are ported to the target
environment.

Lucene.Net
CLucene
KinoSearch
Ferret
Lucy
Zend Framework

Lightweight runtime.
Direct access to full
native environment.

Port is costly, so high
release delay.
Possibly higher chance
of bugs.
May be less compati-
ble with Lucene Java
(depends on port).

Reverse
native port

The target language runs
on a JVM.

Jython,
JRuby

Lightweight runtime.
100% compatibility
with Lucene.

Target language may
lose some features,
such as native exten-
sions.

Local wrapper A JVM is embedded into
the native language’s
runtime, and a wrapper
is used to expose
Lucene’s API.

PyLucene Port is fast, so lower
release delay,
because only
Lucene’s APIs need
to be exposed.
100% compatibility
with Lucene.

Heavier, because two
runtime environments
are running side by
side.

Client-server A separate process, per-
haps on a separate
machine, runs Lucene
Java and exposes a stan-
dard protocol for access.
Clients in the target lan-
guage are then created.

Solr + clients
PHP Bridge
Beagle

Clients are very fast
to build.
Solr provides func-
tionality beyond
Lucene and is actively
developed.
100% compatibility
with Lucene.

Much heavier weight
since you now have a
whole server to man-
age.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

327Ports primer

 A reverse native port is the mirror image of a native port: the target runtime envi-
ronment has been ported to run on a JVM. You write programs in your target lan-
guage, such as Ruby, but the environment that runs your programs runs on a JVM and
therefore has full access to any Java APIs, including Lucene. JRuby and Jython are
good examples of this type of port. Such projects have nothing to do with Lucene;
they simply enable access to any Java libraries from the target language, so none of the
particular projects we discuss here are reverse native ports.

 The local wrapper port runs a JVM under the hood, side by side with the “normal”
runtime for the target language, and then only the APIs that need exposing are
wrapped to the target environment. PyLucene is a good example.

 In the client-server port, Lucene is running in a separate process, perhaps on
another computer, and is accessible using a standard network-based protocol. The
server could be just the JVM, as is the case with the PHP Bridge, or it may be a full
server like Solr, which implements an XML over HTTP API for accessing Lucene and
provides additional functionality beyond Lucene such as distributed search and fac-
eted navigation. Clients are then developed, in multiple programming languages, to
interact with the server over the network, using the target language.

 Numerous differences exist between these types of ports, which we delve into next.

10.1.1 Trade-offs

Each type of port has important trade-offs, also summarized in table 10.1. The native
port has the advantage of running only code for the target environment, within a sin-
gle process. It’s perhaps the cleanest, technically, and most lightweight approach,
because a single runtime environment is running all code. But the downside is the
cost of maintaining this port as Lucene’s sources improve with time, which means lon-
ger release delay, higher chances that the port will differ from Lucene in API and
index file format, and a higher risk that the project will be abandoned, as the efforts
to continuously port source changes are significant. The native port is also likely to
have substantially different performance characteristics, depending on whether the
target environment is faster or slower than the JVM.

 The reverse native port is a compelling option, assuming the runtime environment
itself doesn’t have problems running the target language. By using JRuby, you write
Ruby code that has access to any Java code, but will generally lose access to Ruby
extensions that are implemented in C. This option is also lightweight at runtime,
because it runs in a single process and with a single (JVM) runtime environment.

 The wrapper port is similarly a single process, but it embeds a JVM (to run the com-
piled Java bytecode from Lucene) as well as running the target environment’s run-
time, side by side, so it’s somewhat heavier weight. The important trade-off is that
much less work is required to stay current with Lucene’s releases: only the API changes
need to be ported, and not Lucene’s entire implementation, so the work is in propor-
tion to the net API “surface area” and the release delay can be much less. With PyLu-
cene in particular, which autogenerates the wrapper code using the Java C Compiler
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

328 CHAPTER 10 Using Lucene from other programming languages

(JCC), the delay is essentially zero because the computer does all the work! If only
other wrappers could use JCC.

 Finally, the client-server port is the most strongly decoupled. Because a separate
server runs and exposes Lucene’s APIs via a standard network protocol, you can now
share this server among multiple clients, possibly with different programming lan-
guages. But one potential downside is you now must manage a new standalone pro-
cess or server, entirely different from your main application.

10.1.2 Choosing the right port

Having so many different types of ports may seem daunting at first, but in reality this
gives a lot of flexibility to people who create the ports, which in turn gives you more
options to choose from. If your application is already server-centric, and you’re in
love with PHP, then the client-server model (Solr as server and SolrPHP as client) is a
no-brainer. In fact, server-based applications often require a client-server search
architecture so that multiple front-end computers can share access to the search
server(s). At the other end of the spectrum, if you’re coding up a C++ desktop appli-
cation and you can’t afford a separate server, let alone a separate process, choose a
native port like CLucene.

 Ports have a tendency to come and go. Often it’s one person driving the port, and
if that person loses interest or can’t afford the ongoing time, the port slowly dies. New
ports, with new approaches, may surface and attract more interest. This is the natural
evolution in the open source world. Although we do our best to describe the popular
Lucene’s ports, today, likely by the time you read this there will be other compelling
options. We also mention briefly some other Lucene ports that aren’t popular enough
to merit full coverage. Be sure to do your due diligence, by searching the web and ask-
ing questions on users lists, before making your final decision.

 Although each port tries to remain in sync with the latest Lucene version, they all
necessarily lag behind Lucene’s releases. Furthermore, most of the ports are relatively
young, and from what we could gather, there’s little developer community overlap.
Each port takes some and omits some of the concepts from Lucene, but they all mimic
its architecture. Each port has its own website, mailing lists, and everything else that
typically goes along with open source projects. Each port also has its own group of
founders and developers. There’s also little communication between the ports’ devel-
opers and Lucene’s developers, although we’re all aware of each project’s existence.

 With this said, let’s look at each port, starting with CLucene.

10.2 CLucene (C++)
Contributed by BEN VAN KLINKEN and ITAMAR SYN-HERSHKO

CLucene is an open source native port of Lucene to C++, created by Ben van
Klinken in 2003. Since then, many other developers have contributed to the proj-
ect. The library’s API and index file format are guaranteed to match those of the
Java Lucene version it is based on. Table 10.2 shows its current status.

 In its latest stable release, CLucene conforms to Lucene 1.9.1’s API and index for-

mat, but ongoing development is active toward fixing issues and supporting more

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

329CLucene (C++)

recent Lucene releases. As of this writing, development is proceeding on a source
code branch toward full compatibility with Lucene’s 2.3.2 release. Despite being offi-
cially marked unstable, the 2.3.2 branch seems quite stable and is already commonly
used, although the APIs are still likely to change.

 Adobe and Nero are believed to use CLucene in their products, as do other well-
known open-source projects like Strigi, ht://Dig and kio-clucene.

10.2.1 Motivation

Many companies and developers use C/C++ exclusively and cannot take advantage of
Lucene because it requires Java. CLucene offers the benefits of the Lucene world,
while allowing those companies and developers to keep with the platforms and devel-
opment tools they are most familiar with.

 C++ developers are the main audience of CLucene. Since it is written in native
code and has no prerequisites, it is also fairly easy to use the library from various high-
level or scripting languages. Thanks to its flexible build system, native code, and small
memory footprint, CLucene can also be used on embedded systems and mobile
devices, where resources are tight and a JVM is usually not an option.

 The project also aims to be attractive to people who like to use Lucene but want to
increase performance or remove the overhead of using a JVM. Although the Java plat-
form is constantly improving, basic operations like file handling and memory manage-
ment will always be faster for C++ compiled code, since no underlying framework or
Garbage Collection processes are involved. CLucene is guaranteed to provide better
performance, even without the periodic code optimizations by its core team.

 Although no current benchmarks are available to show this, those made with previ-
ous versions of Lucene and CLucene showed CLucene performed 5–10 times better
than an equivalent version of Lucene, in terms of memory usage and execution
speeds of indexing and searching operations. Both Lucene and CLucene have
changed substantially since then.

Table 10.2
CLucene summary

Port feature Port status

Port type Native port

Programming languages C++

Website http://clucene.sourceforge.net/

Development status Stable

Activity Active development, active users

Last stable release 0.9.21b

Matching Lucene release 1.9.1

Compatible index format Yes, 1.9.1

Compatible APIs Yes

License LGPL or Apache License 2.0
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://clucene.sourceforge.net/
http://www.it-ebooks.info/

330 CHAPTER 10 Using Lucene from other programming languages

10.2.2 API and index compatibility

The CLucene API is similar to Lucene’s; code written in Java can be converted to C++
fairly easily. The drawback is that CLucene doesn’t follow the generally accepted C++
coding standards. But due to the number of classes that would have to be redesigned
and the difficulty it will pose for the process of keeping up with the original Lucene
project, CLucene continues to follow a “Javaesque” coding standard. This approach
also allows much of the user’s code to be converted using macros and scripts.

 Thanks to a full index-format compatibility, indexes built with Lucene are also
searchable using CLucene and vice versa, as long as their index format version is sup-
ported by both. For example, as of this writing CLucene can read and write to indexes
created by Lucene 2.3.2, but it will not work with indexes created or merged by
Lucene 3+. Because backward compatibility is preserved in Lucene, even the most
recent versions of Lucene can read indexes built with any version of CLucene, and
those will still be readable by CLucene as long as they are not being written to by a
more recent Lucene version.

 Listing 10.1 shows a command-line program to perform basic indexing and search-
ing. This program first indexes several documents with a single contents field. Follow-
ing that, it runs a few searches against the generated in-memory index and prints the
search results for each query.

#include "CLucene.h"

using namespace lucene::analysis;
using namespace lucene::index;
using namespace lucene::document;
using namespace lucene::queryParser;
using namespace lucene::search;
using namespace lucene::store;

const TCHAR* docs[] = {
 _T("a b c d e"),
 _T("a b c d e a b c d e"),
 _T("a b c d e f g h i j"),
 _T("a c e"),
 _T("e c a"),
 _T("a c e a c e"),
 _T("a c e a b c"),
 NULL
};

const TCHAR* queries[] = {
 _T("a b"),
 _T("\"a b\""),
 _T("\"a b c\""),
 _T("a c"),
 _T("\"a c\""),
 _T("\"a c e\""),

Listing 10.1 Using CLucene’s IndexWriter and IndexSearcher API

Index these
documents

Run these
searches
 NULL

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

331CLucene (C++)

};

int main(int32_t, char** argv)
{
 SimpleAnalyzer analyzer;

 try {

 Directory* dir = new RAMDirectory();

 IndexWriter* writer = new IndexWriter(dir, &analyzer, true);

 Document doc;

 for (int j = 0; docs[j] != NULL; ++j) {
 doc.add(*_CLNEW Field(_T("contents"),
 docs[j],
 Field::STORE_YES |
 Field::INDEX_TOKENIZED));
 writer->addDocument(&doc);
 doc.clear();
 }

 writer->close();
 delete writer;

 IndexReader* reader = IndexReader::open(dir);
 IndexSearcher searcher(reader);

 QueryParser parser(_T("contents"), &analyzer);
 parser.setPhraseSlop(4);

 Hits* hits = NULL;

 for (int j = 0; queries[j] != NULL; ++j)
 {
 Query* query = parser.parse(queries[j]);

 const wchar_t* qryInfo = query->toString(_T("contents"));
 _tprintf(_T("Query: %s\n"), qryInfo);
 delete[] qryInfo;

 hits = searcher.search(query);
 _tprintf(_T("%d total results\n"),
 hits->length());
 for (size_t i=0; i < hits->length() && i<10; i++) {
 Document* d = &hits->doc(i);
 _tprintf(_T("#%d. %s (score: %f)\n"),
 i, d->get(_T("contents")),
 hits->score(i));
 }

 delete hits;
 delete query;
 }

 searcher.close(); reader->close(); delete reader;
 dir->close(); delete dir;

 } catch (CLuceneError& e) {
 _tprintf(_T(" caught a exception: %s\n"), e.twhat());

Initialize
analyzer on stack

Reuse
Document
instance

Index document

Parse
query

Run search;
print results
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

332 CHAPTER 10 Using Lucene from other programming languages

 } catch (...){
 _tprintf(_T(" caught an unknown exception\n"));
 }
}

10.2.3 Supported platforms

Initially developed in Microsoft Visual Studio, CLucene also compiles in GCC,
MinGW32, and the Borland C++ compiler. In addition to the Microsoft Windows plat-
form, it has been successfully built on various Linux distributions (Red Hat, Ubuntu,
and more), FreeBSD, Mac OS X and Debian. The code supports both 32- and 64-bit
versions of these platforms.

 Today, CLucene comes with CMake build scripts which simplify the build process,
and allow it to be run on almost every platform. Both Unicode and non-Unicode
builds are supported through it.

 The CLucene team has made use of SourceForge’s multiplatform compile farm to
ensure that CLucene compiles and runs on as many platforms as possible. However,
SourceForge has now closed its compile farm, so most cross-platform testing is done
by contributors having physical access to various machines (even the rare ones), and
by using virtual machines.

10.2.4 Current and future work

As part of the effort of being compatible with Java Lucene, the distribution package of
CLucene includes many of the same components as Lucene, such as tests, contrib
folder, and a demo application. This is the case also with the development reposito-
ries. Unfortunately, Lucene’s rapid growth makes it very hard to keep up with it in real
time, therefore many classes and tests may be missing.

 CLucene once had several wrappers that allowed it to be used with other program-
ming languages, such as Perl, Python, .NET and PHP. Most were made for previous ver-
sions of the library, and haven’t been updated in some time. It is possible to bring
them up to speed, or to use tools like SWIG to create one simple interface for many
languages at once, should one needed to use them again.

 Following a decision made during early development, no external libraries were
incorporated for string handling, threading, and reference counting. The core team
has begun to replace the custom code and macros used for those operations with
Boost’s C++ libraries. This update will make CLucene much more robust, and allow its
developers to focus solely on porting more Lucene code, instead of worrying about
platform-specific issues. Also, introduction of concepts like smart-pointers will make
building of wrappers much easier.

10.3 Lucene.Net (C# and other .NET languages)
Contributed by GEORGE AROUSH, creator of Apache Lucene.Net

Apache Lucene.Net started as a project at SourceForge in 2004, as dotLucene. In
April 2006, it was incubated into Apache, and by October 2009 it graduated as a sub-

project under Apache Lucene. As its main home page states:

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

333Lucene.Net (C# and other .NET languages)

Lucene.Net sticks to the APIs and classes used in the original Java implementation of
Lucene. The API names as well as class names (including documentation and comments)
are preserved with the intention of giving Lucene.Net the look and feel of the C# language
and the .NET Framework. For example, the method IndexSearcher.search in the Java imple-
mentation now reads IndexSearcher.Search in the C# port.

 In addition to the APIs and classes ported to C#, the algorithm of Java Lucene is ported
to C# Lucene. This means an index created with Java Lucene is back-and-forth compatible
with the C# Lucene; both at reading, writing and updating. In fact a Lucene index can be
concurrently searched and updated using Lucene Java and Lucene.Net processes.

Lucene.Net’s current status is summarized in table 10.3. Although the last official
Apache release is 2.0, the trunk of the Lucene.Net subversion repository matches
Lucene 1.4 up to 2.9.1 and all are quite stable and are used in a number of well-known
environments such as MySpace and Beagle.

 Beagle (http://beagle-project.org/Main_Page), a tool for searching your personal
information space, including local files, email, images, calendar entries, and address
book entries, is an interesting use case of Lucene.Net. Beagle is a large project in
itself. Its design is just like Solr: there’s a dedicated daemon process that exposes a net-
work API, and then clients are available in various programming languages (currently
at least C#, C, and Python). Beagle seems to be well adopted by Linux desktop envi-
ronments as their standard local search implementation, running under Mono, the
open source implementation of the .NET Framework.

 Performance of Lucene.Net compares favorably with Lucene Java. The most
recent testing, based on Lucene’s 2.3.1 release, shows Lucene.Net to be about 5 per-
cent faster than Lucene Java. The developers of Lucene.Net don’t have any more
recent performance numbers at this time. It would be safe to assume that
Lucene.Net’s performance is equal to that of Lucene Java.

 The distribution package of Lucene.Net consists of the same components as the
distribution package of Lucene. It includes the source code, tests, and the demo
examples. In addition, some of the contrib components have been ported to C#.

Port feature Port status

Port type Native port

Programming languages C#

Website http://lucene.apache.org/lucene.net/

Development status Stable

Activity Active development, active users

Last stable release 2.9.1

Matching Lucene release 2.9.1

Compatible index format Yes, 2.9.1

Compatible APIs Yes

License Apache License 2.0
Table 10.3

Lucene.Net summary

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://beagle-project.org/Main_Page
http://lucene.apache.org/lucene.net/
http://www.it-ebooks.info/

334 CHAPTER 10 Using Lucene from other programming languages

10.3.1 API compatibility

As stated earlier, although it’s written in C#, Lucene.Net exposes an API that’s virtually
identical to that of Lucene. Consequently, code written for Lucene can be ported to
C# with minimal effort. This compatibility also allows .NET developers to use docu-
mentation for the Java version, such as this book.

 The difference is limited to the Java and C# naming styles. Whereas Java’s method
names begin with lowercase letters, the .NET version uses the C# naming style in
which method names typically begin with uppercase letters. Listing 10.2 shows how to
create an index using Lucene.Net.

class Indexer {
 String indexDir = args[0];
 String dataDir = args[1];

 public void Indexer(System.String indexDir) {
 Directory dir = FSDirectory.Open(new System.IO.FileInfo(indexDir));
 IndexWriter writer = new IndexWriter(
 FSDirectory.Open(INDEX_DIR),
 new StandardAnalyzer(Version.LUCENE_30),
 true, IndexWriter.MaxFieldLength.UNLIMITED);
 }

 public void Close() {
 writer.Close();
 }

 public int Index(System.String dataDir) {
 System.String[] files =
 System.IO.Directory.GetFileSystemEntries(file.FullName);
 for (int i = 0; i < files.Length; i++) {
 IndexFile(new System.IO.FileInfo(files[i]));
 }
 return writer.NumDocs();
 }

 protected Document GetDocument(System.IO.FileInfo file) {
 Document doc = new Document();
 doc.Add(new Field("contents",
 new System.IO.StreamReader(file.FullName,
 System.Text.Encoding.Default)));
 doc.Add(new Field("filename",
 file.Name,
 Field.Store.YES,
 Field.Index.NOT_ANALYZED));
 doc.Add(new Field("fullpath",
 file.FullName,
 Field.Store.YES,
 Field.Index.NOT_ANALYZED));
 return doc;
 }

Listing 10.2 C# code for indexing *.txt files with Lucene.Net

Create
IndexWriter

Close IndexWriter

Index file
content

Index filename
and path
 private void IndexFile(System.IO.FileInfo file) {

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

335KinoSearch and Lucy (Perl)

 Document doc = GetDocument(file);
 writer.AddDocument(doc);
 }
}

As you can see, the source code is nearly identical to the corresponding indexing
source code for Lucene java. The searching example, shown in listing 10.3, is also
nearly identical. Both of these listings are extracted from the demo code that’s
included with Lucene.Net.

class Searcher {
 String indexDir = args[0];
 String q = args[1];

 public static void search(String indexDir, String q) {
 Directory dir = FSDirectory.Open(new System.IO.FileInfo(indexDir));
 IndexSearcher searcher = new IndexSearcher(dir);
 QueryParser parser = new QueryParser("contents",
 new

StandardAnalyzer(Version.LUCENE_30));
 Query query = parser.Parse(q);
 Lucene.Net.Search.TopDocs hits = searcher.Search(query, 10);
 System.Console.WriteLine("Found " +
 hits.totalHits +
 " document(s) that matched query '" + q + "':");
 for (int i = 0; i < hits.scoreDocs.Length; i++) {
 ScoreDoc scoreDoc = hits.ScoreDocs[i];
 Document doc = searcher.Doc(scoreDoc.doc);
 System.Console.WriteLine(doc.Get("filename"));
 }
 searcher.Close();
 dir.Close();
 }
}

10.3.2 Index compatibility

Lucene.Net is fully compatible with Lucene at the index level: an index created by
Lucene can be read by Lucene.Net, and vice versa. Of course, as Lucene evolves,
indexes between versions of Lucene itself may not be portable, so this compatibility is
currently limited to Lucene version 2.9.

10.4 KinoSearch and Lucy (Perl)
Perl is a popular programming language. Larry Wall, creator of Perl, has stated one of
his goals in Perl is to offer many ways to accomplish a given task. Larry would be
proud; there are quite a few choices for accessing Lucene’s functionality from Perl.

 We’ll first visit the most popular choice, KinoSearch. After that we touch on Lucy,
which is still under active development and hasn’t had any releases yet but is neverthe-
less interesting. We finish with Solr’s two Perl clients and CLucene’s Perl bindings.

Listing 10.3 Searching an index with Lucene.Net

Add document
to index

Open searcher

Parse query Search
index

Retrieve,
display result
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

336 CHAPTER 10 Using Lucene from other programming languages

10.4.1 KinoSearch

KinoSearch, created and actively maintained by Marvin Humphrey, is a C and Perl
loose native port of Lucene. This means its approach, at a high level, is similar to
Lucene, but the architecture, APIs, and index file format aren’t identical. The sum-
mary of its current status is shown in table 10.4. Marvin took the time to introduce
interesting innovations to KinoSearch while porting to Perl and C; some of these
innovations have inspired corresponding improvements back to Lucene, which is one
of the delightful and natural “cross-fertilization” effects of open source development.

KinoSearch is technically in the alpha stage of its development, but in practice is nev-
ertheless extremely stable, bug free, and widely used in the Perl community. Develop-
ment and users lists are active, and developers (mostly Marvin) are working toward
the 1.0 first stable release. It’s hard to gauge usage, but at least two well-known web-
sites, Slashdot.org and Eventful.com, use it. When users find issues and post questions
to the mailing lists, Marvin is always responsive.

 KinoSearch also learned important lessons from an earlier port of Lucene to Perl,
PLucene. PLucene, which has stopped development, suffered from performance
problems, likely because it was implemented entirely in Perl; KinoSearch instead wraps
Perl bindings around a C core. This allows the C core to do all the “heavy lifting,”
which results in much better performance. Early testing of KinoSearch showed its
indexing performance to be close to Lucene’s 1.9.1 release. But both KinoSearch and
Lucene have changed quite a bit since then, so it’s not clear how they compare today.

 Probably the largest architectural difference is that KinoSearch requires you to
specify field definitions up front when you first create the index (similarly to how you
create a database table). The fields in documents then must match this preset schema.
This allows KinoSearch to make internal simplifications, which gain performance, but
at the cost of the full document flexibility that’s available in Lucene.

Port feature Port status

Port type Native port

Programming languages C, Perl

Website http://www.rectangular.com/kinosearch/

Development status Alpha (though widely used and quite stable)

Activity Active development, active users

Last stable release 0.163

Matching Lucene release N/A (loose port)

Compatible index format No

Compatible APIs No

License Custom

Table 10.4
KinoSearch
summary
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.rectangular.com/kinosearch/
http://www.it-ebooks.info/

337KinoSearch and Lucy (Perl)

 There are also a number of API differences. For example, there’s only one class,
InvIndexer, for making changes to an index (whereas Lucene has two classes for
doing so, IndexWriter and, somewhat confusingly, IndexReader). The index file for-
mat is also different, though similar. Listings 10.4 and 10.5 show examples for creating
and search an index.

use KinoSearch::InvIndexer;
use KinoSearch::Analysis::PolyAnalyzer;
my $analyzer
 = KinoSearch::Analysis::PolyAnalyzer->new(language => 'en');

my $invindexer = KinoSearch::InvIndexer->new(
 invindex => '/path/to/invindex',
 create => 1,
 analyzer => $analyzer,
);

$invindexer->spec_field(
 name => 'title',
 boost => 3,
);
$invindexer->spec_field(name => 'bodytext');

while (my ($title, $bodytext) = each %source_documents) {
 my $doc = $invindexer->new_doc;

 $doc->set_value(title => $title);
 $doc->set_value(bodytext => $bodytext);

 $invindexer->add_doc($doc);
}

$invindexer->finish;
use KinoSearch::Searcher;
use KinoSearch::Analysis::PolyAnalyzer;

my $analyzer
 = KinoSearch::Analysis::PolyAnalyzer->new(language => 'en');

my $searcher = KinoSearch::Searcher->new(
 invindex => '/path/to/invindex',
 analyzer => $analyzer,
);

my $hits = $searcher->search(query => "foo bar");
while (my $hit = $hits->fetch_hit_hashref) {
 print "$hit->{title}\n";
}

Next we look at Lucy, a follow-on to KinoSearch.

Listing 10.4 Creating an index with KinoSearch
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

338 CHAPTER 10 Using Lucene from other programming languages

10.4.2 Lucy

Lucy, at http://lucene.apache.org/lucy, is a new Lucene port. It plans to be a loose
native port of Lucene to C, with a design that makes it simple to wrap the C code with
APIs in different dynamic languages, with the initial focus on Perl and Ruby.
Table 10.5 shows the summary of Lucy’s current status.

Lucy was started by the creator of KinoSearch, Marvin Humphrey, and the creator of
Ferret (see section 10.5), David Balmain. Unfortunately, David became unavailable to
work on the project, but Marvin and others have continued to actively work toward an
initial release. Like Ferret and KinoSearch, Lucy is inspired by Lucene and derives
much of its design from those two projects, aiming to achieve the best of both. Eventu-
ally other programming languages should be able to wrap Lucy’s C core. Perl still
offers more options.

10.4.3 Other Perl options

There are other ways to access Lucene’s functionality from Perl. At least two clients
are available for Solr: Solr.pm (see http://search.cpan.org/perldoc?Solr), which is
separately developed from the Solr effort, and SolPerl, which is developed and distrib-
uted with Solr. Solr is a client-server port. If you have a strong preference for API- and
index-compatible ports, and don’t like that KinoSearch is a “loose” port, have a look at
the Perl bindings in CLucene, which is also a native port of Lucene but with matching
APIs and index file formats.

10.5 Ferret (Ruby)
The Ruby programming language, another dynamic language, has become quite pop-
ular recently. Fortunately, you can access Lucene from Ruby in various ways. The most
popular port is Ferret, summarized in table 10.6.

Port feature Port status

Port type Native port

Programming languages C with Perl, Ruby (and eventually others)
bindings

Website http://lucene.apache.org/lucy/

Development status Design (no code/releases yet)

Activity Active development

Last stable release N/A

Matching Lucene release N/A (loose port)

Compatible index format No

Compatible APIs No

License Unknown
Table 10.5
Lucy summary
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://lucene.apache.org/lucy
http://lucene.apache.org/lucy/
http://search.cpan.org/perldoc?Solr
http://www.it-ebooks.info/

339Ferret (Ruby)

Although independently developed, Ferret takes the same approach as KinoSearch, as
a loose port of Lucene to C and Ruby. The C core does the heavy lifting, whereas the
Ruby API exposes access to that core. Ferret was created by David Balmain, who has
written a dedicated book about Ferret. There is also an acts_as_ferret plug-in for Ruby
on Rails. Unfortunately, ongoing development on Ferret has ended.

 User reports have shown Ferret’s performance to be quite good, comparable at
least to Lucene’s 1.9 release. Even though development appears to have ended, usage
of Ferret is still strong, especially for acts_as_ferret, (although there are reports of still
open serious issues on the most recent release, so you should tread carefully).

 Besides Ferret, you have a few other options for accessing Lucene from Ruby. solr-
ruby, Solr’s Ruby client, allows you to add, update, and delete documents as well as
issue queries. Just install it with the command gem install solr-ruby. Here’s a quick
example:

require 'solr'

connect to the solr instance
conn = Solr::Connection.new('http://localhost:8983/solr', :autocommit => :on)

add a document to the index
conn.add(:id => 123, :title_text => 'Lucene in Action, Second Edition')

update the document
conn.update(:id => 123, :title_text => Ant in Action')

print out the first hit in a query for 'action'
response = conn.query('action')
print response.hits[0]

iterate through all the hits for 'action'
conn.query('action') do |hit|
 puts hit.inspect
end

Port feature Port status

Port type Native local wrapper

Programming languages C, Ruby

Website http://ferret.davebalmain.com/

Development status Stable, though some serious bugs
remain

Activity Development stopped but users are
active

Last stable release 0.11.6

Matching Lucene release N/A (loose port)

Compatible index format No

Compatible APIs No

License MIT-style license
Table 10.6
Ferret summary
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://ferret.davebalmain.com/
http://www.it-ebooks.info/

340 CHAPTER 10 Using Lucene from other programming languages

delete document by id
conn.delete(123)

Solr also provides a Ruby response format that produces valid Ruby Hash structure as
the string response, which can be directly eval’d in Ruby even without the solr-ruby
client. This enables a compact search solution. There’s also an independently devel-
oped Rails plug-in, acts_as_solr, as well as Solr Flare (developed by Erik Hatcher),
which is a feature-rich Rails plug-in that provides even more functionality than
acts_as_solr. Finally, RSolr is a separately developed Solr Ruby client, available at
http://github.com/mwmitchell/rsolr. It features transparent JRuby DirectSolr-
Connection support and a simple hash-in, hash-out architecture.

NOTE There’s even a Common Lisp port called Montezuma, at http://
code.google.com/p/montezuma. Development seems to have stopped
after an initial burst of activity. In fact, Montezuma is a port of Ferret.

Another compelling option is to use JRuby, which is a reverse port of the Ruby lan-
guage to run on a JVM. You still write Ruby code, but it’s a JVM that’s running your
Ruby code, and thus any JAR, including Lucene, is accessible from Ruby. JRuby can
access Lucene Java directly, and also work with Solr via solr-ruby, RSolr, or the native
SolrJ library. The one downside to JRuby is that it can’t run any Ruby extensions that
are implemented in C (Lucene is entirely Java, so this would only affect apps that rely
on other C-based Ruby extensions).

10.6 PHP
You have several interesting options if you’d like to use PHP. The first option is to use
Solr with its PHP client, SolPHP, which is a client-server solution. As is the case for
Ruby, Solr has a response format that produces valid PHP code, which can simply be
eval’d in PHP.

 The second option is CLucene’s PHP bindings, included with CLucene’s release,
which is a pure native port. Another pure native port is Zend Framework.

10.6.1 Zend Framework

Zend Framework, summarized in table 10.7, is far more than a port of Lucene: it’s a
full open source object-oriented web application framework, implemented entirely in
PHP 5. It includes a pure native port of Lucene to PHP 5 (described at http://frame-
work.zend.com/manual/en/zend.search.lucene.html), and enables you to easily add
full search to your web application.

 There are some reports of slow performance during indexing (though this issue
may have been resolved by more recent releases, so you should certainly test for your-
self). Earlier releases didn’t support Unicode content, but this has since been fixed.

 Zend Framework may be a good fit for your application if you want a pure PHP
solution, but if you don’t require a native port and you’d like a lighter-weight solution
instead, then PHP Bridge may be a good option.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://framework.zend.com/manual/en/zend.search.lucene.html
http://github.com/mwmitchell/rsolr
http://code.google.com/p/montezuma
http://code.google.com/p/montezuma
http://framework.zend.com/manual/en/zend.search.lucene.html
http://www.it-ebooks.info/

341PyLucene (Python)

10.6.2 PHP Bridge

The PHP/Java Bridge, hosted at http://php-java-bridge.sourceforge.net/pjb/
index.php, is technically a client-server solution. Normal Java Lucene runs in a stand-
alone process, possibly on a different computer, and then the PHP runtime can invoke
methods on Java classes through the PHP Bridge. It can also bridge to a running .NET
process, so you could also use PHP to access Lucene.Net, for example. The release web
archive (WAR) that you download from the website includes examples of indexing and
searching with Lucene. For example, this is how you create an IndexWriter:

$tmp = create_index_dir();
$analyzer = new java("org.apache.lucene.analysis.standard.StandardAnalyzer");
$writer = new java("org.apache.lucene.index.IndexWriter",
 $tmp, $analyzer, true);

Because this is just a client-server wrapper around Lucene, you can tap directly into
the latest release of Lucene. Performance should be close to Lucene’s performance,
except for the overhead of invoking methods over the bridge. Likely this affects index-
ing performance more so than searching performance.

10.7 PyLucene (Python)
Contributed by ANDI VAJDA, creator of PyLucene

In contrast to Perl, Guido van Rossum, the creator of Python, prefers to have one obvi-
ous way to do something, and in fact, there’s one obvious choice for accessing Lucene
from Python: PyLucene. Table 10.8 shows PyLucene’s current status.

 PyLucene is a “local wrapper” port, by adding Python bindings to the actual
Lucene source code. PyLucene embeds a Java VM, that in turn executes the normal
Lucene code, into a Python process. The PyLucene Python extension, a Python mod-
ule called lucene, is machine-generated by a package called JCC, also included with the

Port feature Port status

Port type Pure native port

Programming languages PHP 5

Website http://framework.zend.com/

Development status Stable

Activity Active development and active
users

Last stable release 1.7.3

Matching Lucene release 2.1

Compatible index format Yes

Compatible APIs Yes

License BSD-style License Table 10.7 Zend Framework
summary
PyLucene sources. JCC is fascinating in its own right: it’s written in Python and C++,

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://framework.zend.com/
http://php-java-bridge.sourceforge.net/pjb/index.php
http://php-java-bridge.sourceforge.net/pjb/index.php
http://www.it-ebooks.info/

342 CHAPTER 10 Using Lucene from other programming languages

and uses Java’s reflection API, accessed via an embedded JVM, to peek at the public API
for all classes in a JAR. Once it knows that API, it generates the appropriate C++ code
that enables access to that API from Python through the Java Native Interface (JNI),
using C++ as the common “bridge” language. Because JCC autogenerates all wrappers
by inspecting Lucene’s JAR file, the release latency is near zero.

 Both PyLucene and JCC are released under the Apache 2.0 license and led by Andi
Vajda, who also contributed Berkeley DbDirectory (see section 9.2) to the Lucene con-
trib codebase. PyLucene began as an indexing and searching component of Chandler
(see section 9.2), an extensible open source PIM, but it was split into a separate project
in June 2004. In January 2009, it was folded into Apache as a subproject of Lucene.

 The performance of PyLucene should be similar to that of Lucene because the
actual Lucene code is running in an embedded JVM in-process. The Python/Java bar-
rier is crossed via the JNI and is reasonably fast. Virtually all the source code generated
by JCC for PyLucene is C++. That code uses the Python VM for exposing Lucene objects
to the Python interpreter, but none of the PyLucene code itself is interpreted Python.

 PyLucene was first released in 2004. It has had a number of users over the years.
Some Linux distributions, such as Debian, are now beginning to distribute PyLucene
and JCC. Currently, the PyLucene developer mailing list has about 160 members. Traf-
fic is moderate and usually involves build issues. Lucene issues while using PyLucene
are usually handled on the Lucene user mailing list.

10.7.1 API compatibility

The source code for PyLucene is machine-generated by JCC. Therefore, all public APIs
in all public classes available from Lucene are available from PyLucene. JCC exposes
iterator and mapping access in Pythonic ways, making for a true Python experience
while using Lucene. But here’s a warning: once you’ve used Lucene from Python, it
can be hard to go back to using Java!

 As far as its structure is concerned, the API is virtually the same, which makes it easy
for users of Lucene to learn how to use PyLucene. Another convenient side effect is
that all existing Lucene documentation can be used for programming with PyLucene.

Port feature Port status

Port type Local wrapper

Programming languages Python, C++, Java

Website http://lucene.apache.org/pylucene/

Development status Stable

Activity Active development, active users

Last stable release 3.0

Matching Lucene release 3.0

Compatible index format Yes

Compatible APIs Yes

License Apache Version 2.0
Table 10.8

PyLucene summary

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://lucene.apache.org/pylucene/
http://www.it-ebooks.info/

343Solr (many programming languages)

 PyLucene closely tracks the Lucene releases. The latest and greatest from Lucene
is usually available via PyLucene a few days after a release.

10.7.2 Other Python options

PyLucene is our favorite option for using Lucene from Python, but there are other
choices with different trade-offs:

Solr, a client-server port, includes the SolPython client.
If you prefer a native port, CLucene offers Python bindings.
Beagle, described in section 10.3, also includes Python bindings. Like Solr, Bea-
gle is a client-server solution, but the server runs in a .NET environment instead
of a JVM.
If you prefer a reverse port, you could simply use Jython, a port of the Python
language to run on a JVM, which has full access to any Java APIs, including all
releases of Lucene.

As you’ve seen, there are a number of ways to access Lucene from Python, the most
popular being PyLucene.

10.8 Solr (many programming languages)
Solr, a sister project to Lucene and developed closely along with Lucene, is client-
server architecture exposing access from many programming languages. Solr has com-
prehensive client-side support for many programming languages. Table 10.9 summa-
rizes Solr’s current status. In a nutshell, Solr is a server wrapper around Lucene. It
provides a standard XML over HTTP interface for interacting with Lucene’s APIs, and
layers on further functionality not normally available in Lucene, such as distributed
search, faceted navigation, and a field schema. Because Solr “translates” Lucene’s Java-
only API into a friendly network protocol, it’s easy to create clients in different pro-
gramming languages that speak this network protocol. For this reason, of all ways to
access Lucene from other programming languages, Solr offers the least porting effort.

Port feature Port status

Port type Client-server

Programming languages Java and many client wrappers

Website http://lucene.apache.org/solr/

Development status Stable

Activity Active development, active users

Last stable release 1.3

Matching Lucene release 3.0

Compatible index format Yes, 3.0

Compatible APIs No

License Apache License 2.0
Table 10.9

Solr summary

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://lucene.apache.org/solr/
http://www.it-ebooks.info/

344 CHAPTER 10 Using Lucene from other programming languages

Solr has a delightful diversity of clients, shown in table 10.10. Be sure to check http://
wiki.apache.org/solr/IntegratingSolr for the latest complete list. If you need to access
Lucene from an exotic language, chances are there’s already at least one Solr client.
And if there isn’t, it’s easy to create one! Solr is actively developed and has excellent
compatibility with Lucene because it uses Lucene under the hood. If your application
can accept, or prefers, the addition of a standalone server, Solr is likely a good fit.

10.9 Summary
In this chapter, we discussed four types of ports, and we visited the popular existing
Lucene ports known to us: CLucene, Lucene.Net, Pylucene, Solr and its many clients,
KinoSearch, Ferret, the upcoming Lucy, and numerous PHP options. We looked at
their APIs, supported features, Lucene compatibility, development and user activity,
and performance as compared to Lucene, as well as some of the users of each port.
The future may bring additional Lucene ports; the Lucene developers keep a list on
the Lucene Wiki at http://wiki.apache.org/lucene-java/LuceneImplementations. As
you can see, there are a great many ways to access Lucene from environments other
than Java, each with its own trade-offs. Although this task may seem daunting, if you’re
trying to decide which of them to use, it’s a great sign of Lucene’s popularity and
maturity that so many people have created all these options.

 In the next chapter we’ll visit administrative aspects of Lucene, including options
for tuning Lucene for better performance.

Name Language/environment

SolRuby, acts_as_solr Ruby/Rails

SolPHP PHP

SolJava Java

SolPython Python

SolPerl, Solr.pm Perl (http://search.cpan.org/perldoc?Solr)

SolJSON JavaScript

SolrJS JavaScript (http://solrjs.solrstuff.org/)

SolForrest Apache Forrest/Cocoon

SolrSharp C#

Solrnet http://code.google.com/p/solrnet/

SolColdFusion ColdFusion plug-in

Table 10.10
The many Solr clients
currently available
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://solrjs.solrstuff.org/
http://code.google.com/p/solrnet/
http://wiki.apache.org/solr/IntegratingSolr
http://wiki.apache.org/lucene-java/LuceneImplementations
http://search.cpan.org/perldoc?Solr
http://wiki.apache.org/solr/IntegratingSolr
http://www.it-ebooks.info/

Lucene administration
and performance tuning
You’ve seen diverse examples of how to use Lucene for indexing and searching,
including many advanced use cases. In this chapter we cover the practical, hands-
on administrative aspects of Lucene. Some say administrative details are a mun-
dane and necessary evil, but at least one of your beloved authors would beg to dif-
fer! A well-tuned Lucene application is like a well-maintained car: it will operate for
years without problems, requiring only a small, informed investment on your part.
You can take pride in that! This chapter gives you all the tools you need to keep
your Lucene application in tip-top shape.

This chapter covers
Tuning for performance

Effectively using threads

Managing disk, file descriptors, memory usage

Backing up and restoring your index

Checking an index for corruption and repairing it

Understanding common errors
345

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

346 CHAPTER 11 Lucene administration and performance tuning

 Lucene has great out-of-the-box performance, but for some demanding applica-
tions, this is still not good enough. Fear not! There are many fun ways to tune for per-
formance. Adding threads to your application is often effective, but the added
complexity can make it tricky. We’ll show you some simple drop-in classes that hide
this complexity. Most likely you can tune Lucene to get the performance you need.
We’ll explore using hands-on examples for measuring performance.

 Beyond performance, people are often baffled by Lucene’s consumption of
resources like disk space, file descriptors, and memory. Keeping tabs on this consump-
tion over time as your index grows and application evolves is necessary to prevent sud-
den catastrophic problems. Fortunately, Lucene’s use of these resources is simple to
predict once you understand how. Armed with this information, you can easily pre-
vent many problems.

 Of course, what good is great performance if you have no more search index?
Despite all your preventive efforts, things will eventually go wrong (thank you, Mur-
phy’s Law), and restoring from backup will be your only option. Lucene includes
built-in support for making a hot backup of your index, even while you’re still adding
documents to it. You have no excuse to delay—just a bit of planning ahead will save
you a lot of trouble later.

 So, roll up your sleeves: it’s time to get your hands dirty! Let’s jump right in with
performance tuning.

11.1 Performance tuning
Many applications achieve awesome performance with Lucene, out of the box. But
you may find that as your index grows larger, and as you add new features to your
application, or even as your website gains popularity and must handle higher and
higher traffic, performance could eventually become an issue. Fortunately, you can try
a number of things to improve Lucene’s performance.

 But first, be sure your application really does need faster performance from
Lucene. Performance tuning can be a time-consuming and, frankly, rather addictive
affair. It can also add complexity to your application, which may introduce bugs and
make your application more costly to maintain. Ask yourself, honestly (use a mirror, if
necessary): would your time be better spent improving the user interface or tuning
relevance? You can always improve performance by simply rolling out more or faster
hardware, so always consider that option first. Never sacrifice user experience in
exchange for performance: keeping users happy, by providing the best experience
humanly and “computerly” possible, should always be your top priority. These are the
costs of performance tuning, so before you even start make sure you do need better
performance. Still have your heart set on tuning performance? No problem: read on!

 We’ll begin with some basic steps you should always try no matter which perfor-
mance metric you’re optimizing for. Then, assuming you still require further tuning,
we touch briefly on best practices for testing methodology. Without a solid and disci-
plined approach to testing, you have no way to measure your progress. Finally, we’ll

visit each of the important performance metrics in search applications: index-to-

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

347Performance tuning

search delay, indexing throughput, search latency, and search throughput. We’ll enu-
merate options to tune for each of these.

 Which metric is important depends on your application and can vary with time.
Often, indexing throughput is crucial while you’re first building your index but then
once the initial index is complete, index-to-search latency and search latency become
more important. Be sure you know which metric matters to you because tuning for
one is frequently at the expense of another! Trade-offs abound.

 Let’s begin with some simple steps to improve all metrics.

11.1.1 Simple performance-tuning steps

Before jumping into specific metrics, there are some simple steps that you should
always follow regardless of what specific metric you need to tune:

Use a solid-state disk (SSD), not magnetic platters, as your underlying storage
device. Although solid-state disks are quite a bit more expensive per gigabyte,
the stunning performance gains make the trade-off a no-brainer for most appli-
cations, and the price premium is quickly dropping with time.
Upgrade to the latest release of Lucene. Lucene is always getting better: perfor-
mance is improved, bugs are fixed, and new features are added. In version 2.3
in particular there were numerous optimizations to indexing, and version 2.9
has many optimizations for searching. The Lucene development community
has a clear commitment to backward compatibility of the API: it’s strictly kept
across minor releases (such as 3.1 to 3.2) but not necessarily across major
releases (such as 3.x to 4.x). A new minor release should just be a drop-in, so go
ahead and try it!
Upgrade to the latest release of Java; then try tuning the JVM’s performance
settings.
Run your JVM with the -server switch; this generally configures the JVM for
faster net throughput over time but at a possibly higher startup cost.
Use a local file system for your index. Local file systems are generally quite a bit
faster than remote ones. If you’re concerned about local hard drives crashing,
use a RAID array with redundancy. In any event, be sure to make backups of your
index (see section 11.4): someday, something will inevitably go horribly wrong.
Run a Java profiler, or collect your own rough timing using System.nanoTime,
to verify your performance problem is in fact Lucene and not elsewhere in your
application stack. For many applications, loading the document from a data-
base or file system, filtering the raw document into plain text, and tokenizing
that text, is time consuming. During searching, rendering the results from
Lucene might be time consuming. You might be surprised!
Do not reopen IndexWriter or IndexReader/IndexSearcher any more fre-
quently than required. Share a single instance for a long time and reopen only
when necessary.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

348 CHAPTER 11 Lucene administration and performance tuning

Use multiple threads. Modern computers have amazing concurrency in CPU,
I/O, and RAM, and that concurrency is only increasing with time. Section 11.2
covers the tricky details when using threads.
Use faster hardware. Fast CPU and fast I/O system (for large indices) will always
help.
Put as much physical memory as you can in your computers, and configure
Lucene to take advantage of all of it (see section 11.3.3). But be sure Lucene
isn’t using so much memory that your computer is forced to constantly swap or
the JVM is forced to constantly run garbage collection (GC).
Budget enough memory, CPU, and file descriptors for your peak usage. This is
typically when you’re opening a new searcher during peak traffic perhaps while
indexing a batch of documents.
Turn off any fields or features that your application isn’t using. Be ruthless!
Group multiple text fields into a single text field. Then, you can search only
that one field.

These best practices will take you a long ways toward better performance. It could be,
after following these steps, you’re done: if so, congratulations! If not, don’t fear:
there are still many options to try. We first need a consistent approach to testing
performance.

11.1.2 Testing approach

You’ll need to set up a simple repeatable test that allows you to measure the specific
metrics you want to improve. Without this you can’t know if you’re improving things.
The test should accurately reflect your application. Try to use true documents from
your original content, and actual searches from your search logs, if available. Next,
establish a baseline of your metric. If you see high variance on each run, you may
want to run the test three or more times and record the best result (which is typically
less noisy).

 Finally, take an open-minded iterative approach: performance tuning is empirical
and often surprising. Let the computer tell you what works and what doesn’t. Make
one change at a time, test it, and keep it only if the metric improved. Don’t fall in love
with some neat tuning before it demonstrates its value! Some changes will unexpect-
edly degrade performance, so don’t keep those. Make a list of ideas to try, and sort
them according to your best estimate of “bang for the buck”: those changes that are
quick to test and could be the biggest win should be tested first. Once you’ve
improved your metric enough, stop and move on to other important things. You can
always come back to your list later and keep iterating.

 If all else fails, take your challenge to the Lucene java users list (java-user@
lucene.apache.org). More than likely someone has already encountered and solved
something similar to your problem and your question can lead to healthy discussion
on how Lucene could be improved.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

349Performance tuning

 For our testing in this chapter we’ll use the framework in contrib/benchmark,
described in more detail in appendix C. This is an excellent tool for creating and run-
ning repeatable performance tests. It already has support for multiple runs of each
test, changing Lucene configuration parameters, measuring metrics, and printing
summary reports of the full test run. There are a large set of built-in tasks and docu-
ment sources to choose from. Extending the framework with your own task is straight-
forward. You simply write an algorithm (.alg) file, using a simple custom scripting
language, to describe the test. Then run it like this:

cd contrib/benchmark
ant run-task -Dtask-alg=<file.alg> -Dtask.mem=XXXM

That code prints great details about the metrics for each step of your test. Algorithm
files also make it simple for others to reproduce your test results: you just send it to
them and they run it!
APPLES AND ORANGES

When running indexing tests, there are a couple things you need to watch out for.
First, because Lucene periodically merges segments, when you run two indexing tests
with different settings it’s quite possible that each resulting index could end in a dif-
ferent merge state. Maybe the first index has only 3 segments in it, because it just com-
pleted a large merge, and the other index has 17 segments. It’s not fair to compare
metrics from these two tests because in the first case Lucene did more work to make
the index more compact. You’re comparing apples and oranges.

 To work around this, you could set mergeFactor to an enormous number, to turn
off merging entirely. This will make the tests at least comparable, but just remember
that the resulting numbers aren’t accurate in an absolute sense, because in a real
application you can’t turn off merging. This is only worthwhile if you aren’t trying to
compare the cost of merging in the first place.

 The second issue is to make sure your tests include the time it takes to call close
on the IndexWriter. During close, IndexWriter flushes documents, may start new
merges, and waits for any background merges to finish. Try to write your algorithm
files so that the CloseIndex task is included in the report.

 Let’s look at specific metrics that you may need to tune.

11.1.3 Tuning for index-to-search delay

Index-to-search delay is the elapsed time from when you add, update, or delete docu-
ments in the index, until users see those changes reflected in their searches. For many
applications, this is an important metric. But because a reader always presents the
index as of the “point in time” when it was opened, the only way to reduce index-to-
search delay is to reopen your reader more frequently.

 Fortunately, the new near-real-time search feature added in Lucene 2.9, described
in sections 2.8 and 3.2.5, is effective at keeping this turnaround time to a minimum, in
practice often in the tens of milliseconds. After making changes using IndexWriter,
you open a new reader by calling IndexWriter.getReader() or by using the previ-

ously obtained IndexReader’s reopen method. But reopening the reader too

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

350 CHAPTER 11 Lucene administration and performance tuning

frequently will slow down your indexing throughput as IndexWriter must flush its
buffer to disk every time. Here are some tips for reducing the turnaround time:

Call IndexWriter.setMergedSegmentWarmer to have IndexWriter warm up
newly merged segments before making them available for searching. While this
warming is happening (it takes place in a background thread as long as you’re
using the default ConcurrentMergeScheduler), new near-real-time readers can
continue to be opened, using the segments from before the merge. This is espe-
cially important on completion of a large segment merge; it will reduce the sub-
sequent latency on new searches against the near-real-time reader.
Try switching IndexWriter to the BalancedMergePolicy, available in the mis-
cellaneous contrib module (briefly covered in section 9.10). This MergePolicy
was designed to minimize very large segment merges, which, because they are
so CPU and I/O intensive, can have an adverse effect on search performance.
Possibly set IndexWriter’s maxBufferedDocs to something small. That way, even
when you aren’t reopening the near-real-time reader, small segments are still
being flushed. Although this may reduce your net indexing rate, in practice it
also keeps reopen time to a minimum.
If you know you’re only adding documents, be sure to use addDocument, not
updateDocument. There’s a cost when using updateDocument, even if the speci-
fied term doesn’t delete any documents: the IndexWriter must search for each
deleted term while creating the new near-real-time reader.

On the bright side, many applications only require high indexing throughput while
creating the initial index or doing bulk updates. During this time, the index-to-search
latency doesn’t matter because no searching is happening. But then once the index is
built and in use in the application, the rate of document turnover is often low, while
index-to-search latency becomes important. Next we’ll see how to tune Lucene for
high indexing throughput.

11.1.4 Tuning for indexing throughput

Indexing throughput measures how many documents per second you’re able to add
to your index, which determines how much time it will take to build and update your
index. In the benchmark framework there are several built-in content sources we
could choose from, including the Reuters corpus (ReutersContentSource), Wikipe-
dia articles (EnwikiContentSource), and a simple document source that recursively
finds all *.txt files under a directory (DirContentSource). We’ll use Wikipedia as the
document source for all our tests. This is obviously a large and diverse collection, so it
makes for a good real-world test. For your own tests, create a document source sub-
classing ContentSource, and then use it for all your testing.

 To minimize the cost of document construction, let’s first preprocess the Wikipedia
XML content into a single large text file that contains one article per line. We’ll be fol-
lowing the steps shown in figure 11.1. There’s a built-in WriteLineDoc task for exactly

this purpose. Download the latest Wikipedia export from http://wikipedia.org. Leave

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

351Performance tuning

it compressed as a bzip2 (.bz2) file; the benchmark framework can decompress it on
the fly.

 Next, save the following algorithm to createLineFile.alg:

content.source = org.apache.lucene.benchmark.byTask.feeds.EnwikiContentSource
docs.file = /x/lucene/enwiki-20090724-pages-articles.xml.bz2
line.file.out = wikipedia.lines.txt
content.source.forever = false

{WriteLineDoc() >: *

This algorithm uses the built-in EnwikiContentSource, which
knows how to parse the XML format from Wikipedia, to produce
one document at a time. Then, it runs the WriteLineDoc task over
and over until there are no more documents, saving each docu-
ment line by line to the file wikipedia.lines.txt.

 Execute this by running ant run-task -Dtask.alg=create-
LineFile.alg in a shell. It will take some time to run. Sit back and
enjoy the sound of hard drives seeking away doing all the hard
work for you—that is, if you’re still not using a solid-state drive. It
will print how many documents have been processed as it’s run-
ning, and at the end will produce a large file, wikipedia.lines.txt,
with one document per line. Great! Wasn’t that easy?

 Now that we’re done with the onetime setup, let’s run a real
test, using the efficient LineDocSource as our content source. For
the following tests, it’s best to store wikipedia. lines.txt on a sepa-
rate drive from the contrib/benchmark/work/index directory
where the index is created so the I/O for reading the articles
doesn’t interfere with the I/O for writing the index. Go ahead and
run the algorithm shown in listing 11.1.

analyzer=org.apache.lucene.analysis.standard.StandardAnalyzer
content.source=org.apache.lucene.benchmark.byTask.feeds.LineDocSource
directory=FSDirectory

doc.stored = true
doc.term.vectors = true
docs.file=/x/lucene/enwiki-20090306-lines.txt

{ "Rounds"
 ResetSystemErase
 { "BuildIndex"
 -CreateIndex
 { "AddDocs" AddDoc > : 200000
 -CloseIndex
 }
 NewRound
} : 3

Listing 11.1 Testing indexing throughput using Wikipedia documents

Wikipedia XML Export

Create Line
File

Index
Documents

Wikipedia Line File

Index

Figure 11.1 Steps
to test indexing
throughput on
Wikipedia articles

Use stored fields
and term vectors

Run test 3 times

Add first
200K docs
RepSumByPrefRound BuildIndex Report results

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

3
52 CHAPTER 11 Lucene administration and performance tuning

This algorithm builds an index with the first 200,000 Wikipedia articles, three times,
using StandardAnalyzer. At the end it prints a one-line summary of each run. If you
were building a real index for Wikipedia, you should use an analyzer base on the Wiki-
pedia tokenizer under contrib/wikipedia. This tokenizer understands the custom ele-
ments of Wikipedia’s document format such as [[Category:…]]. Because we’re only
measuring indexing throughput here, StandardAnalyzer is fine for our purposes.
You should see something like this as your final report:

Operation round runCnt recsPerRun rec/s elapsedSec avgUsedMem avgTotalMem
BuildIndex 0 1 200000 550.7 363.19 33,967,816 39,915,520
BuildIndex - 1 - 1 - 200000 557.3 - 358.85 24,595,904 41,435,136
BuildIndex 2 1 200000 558.4 358.17 23,531,816 41,435,136

Discarding the slowest and fastest run, our baseline indexing throughput is 557.3 doc-
uments/second. Not too shabby! As of Lucene 2.3, the out-of-the-box default index-
ing throughput has improved substantially. Here are some specific things to try to
further improve your application’s indexing throughput:

Use many threads. This could be the single biggest impact change you can
make, especially if your computer’s hardware has a lot of concurrency. See sec-
tion 11.2.1 for a drop-in threaded replacement for IndexWriter.
Set IndexWriter to flush by memory usage and not document count. This is the
default as of version 2.3, but if your application still calls setMaxBufferedDocs,
change it to setRAMBufferSizeMB instead. Test different RAM buffer sizes. Typi-
cally larger is better, to a point. Make sure you don’t go so high that the JVM is
forced to GC too frequently, or the computer is forced to start swapping (see
11.3.3). Use the option ram.flush.mb in your algorithm to change the size of
IndexWriter’s RAM buffer.
Turn off compound file format (IndexWriter.setUseCompoundFile(false)).
Creating a compound file takes some time during indexing. You’ll also see a
small performance gain during searching. But note that this will require many
more file descriptors to be opened by your readers (see 11.3.2), so you may
have to decrease mergeFactor to avoid hitting file descriptor limits. Set
compound=false in your algorithm to turn off compound file format.
Reuse Document and Field instances. As of version 2.3, a Field instance allows
you to change its value. If your documents are highly regular (most are), create
a single Document instance and hold onto its Field instances. Change only the
Field values, and then call addDocument with the same Document instance. The
DocMaker is already doing this, but you can turn it off by adding doc.reuse.
fields=false to your algorithm.
Test different values of mergeFactor. Higher values mean less merging cost
while indexing, but slower searching because the index will generally have
more segments. Beware: if you make this too high, and if compound file format
is turned off, you can hit file descriptor limits on your OS (see section 11.3.2).
As of version 2.3, segment merging is done in the background during indexing,

so this is an automatic way to take advantage of concurrency. You may see faster

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

353Performance tuning

performance with a high mergeFactor. But if you optimize the index in the
end, a low mergeFactor should be faster as the merges will tend to be done con-
currently while you’re indexing. Test high and low values in your application
and let the computer tell you which is best: you might be surprised!
Use optimize sparingly; use the optimize(maxNumSegments) method instead.
This method optimizes your index down to maxNumSegments (instead of always
one segment), which can greatly reduce the cost of optimizing while still mak-
ing your searches quite a bit faster. Optimizing takes a long time. If your search-
ing performance is acceptable without optimizing, consider never optimizing.
Index into separate indices, perhaps using different computers, and then
merge them with IndexWriter.addIndexesNoOptimize. Don’t use the older
addIndexes methods; they make extra, often unnecessary, calls to optimize.
Test the speed of creating the documents and tokenizing them by using the
ReadTokens task in your algorithm. This task steps through each field of the
document and tokenizes it using the specified analyzer. The document isn’t
indexed. This is an excellent way to measure the document construction and
tokenization cost alone. Run this algorithm to tokenize the first 200K docs from
Wikipedia using StandardAnalyzer:
analyzer=org.apache.lucene.analysis.standard.StandardAnalyzer

content.source=org.apache.lucene.benchmark.byTask.feeds.LineDocSource

docs.file=/x/lucene/enwiki-20090306-lines.txt

{ "Rounds"
 ResetSystemErase
 { ReadTokens > : 200000
 NewRound
} : 3

RepSumByPrefRound ReadTokens

which produces output like this:
Operation round run recsPerRun rec/s elapsedSec avgUsedMem avgTotalMem
ReadTokens_N 0 1 161783312 1,239,927.9 130.48 2,774,040 2,924,544
ReadTokens_N 1 - 1 161783312 1,259,857.2 - 128.41 2,774,112 - 2,924,544
ReadTokens_N 2 1 161783312 1,253,862.0 129.03 2,774,184 2,924,544

Discarding the fastest and slowest runs, we see that simply retrieving and token-
izing the documents takes 129.03 seconds, which is about 27 percent of the
total indexing time from our baseline. This number is very low, because we’re
using LineDocSource as our content source. In a real application, creating, fil-
tering, and tokenizing the document would be much more costly. Try it with
your own ContentSource!

Let’s combine the previous suggestions. We’ll index the same 200,000 documents
from Wikipedia but change the settings to try to improve indexing throughput. We’ll
turn off compound, increase mergeFactor to 30 and ram.flush.mb to 128, and use five

threads to do the indexing. The resulting algorithm file is shown in listing 11.2.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

354 CHAPTER 11 Lucene administration and performance tuning

analyzer=org.apache.lucene.analysis.standard.StandardAnalyzer
content.source=org.apache.lucene.benchmark.byTask.feeds.LineDocSource
directory=FSDirectory

docs.file=/x/lucene/enwiki-20090306-lines.txt

doc.stored = true
doc.term.vector = true
ram.flush.mb = 128
compound = false
merge.factor = 30

log.step=1000

{ "Rounds"
 ResetSystemErase
 { "BuildIndex"
 -CreateIndex
 [{ "AddDocs" AddDoc > : 40000] : 5
 -CloseIndex
 }
 NewRound
} : 3

RepSumByPrefRound BuildIndex

Running list 11.2 will produce output like this:

Operation round runCnt recsPerRun rec/s elapsedSec avgUsedMem avgTotalMem
BuildIndex 0 1 200000 879.5 227.40 166,013,008 205,398,016
BuildIndex - 1 - 1 - 200000 899.7 - 222.29 167,390,016 255,639,552
BuildIndex 2 1 200000 916.8 218.15 174,252,944 276,684,800

Wow, the performance is even better: 899.7 documents per second! In your testing
you should test each of these changes, one at a time, and keep only those that help.

 There you have it! As we’ve seen, Lucene’s out-of-the-box indexing throughput is
excellent. But with some simple tuning ideas, you can make it even better. Let’s look
at search performance next.

11.1.5 Tuning for search latency and throughput

Search latency measures how long users must wait to see the results of their search. A
user should never wait more than one second for search results, and ideally much less.
Go run some Google searches and see how long you have to wait. Search throughput
measures how many searches per second your application can service. These metrics,
search latency and throughput, are two sides of one coin: improvements to search
latency will also improve your search throughput, on the same hardware. It is a zero
sum game, assuming you’re running enough threads to fully saturate all resources
available on the computer, which you definitely should!

 The best way to measure your search latency and throughput is with a standalone
load-testing tool, such as The Grinder or Apache JMeter. Such tools do a great job sim-

Listing 11.2 Indexing with threads, compound, extra RAM, and larger mergeFactor

Use 5 threads
in parallel
ulating multiple users and reporting latency and throughput results. They also test

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

355Performance tuning

your application end to end, which is what a real user experiences when using your
website. This is important, as it’s common to pick up unexpected latency in the pro-
cess of submitting the search, the processing performed by your web and application
servers, the rendering of results performed by your application, the final HTML ren-
dering in the web browser, and so forth. Remember that there are many cumulative
delays in a modern search application, so be sure to measure all steps before and after
Lucene is invoked to confirm that it’s really Lucene that needs tuning.

 Try to use real searches from real users when running search performance tests. If
possible, cull search logs to get all searches, and run them in the same order and tim-
ing from the search logs. Use multiple threads to simulate multiple users, and verify
you’re fully utilizing the computer’s concurrency. Include follow-on searches, like
clicking through pages, in the test. The more “real world” your test is, the more accu-
rate your test results are. For example, if you create your own small set of hand-crafted
searches for testing, and run these over and over, you can easily see unexpectedly
excellent performance because the OS has loaded all required bytes from disk into its
I/O cache. To fix this, you may be tempted to flush the I/O cache before each test,
which is possible. But then you’re going too far in the other direction, by penalizing
your results too heavily, since in your real application the I/O cache would legitimately
help your performance.

 Here are some steps to improve search performance:

Use a read-only IndexReader, by calling IndexReader.open(dir) or Index-
Reader.open(dir, true) (read-only is the default). Read-only IndexReaders
have better concurrency because they can avoid synchronizing on certain inter-
nal data structures. This is now the default when you open an IndexReader.
If you’re not on Windows, use NIOFSDirectory, which has better concurrency,
instead of FSDirectory. If you’re running with a 64-bit JVM, try MMapDirectory
as well.
Make sure each step between the user and Lucene isn’t adding unnecessary
latency. For example, make sure your request queue is first-in, first-out and that
all threads pull from this queue, so searches are answered in the order they
originally arrived. Verify that rendering the results returned by Lucene is fast.
Be sure you’re using enough threads to fully utilize the computer’s hardware
(see section 11.2.2 for details). Increase the thread count until throughput no
longer improves, but don’t add so many threads that latency gets worse. There’s
a sweet spot—find it!
Warm up your searchers before using them on real searches. The first time a
certain sort is used, it must populate the FieldCache. Prewarm the searching by
issuing one search for each of the sort fields that may be used (see
section 11.1.2).
Use FieldCache instead of stored fields, if you can afford the RAM. Field-
Cache pulls all stored fields into RAM, whereas stored fields must go back to

disk for every document. Populating a FieldCache is resource-consuming

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

3
56 CHAPTER 11 Lucene administration and performance tuning

(CPU and I/O), but it’s done only once per field the first time it’s accessed.
Once it’s populated, accessing it is very fast as long as the OS doesn’t swap out
the JVM’s memory.
Decrease mergeFactor so there are fewer segments in the index.
Turn off compound file format.
Limit your use of term vectors: retrieving them is quite slow. If you must, do so
only for those hits that require it. Use TermVectorMapper (see section 5.9.3) to
carefully select only the parts of the term vectors that you need.
If you must load stored fields, use FieldSelector (see section 5.10) to restrict
fields to exactly those that you need. Use lazy field loading for large fields so
that the contents of the field are only loaded when requested.
Run optimize or optimize(maxNumSegments) periodically on your index.
Only request as many hits as you require.
Only reopen the IndexReader when it’s necessary.
Call query.rewrite().toString() and print the result. This is the actual query
Lucene runs. You might be surprised to see how queries like FuzzyQuery and
TermRangeQuery rewrite themselves!
If you’re using FuzzyQuery (see section 3.4.8), set the minimum prefix length to
a value greater than 0 (e.g., 3). Then you can increase the minimumSimilarity.

Note that quite a few of these options are in fact detrimental to indexing throughput:
they’re automatically at odds with one another. You have to find the right balance for
your application.

 We’re done with performance tuning! You’ve seen how to measure performance,
including the often conflicting metrics, and the many ways to tune Lucene’s perfor-
mance for different metrics. Next we’ll see how to use threads to gain concurrency.

11.2 Threads and concurrency
Modern computers have highly concurrent hardware. Moore’s law lives on, but
instead of giving us faster clock speeds, we get more CPU cores. It’s not just the CPU.
Hard drives now provide native command queuing, which accepts many I/O requests at
once and reorders them to make more efficient use of the disk heads. Even solid state
disks do the same, and go further by using multiple channels to concurrently access
the raw flash storage. The interface to RAM uses multiple channels. Then, there’s con-
currency across these resources: when one thread is stuck waiting for an I/O request
to complete, another thread can use the CPU, and you’ll gain concurrency.

 Therefore, it’s critical to use threads for indexing and searching. Otherwise, you’re
simply not fully utilizing the computer. It’s like buying a Corvette and driving it no
faster than 20 mph! Likely, switching to using threads is the single change you can
make that will increase performance the most. You’ll have to empirically test to find
the right number of threads for your application and trade off search or indexing
latency and throughput. Generally, at first, as you add more threads, you’ll see latency

stay about the same but throughput will improve. Then when you hit the right

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

357Threads and concurrency

number of threads, adding more won’t improve throughput and may hurt it some-
what due to context switching costs. But latency will increase.

 Unfortunately, there’s the dark side to threads, which if you’ve explored them in
the past you’ve no doubt discovered: they can add substantial complexity to your
application. Suddenly you must take care to make the right methods synchronized
(but not too many!), change your performance testing to use threads, manage thread
pools, and spawn and join threads at the right times. You’ll spend lots of time reading
the Javadocs in java.util.concurrent. Entirely new kinds of intermittent bugs
become possible, such as deadlock if locks aren’t acquired in the same order by differ-
ent threads or ConcurrentModificationException and other problems if you’re miss-
ing synchronization. Testing is difficult because the threads are scheduled at different
times by the JVM every time you run a test. Are they really worth all this hassle?

 Yes, they are! Lucene has been carefully designed to work well with many
threads. Lucene is thread-safe: sharing IndexSearcher, IndexReader, IndexWriter,
and so forth across multiple threads is perfectly fine. Lucene is also thread-friendly:
synchronized code is minimized so that multiple threads can make full use of the
hardware’s concurrency. In fact, as of version 2.3, Lucene already makes use of con-
currency right out of the box: ConcurrentMergeScheduler merges segments using
multiple background threads so that adding and deleting documents in
IndexWriter isn’t blocked by merging. You can choose a merge scheduler in your
algorithm by setting the merge.scheduler property. For example, to test indexing
with the SerialMergeScheduler (which matches how segment merges were done
before version 2.3), add merge.scheduler = org.apache.lucene.index.Serial-
MergeScheduler to your algorithm.

 In this section we’ll show you how to leverage threads during indexing and search-
ing, and provide a couple of drop-in classes to make it
simple to gain concurrency.

11.2.1 Using threads for indexing

Figure 11.2 shows the design of a simple utility class,
ThreadedIndexWriter, that extends IndexWriter and
uses java.util.concurrent to manage multiple
threads, adding and updating documents. The class
simplifies multithreaded indexing because all details of
these threads are hidden from you. It’s also a drop-in
for anywhere you’re currently using the IndexWriter
class, though you may need to modify it if you need to
use one of IndexWriter’s expert constructors. Note
that the class doesn’t override IndexWriter’s commit or
prepareCommit methods, which means you’ll have to
close it in order to commit all changes to the index.

 The full source code is shown in listing 11.3. Spec-

ThreadedIndexWriter

Job Queue

Thread ThreadThread

IndexWriter

Index

Figure 11.2
ThreadedIndexWriter
ify how many threads to use, as well as the size of the manages multiple threads for you.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

358 CHAPTER 11 Lucene administration and performance tuning

queue, when you instantiate the class. Test different values to find the sweet spot for
your application, but a good rule of thumb for numThreads is one plus the number of
CPU cores in your computer that you’d like to consume on indexing, and then
4*numThreads for maxQueueSize. As you use more threads for indexing, you’ll find
that a larger RAM buffer size should help even more, so be sure to test different com-
binations of number of threads and RAM buffer size to reach your best performance.
Check process monitor tools, like top or ps on Unix, Task Manager on Windows, or
Activity Monitor on Mac OS X to verify that CPU utilization is near 100 percent.

public class ThreadedIndexWriter extends IndexWriter {

 private ExecutorService threadPool;
 private Analyzer defaultAnalyzer;

 private class Job implements Runnable {
 Document doc;
 Analyzer analyzer;
 Term delTerm;
 public Job(Document doc, Term delTerm, Analyzer analyzer) {
 this.doc = doc;
 this.analyzer = analyzer;
 this.delTerm = delTerm;
 }
 public void run() {
 try {
 if (delTerm != null) {
 ThreadedIndexWriter.super.updateDocument(delTerm, doc, analyzer);
 } else {
 ThreadedIndexWriter.super.addDocument(doc, analyzer);
 }
 } catch (IOException ioe) {
 throw new RuntimeException(ioe);
 }
 }
 }

 public ThreadedIndexWriter(Directory dir, Analyzer a,
 boolean create, int numThreads,
 int maxQueueSize,
 IndexWriter.MaxFieldLength mfl)
 throws CorruptIndexException, IOException {
 super(dir, a, create, mfl);
 defaultAnalyzer = a;
 threadPool = new ThreadPoolExecutor(
 numThreads, numThreads,
 0, TimeUnit.SECONDS,
 new ArrayBlockingQueue<Runnable>(maxQueueSize, false),
 new ThreadPoolExecutor.CallerRunsPolicy());
 }

 public void addDocument(Document doc) {
 threadPool.execute(new Job(doc, null, defaultAnalyzer));

Listing 11.3 Drop-in IndexWriter class to use multiple threads for indexing

Holds one doc
to be added

Does real work to
add, update doc

Create thread pool

Have thread
pool execute job
 }

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

359Threads and concurrency

 public void addDocument(Document doc, Analyzer a) {
 threadPool.execute(new Job(doc, null, a));
 }

 public void updateDocument(Term term, Document doc) {
 threadPool.execute(new Job(doc, term, defaultAnalyzer));
 }

 public void updateDocument(Term term, Document doc, Analyzer a) {
 threadPool.execute(new Job(doc, term, a));
 }

 public void close()
 throws CorruptIndexException, IOException {
 finish();
 super.close();
 }

 public void close(boolean doWait)
 throws CorruptIndexException, IOException {
 finish();
 super.close(doWait);
 }

 public void rollback()
 throws CorruptIndexException, IOException {
 finish();
 super.rollback();
 }

 private void finish() {
 threadPool.shutdown();
 while(true) {
 try {
 if (threadPool.awaitTermination(Long.MAX_VALUE, TimeUnit.SECONDS)) {
 break;
 }
 } catch (InterruptedException ie) {
 Thread.currentThread().interrupt();
 throw new RuntimeException(ie);
 }
 }
 }
}

The class overrides the addDocument and updateDocument methods: when one of
these is called, a Job instance is created and added to the work queue in the thread
pool. If the queue in the thread pool isn’t full, control immediately returns back to
the caller. Otherwise, the caller’s thread is used to immediately execute the job. In the
background, a worker thread wakes up, takes jobs from the front of the work queue,
and does the real work. When you use this class, you can’t reuse Document or Field
instances, because you can’t control precisely when a Document is done being indexed.
The class overrides close and rollback methods, to first shut down the thread pool
to ensure all adds and updates in the queue have completed.

Have thread
pool execute job

Shuts down
thread pool
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

360 CHAPTER 11 Lucene administration and performance tuning

 Let’s test ThreadedIndexWriter by using it in the benchmark framework, which
makes it wonderfully trivial to extend with a new task. Make a CreateThreadedIndex-
Task.java, as shown in listing 11.4.

public class CreateThreadedIndexTask extends CreateIndexTask {

 public CreateThreadedIndexTask(PerfRunData runData) {
 super(runData);
 }

 public int doLogic() throws IOException {
 PerfRunData runData = getRunData();
 Config config = runData.getConfig();
 IndexWriter writer = new ThreadedIndexWriter(
 runData.getDirectory(),
 runData.getAnalyzer(),
 true,
 config.get("writer.num.threads", 4),
 config.get("writer.max.thread.queue.size",
 20),
 IndexWriter.MaxFieldLength.UNLIMITED);
 CreateIndexTask.setIndexWriterConfig(writer, config);
 runData.setIndexWriter(writer);
 return 1;
 }
}

Create an algorithm, derived from the baseline algorithm from section 11.2.3, with
only these changes:

Replace CreateIndex with CreateThreadedIndex.
Add doc.reuse.fields = false, which tells DocMaker to not reuse fields.
Optionally set writer.num.threads and writer.max.thread.queue.size to
test different values.

Compile your CreateThreadedIndexTask.java, and run your algorithm like this so it
knows where to find your new task:

ant run-task
 -Dtask.alg=indexWikiLine.alg
 -Dbenchmark.ext.classpath=/path/to/my/classes

You should see it finishes quite a bit faster than the original baseline. If your applica-
tion already uses multiple threads while indexing, this class is unnecessary; this class is
useful as a drop-in approach for taking advantage of threads in an application that
doesn’t already use multiple threads during indexing. Now you can drop this class in
wherever you now use IndexWriter and take advantage of concurrency. Let’s look
next at using threads during searching.

Listing 11.4 Adding a new custom task to contrib/benchmark
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

361Threads and concurrency

11.2.2 Using threads for searching

Fortunately, a modern web or application server handles most of the threading issues
for you: it maintains a first-in, first-out request queue, as well as a thread pool to ser-
vice requests from the queue. This means much of the hard work is already done. All
you have to do is create a query based on the details in the user’s request, invoke your
IndexSearcher, and render the results. It’s so easy! If you aren’t running Lucene in a
web application, the thread pool support in java.util.concurrent should help you.

 Be sure you tune the size of the thread pool to make full use of the computer’s
concurrency. Also, tune the maximum allowed size of the request queue for search-
ing: when your website is suddenly popular and far too many searches per second are
arriving, you want new requests to quickly receive an HTTP 500 Server Too Busy error,
instead of waiting in the request queue forever. This also ensures that your application
gracefully recovers once the traffic settles down again. Run a redline stress test to ver-
ify this.

 There’s one tricky aspect that the application server won’t handle for you: reopen-
ing your searcher when your index has changed. Because an IndexReader only sees
the index as of the point in time when it was opened, once there are changes to the
index you must reopen your IndexReader to search them. Unfortunately, this can be a
costly operation, consuming CPU and I/O resources. Yet, for some applications, mini-
mizing index-to-search delay is worth that cost, which means you’ll have to reopen
your searcher frequently.

 Threads make reopening your searcher challenging, because you can’t close the
old searcher until all searches are done with it, including iterating through the hits
after IndexSearcher.search has returned. Beyond that, you may want to keep the old
searcher around for long enough for all search sessions (the original search plus all fol-
low-on actions like clicking through pages) to finish or expire. For example, consider
a user who’s stepping through page after page of results, where each page is a new
search on your server. If you suddenly swap in a new searcher in between pages, then
the documents assigned to each page could shift, causing the user to see duplicate
results across pages or to miss some results. This unexpected behavior can erode your
user’s trust—pretty much the kiss of death for any search application. Prevent this by
sending new pages for a previous search back to the original searcher when possible.

 Listing 11.5 shows a useful utility class, SearcherManager, that hides the tricky
details of reopening your searcher in the presence of multiple threads. It’s able to
open readers either from a Directory instance, in cases where you don’t have direct
access to the IndexWriter that’s making changes, or from an IndexWriter by obtain-
ing a near-real-time reader (see section 3.2.5 for details on near-real-time search).

public class SearcherManager {

 private IndexSearcher currentSearcher;
 private IndexWriter writer;

Listing 11.5 Safely reopening IndexSearcher in a multithreaded world

Hold current
IndexSearcher
 public SearcherManager(Directory dir) throws IOException { B

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

3
62 CHAPTER 11 Lucene administration and performance tuning

 currentSearcher = new IndexSearcher(
 IndexReader.open(dir));
 warm(currentSearcher);
 }

 public SearcherManager(IndexWriter writer) throws IOException {
 this.writer = writer;
 currentSearcher = new IndexSearcher(
 writer.getReader());
 warm(currentSearcher);

 writer.setMergedSegmentWarmer(
 new IndexWriter.IndexReaderWarmer() {
 public void warm(IndexReader reader) throws IOException {
 SearcherManager.this.warm(new IndexSearcher(reader));
 }
 });
 }

 public void warm(IndexSearcher searcher)
 throws IOException
 {}

 private boolean reopening;

 private synchronized void startReopen()
 throws InterruptedException {
 while (reopening) {
 wait();
 }
 reopening = true;
 }

 private synchronized void doneReopen() {
 reopening = false;
 notifyAll();
 }

 public void maybeReopen()
 throws InterruptedException,
 IOException {

 startReopen();

 try {
 final IndexSearcher searcher = get();
 try {
 IndexReader newReader = currentSearcher.getIndexReader().reopen();
 if (newReader != currentSearcher.getIndexReader()) {
 IndexSearcher newSearcher = new IndexSearcher(newReader);
 if (writer == null) {
 warm(newSearcher);
 }
 swapSearcher(newSearcher);
 }
 } finally {
 release(searcher);
 }
 } finally {

Create searcher
from Directory

C

Create searcher from
near-real-time reader

D

Implement
in subclass

Reopen
searcher
 doneReopen();

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

363Threads and concurrency

 }
 }

 public synchronized IndexSearcher get() {
 currentSearcher.getIndexReader().incRef();
 return currentSearcher;
 }

 public synchronized void release(
 IndexSearcher searcher)
 throws IOException {
 searcher.getIndexReader().decRef();
 }

 private synchronized void swapSearcher(IndexSearcher newSearcher)
 throws IOException {
 release(currentSearcher);
 currentSearcher = newSearcher;
 }

 public void close() throws IOException {
 swapSearcher(null);
 }
}

This class uses the IndexReader.reopen API to efficiently open a new IndexReader
that may share some SegmentReaders internally with the previous one. Instantiate this
class once in your application—for example, naming it searcherManager—and then
use it for access to the IndexSearcher whenever you need to run a search. Note that
the class never closes the IndexSearcher. This is fine because Index-

Searcher.close() is a no-op if you’d provided an already opened IndexReader when
creating the IndexSearcher, as we’ve done.

 If you have direct access to the IndexWriter that’s making changes to the index,
it’s best to use the constructor that accepts IndexWriter C. You’ll get faster reopen
performance this way: SearcherManager uses IndexWriter’s near-real-time getReader
API, and you don’t need to call IndexWriter.commit before reopening. Searcher-
Manager also calls setMergedSegmentWarmer D to ensure that newly merged segments
are passed to the warm method.

 Otherwise, use the constructor that takes a Directory instance B, which will open
the IndexSearcher directly. Whenever you need a searcher, do this:

IndexSearcher searcher = searcherManager.get()
try {
 // do searching & rendering here…
} finally {
 searcherManager.release(searcher);
}

Every call to get must be matched with a corresponding call to release, ideally using
a try/finally clause.

 Note that this class doesn’t do any reopening on its own. Instead, you must call
maybeReopen every so often according to your application’s needs. For example, a
good time to call this is after making changes with the IndexWriter. If you passed

Return
current searcher

Release searcher
Directory into SearcherManager, be sure you first commit any changes from the

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

3
64 CHAPTER 11 Lucene administration and performance tuning

IndexWriter before calling maybeReopen. You could also simply call maybeReopen
during a search request, if upon testing you see the reopen time is fast enough. It’s
also possible to call maybeReopen from a dedicated background thread. In any event,
you should create a subclass that implements the warm method to run the targeted ini-
tial searches against the new searcher before it’s made available for general searching.

 This concludes our coverage of using multiple threads with Lucene. Although add-
ing threads to an application can sometimes bring unwanted complexity, the drop-in
classes we provided should make it trivial to gain concurrency during indexing and
searching. Let’s move on now to exploring how Lucene uses resources.

11.3 Managing resource consumption
Like all software, Lucene requires certain precious resources to get its job done. A
computer has a limited supply of things like disk storage, file descriptors, and mem-
ory. Often Lucene must share these resources with other applications. Understanding
how Lucene uses resources and what you can do to control this lets you keep your
search application healthy. You might assume Lucene’s disk usage is proportional to
the total size of all documents you’ve added, but you’ll be surprised to see that often
this is far from the truth. Similarly, Lucene’s usage of simultaneous open file descrip-
tors is unexpected: changes to a few Lucene configuration options can drastically
change the number of required open files. Finally, to manage Lucene’s memory con-
sumption, you’ll see why it’s not always best to give Lucene access to all memory on
the computer.

 Let’s start with everyone’s favorite topic: how much disk space does Lucene
require? Next we’ll describe Lucene’s open file descriptor usage and, finally, mem-
ory usage.

11.3.1 Disk space

Lucene’s disk usage depends on many factors. An index with only a single pure
indexed, typical text field will be about one third of the total size of the original text.
At the other extreme, an index that has stored fields and term vectors with offsets and
positions, with numerous deleted documents plus an open reader on the index, with
an optimize running, can easily consume 10 times the total size of the original text!
This wide range and seeming unpredictability makes it exciting to manage disk usage
for a Lucene index.

 Figure 11.3 shows the disk usage over time while indexing all documents from
Wikipedia, finishing with an optimize call. The final disk usage was 14.2 GB, but the
peak disk usage was 32.4 GB, which was reached while several large concurrent merges
were running. You can immediately see how erratic it is. Rather than increasing gradu-
ally with time, as you add documents to the index, disk usage will suddenly ramp up
during a merge and then quickly fall back again once the merge has finished, creating
a sawtooth pattern. The size of this jump corresponds to how large the merge was (the
net size of all segments being merged). Furthermore, with ConcurrentMerge-
Scheduler, several large merges can be running at once and this will cause an even

larger increase of temporary disk usage.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

365Managing resource consumption

How can you manage disk space when it has such wild swings? Fortunately, there’s a
method to this madness. Once you understand what’s happening under the hood, you
can predict and understand Lucene’s disk usage. Also, you should know that in the
event that your disk fills up while Lucene is writing to its index, the index won’t
become corrupt.

 It’s important to differentiate transient disk usage while the index is being built
(shown in figure 11.3) versus final disk usage, when the index is completely built and
optimized. It’s easiest to start with the final size. Here’s a coarse formula to estimate
the final size based on the size of all text from the documents:

1/3 x indexed + 1 x stored +2 x term vectors

For example, if your documents have a single field that’s indexed, with term vectors,
and is stored, you should expect the index size to be around 3 1/3 times the total size
of all text across all documents. Note that this formula is approximate. For example,
documents with unusually diverse or unique terms, like a large spreadsheet that con-
tains many unique product SKUs, will use more disk space.

 You can reduce disk usage somewhat by turning off norms (section 2.5.3), turning
off term frequency information for fields that don’t need it (section 2.4.1), turning off
positions and offsets when indexing term vectors (section 2.4.3), and indexing and
storing fewer fields per document.

 The transient disk usage depends on many factors. As the index gets larger, the
size of each sawtooth will get larger as bigger merges are being done. Large merges
also take longer to complete and will therefore tie up transient disk space for more
time. When you optimize the index down to one segment, the final merge is the larg-
est merge possible and will require one times the final size of your index in temporary
disk space. Here are other things that will affect transient disk usage:

Figure 11.3
Disk usage while
building an index
of all Wikipedia
documents, with
optimize called
in the end
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

366 CHAPTER 11 Lucene administration and performance tuning

Open readers prevent deletion of the segment files they’re using. You should
have only one open reader at a time, except when you are reopening it. Be sure
to close the old reader!
All segments that existed when the IndexWriter was first opened will remain in
the directory, as well as those referenced by the current (in memory) commit
point. If you commit frequently, less transient disk space will be used, but com-
mitting can be a costly operation, so this will impact your indexing throughput.
If you frequently replace documents but don’t run optimize, the space used by
old copies of the deleted documents won’t be reclaimed until those segments
are merged.
The more segments in your index, the more disk space will be used—more
than if those segments were merged. This means a high mergeFactor will result
in more disk space being used.
Given the same net amount of text, many small documents will result in a larger
index than fewer large documents.
Don’t open a new reader while optimize, or any other merges, are running;
doing so will result in the reader holding references to segments that would
otherwise be deleted. Instead, open after you have closed or committed your
IndexWriter.
Do open a new reader after making changes with IndexWriter, and close the
old one. If you don’t, the reader could be holding references to files that
IndexWriter wants to delete, due to merging, which prevents the files from
being deleted. Further, the existing reader will continue to work fine, but it
won’t see the newly committed changes from the IndexWriter until it’s
reopened.
If you’re running a hot backup (see section 11.4), the files in the snapshot
being copied will also consume disk space until the backup completes and you
release the snapshot.

Note that on Unix you may think disk space has been freed because the writer has
deleted the old segments files, but in fact the files still consume disk space as long as
those files are held open by an IndexReader. When you list the directory, you won’t
see the files, which is confusing—yet the files still consume bytes on disk. This is due
to Unix’s “delete on last close” semantics. Windows doesn’t allow deletion of open
files so you’ll still see the files when you look at the directory. Don’t be fooled!

 So how can you make sense of all of this? A good rule of thumb is to measure the
total size of your index. Let’s call that X. Then, make sure at all times you have two
times free disk space on the file system where the index is stored at all times. Let’s con-
sider file descriptor usage next.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

367Managing resource consumption

11.3.2 File descriptors

Suppose you’re happily tuning your application to maximize indexing throughput.
You turned off compound file format. You cranked up mergeFactor and got awesome
speedups, so you want to push it even higher. Unfortunately, there’s a secret cost to
these changes: you’re drastically increasing how many files Lucene must hold open at
once. At first you’re ecstatic about your changes; everything seems fine. Then, as you
add more documents, the index grows, Lucene will need more and more open files
when one day—BOOM!—you hit the dreaded “Too many open files” IOException, and
the OS stops you dead in your tracks. Faced with this silent and sudden risk, how can
you possibly tune for the best indexing performance while staying under this limit?

 Fortunately, there’s hope! With a few simple steps you can take control of the situ-
ation. Start by running the following test:

public class OpenFileLimitCheck {
 public static void main(String[] args) throws IOException {
 List<RandomAccessFile> files = new ArrayList<RandomAccessFile>();
 try {
 while(true) {
 files.add(new RandomAccessFile("tmp" + files.size(), "rw"));
 }
 } catch (IOException ioe) {
 System.out.println("IOException after " + files.size() + " open

files:");
 ioe.printStackTrace(System.out);
 int i = 0;
 for (RandomAccessFile raf : files) {
 raf.close();
 new File("tmp" + i++).delete();
 }
 }
 }
}

When you run the test, it will always fail and then tell you how many files it was able
to open before the OS cut it off. There’s tremendous variation across OSs and JVMs.
Running this under Mac OS X 10.6 and Java 1.5 shows that the limit is 98. Java 1.6
on Windows Server 2003 shows a limit of 9,994 open files. Java 1.5 on Debian Linux
with Kernel 2.6.22 shows a limit of 1,018 open files. Java 1.6 on OpenSolaris allows
65,488 files.

 Next, increase the limit to the maximum allowed by the OS. The exact command
for doing so varies according to OS and shell (hello, Google, my old friend). Run the
test again to make sure you’ve actually increased the limit.

 Finally, monitor how many open files your JVM is actually using. There are OS level
tools to do this. On Unix, use lsof. On Windows, use Task Manager. You’ll have to
add File Handles as a column, using the View > Select Columns menu. The sysinter-
nals tools from Microsoft also include useful utilities like Process Monitor to see which
specific files are held open by which processes.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

368 CHAPTER 11 Lucene administration and performance tuning

 To get more specifics about which files Lucene is opening, and when, use the class
in listing 11.6. This class is a drop-in replacement for FSDirectory that adds tracking
of open files. It reports whenever a file is opened or closed, for reading or writing, and
lets you retrieve the current total count of open files.

public class TrackingFSDirectory extends SimpleFSDirectory {

 private Set<String> openOutputs = new HashSet<String>();
 private Set<String> openInputs = new HashSet<String>();

 public TrackingFSDirectory(File path) throws IOException {
 super(path);
 }

 synchronized public int getFileDescriptorCount() {
 return openOutputs.size() + openInputs.size();
 }

 synchronized private void report(String message) {
 System.out.println(System.currentTimeMillis() + ": " +
 message + "; total " + getFileDescriptorCount());
 }

 synchronized public IndexInput openInput(String name)
 throws IOException {
 return openInput(name, BufferedIndexInput.BUFFER_SIZE);
 }

 synchronized public IndexInput openInput(String name, int bufferSize)
 throws IOException {
 openInputs.add(name);
 report("Open Input: " + name);
 return new TrackingFSIndexInput(name, bufferSize);
 }

 synchronized public IndexOutput createOutput(String name)
 throws IOException {
 openOutputs.add(name);
 report("Open Output: " + name);
 File file = new File(getFile(), name);
 if (file.exists() && !file.delete())
 throw new IOException("Cannot overwrite: " + file);
 return new TrackingFSIndexOutput(name);
 }

 protected class TrackingFSIndexInput
 extends SimpleFSIndexInput {
 String name;
 public TrackingFSIndexInput(String name, int bufferSize)
 throws IOException {
 super(new File(getFile(), name), bufferSize, getReadChunkSize());
 this.name = name;
 }

 boolean cloned = false;

Listing 11.6 Drop-in replacement for FSDirectory to track open files

Hold all open
filenames

Return total
open file count

Open
tracking

input

Open
tracking
output

Track eventual close
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

369Managing resource consumption

 public Object clone() {
 TrackingFSIndexInput clone = (TrackingFSIndexInput)super.clone();
 clone.cloned = true;
 return clone;
 }

 public void close() throws IOException {
 super.close();
 if (!cloned) {
 synchronized(TrackingFSDirectory.this) {
 openInputs.remove(name);
 }
 }
 report("Close Input: " + name);
 }
 }

 protected class TrackingFSIndexOutput
 extends SimpleFSIndexOutput {
 String name;
 public TrackingFSIndexOutput(String name) throws IOException {
 super(new File(getFile(), name));
 this.name = name;
 }
 public void close() throws IOException {
 super.close();
 synchronized(TrackingFSDirectory.this) {
 openOutputs.remove(name);
 }
 report("Close Output: " + name);
 }
 }
}

Figure 11.4 shows the open file count while building a Wikipedia index, with com-
pound file format turned off and mergeFactor left at its default (10). You can see that
it follows a peaky pattern, with low usage when flushing segments and rather high
usage while merges are running (because the writer holds open files for all segments
being merged plus the new segment being created). This means mergeFactor, which
sets the number of segments to merge at a time, directly controls the open file count
during indexing. When two merges are running at once, which happens for three
small merges starting around 7 minutes and then again for two small merges starting
around 13 minutes, you’ll see twice the file descriptor consumption.

 Unlike indexing, where peak open file count is a simple multiple of mergeFactor,
searching can require many more open files. For each segment in the index, the
reader must hold open all files for that segment. If you’re not using compound file
format, that’s seven files if no term vectors are indexed, or ten files if there are. For a
quickly changing and growing index, this count can really add up. Figure 11.5 shows
open file count for an IndexReader reading the same index from figure 11.4, while it’s
being built, reopening the reader every 10 seconds. During reopen, if the index has
changed substantially because a merge has completed, the open file count will at first

Track eventual close
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

370 CHAPTER 11 Lucene administration and performance tuning

peak very high, because during this time both the old and new readers are in fact
open. Once the old reader is closed, the usage drops down, in proportion to how
many segments are in the index. When you use the IndexReader.reopen method, this
spike is quite a bit smaller than if you open a new reader, because the file descriptors
for segments that haven’t changed are shared. As the index gets larger, the usage
increases, though it’s not a straight line because sometimes the reader catches the
index soon after a large merge has finished. Armed with your new knowledge about
open file consumption, here are some simple tips to keep them under control while
still enjoying your indexing performance gains:

Increase the IndexWriter buffer (setRAMBufferSizeMB). The less often the
writer flushes a segment, the fewer segments there will be in the index.
Use IndexReader.reopen instead of opening a whole new reader. This is a big
reduction on peak open file count.
Reduce mergeFactor—but don’t reduce it so much that it substantially hurts
indexing throughput.
Consider reducing the maximum number of simultaneous merge threads. Do
this by calling ConcurrentMergeScheduler.setMaxThreadCount.
Optimize the index. A partial optimize, using the IndexWriter.optimize(int
maxNumSegments) method, is a good compromise for minimizing the time it
takes to optimize while still substantially reducing the number of segments in
the index.
Always budget for your peak usage. This is often when you’re opening and
warming a new reader, before you’ve closed the old one.
If you run indexing and searching from a single JVM, you must add up the peak

Figure 11.4
File descriptor
consumption while
building an index of
Wikipedia articles
open file count for both. The peak often occurs when several concurrent merges

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

371Managing resource consumption

are running and you’re reopening your reader. If possible, close your writer
before reopening your reader to prevent this “perfect storm” of open files.
Double-check that all other code also running in the same JVM isn’t using too
many open files—if it is, consider running a separate JVM for it.
Double-check that you’re closing your old IndexReader instances. Do this if you
find you’re still running out of file descriptors far earlier than you’d expect.

Striking the right balance between performance and the dreaded open file limit feels
like quite an art. But now that you understand how Lucene uses open files, how to
test and increase the limit on your OS, and how to measure exactly which files are
held open by Lucene, you have all the tools you need to strike that perfect balance.
It’s now more science than art! We’ll move next to another challenging resource:
memory usage.

11.3.3 Memory

You’ve surely hit OutOfMemoryError in your Lucene application in the past? If you
haven’t, you will, especially when many of the ways to tune Lucene for performance
also increase its memory usage. So you thought: no problem, just increase the JVMs’
heap size and move on. Nothing to see here. You do that, and things seem fine, but lit-
tle do you know you hurt the performance of your application because the computer
has started swapping memory to disk. And perhaps a few weeks later you encounter
the same error again. What’s going on? How can you control this devious error and
still keep your performance gains?

 Managing memory usage is especially exciting, because there are two different lev-
els of memory. First, you must control how the JVM uses memory from the OS. Second,
you must control how Lucene uses memory from the JVM. And the two must be

Figure 11.5 File
descriptor usage by
an IndexReader
reopening every 30
seconds while
Wikipedia articles
are indexed
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

3
72 CHAPTER 11 Lucene administration and performance tuning

properly tuned together. Once you understand these levels, you’ll have no trouble
preventing memory errors and maximizing your performance at the same time.

 You manage the JVM by telling it how large its heap should be. The option -Xms
size sets the starting size of the heap and the option -Xmx size sets the maximum
allowed size of the heap. In a production server environment, you should set both of
these sizes to the same value, so the JVM doesn’t spend time growing and shrinking
the heap. Also, if there will be problems reaching the max (e.g., the computer must
swap excessively), you can see these problems quickly on starting the JVM instead of
hours later (at 2 a.m.) when your application suddenly needs to use all the memory.
The heap size should be large enough to give Lucene the RAM that it needs, but not
so large that you force the computer to swap excessively. Generally you shouldn’t just
give all RAM to the JVM: it’s beneficial to leave excess RAM free to allow the OS to use
as its I/O cache.

 How can you tell if the computer is excessively swapping? Here are some clues:

Listen to your hard drives, if your computer is nearby: they’ll be noticeably
grinding away, unless you’re using solid-state disks.
On Unix, run vmstat 1 to print virtual memory statistics, once per second.
Then look for the columns for pages swapped in (typically si) and pages
swapped out (typically so). On Windows, use Task Manager, and add the col-
umn Page Faults Delta, using the View > Select Columns menu. Check for high
numbers in these columns (say, greater than 20).
Ordinary interactive processes, like a shell or command prompt, or a text edi-
tor, or Windows Explorer, are not responsive to your actions.
Using top on Unix, check the Mem: line. Check if the free number and the buf-
fers number are both near 0. On Windows, use Task Manager and switch to the
Performance tab. Check if the Available and System Cache numbers, under
Physical Memory, are both near 0. The numbers tell you how much RAM the
computer is using for its I/O cache.
CPU usage of your process is unexpectedly low.

Note that modern OSs happily swap out processes that seem idle in order to use the
RAM for the I/O cache. If you feel the OS is being too aggressive, you can try to tune it.
For example, on Linux there is a kernel parameter called swappiness; setting it to 0
forces the OS to never swap out RAM for I/O cache. Some versions of Windows have an
option to adjust for best performance of programs or system cache. But realize that
some amount of swapping is normal. Excessive swapping, especially while you’re
indexing or searching, isn’t good.

 To manage how Lucene, in turn, uses memory from the JVM, you first need to mea-
sure how much memory Lucene needs. There are various ways, but the simplest is to
specify the -verbose:gc and -XX:+PrintGCDetails options when you run Java, and
then look for the size of the total heap after collection. This is useful because it
excludes the memory consumed by garbage objects that aren’t yet collected. If your

Lucene application needs to use up nearly all of the memory allocated for the JVM’s

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

373Managing resource consumption

maximum heap size, it may cause excessive GC, which will slow things down. If you use
even more memory than that, you’ll eventually hit OutOfMemoryError.

 During indexing, one big usage of RAM is the buffer used by IndexWriter, which
you can control with setRAMBufferSizeMB. Don’t set this too low as it will slow down
indexing throughput. While a segment merge is running, some additional RAM is
required, in proportion to the size of the segments being merged.

 Searching is more RAM intensive. Here are some tips to reduce RAM usage during
searching:

Optimize your index to purge deleted documents.
Limit how many fields you directly load into the FieldCache, which is entirely
memory resident and time consuming to load (as described in section 5.1). Try
not to load the String or StringIndex FieldCache entries as these are far
more memory consuming than the native types (int, float, etc.).
Limit how many fields you sort by. The first time a search is sorted by a given
field, its values are loaded into the FieldCache. Similarly, try not to sort on
String fields.
Turn off field norms. Norms encode index-time boosting, which combines field
boost, doc boost, and length boost into a single byte per document. Even docu-
ments without this field consume 1 byte because the norms are stored as a sin-
gle contiguous array. This quickly works out to a lot of RAM if you have many
indexed fields. Often norms aren’t actually a big contributor to relevance scor-
ing. For example, if your field values are all similar in length (e.g., a title field),
and you aren’t using field or document boosting, then norms are not necessary.
Section 2.5.3 describes how to disable norms during indexing.
Use a single “catchall” text field, combing text from multiple sources (such as
title, body, or keywords), instead of one field per source. This reduces memory
requirements within Lucene and could also make searching faster.
Make sure your analyzer is producing reasonable terms. Use Luke to look at the
terms in your index and verify these are legitimate terms that users may search
on. It’s easy to accidentally index binary documents, which can produce a great
many bogus binary terms that would never be used for searching. These terms
cause all sorts of problems once they get into your index, so it’s best to catch
them early by skipping or properly filtering the binary content. If your index
has an unusually large number of legitimate terms—for example, if you’re
searching a large number of product SKUs—try specifying a custom termInfos-
IndexDivisor when opening your IndexReader to reduce how many index
terms are loaded into RAM. But note that this may slow down searching. There
are so many trade-offs!
Double-check that you’re closing and releasing all previous IndexSearcher/
IndexReader instances. Accidentally keeping a reference to past instances can
quickly exhaust RAM and file descriptors and even disk usage.

Use a Java memory profiler to see what’s using so much RAM.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

3
74 CHAPTER 11 Lucene administration and performance tuning

Be sure to test your RAM requirements during searching while you are reopening a
new reader because this will be your peak usage. If an IndexWriter shares the JVM, try
to test while the IndexWriter is indexing and merging, to hit its peak usage.

 Let’s go back and rerun our fastest Wikipedia indexing algorithm, intentionally
using a heap size that’s too small to see what happens if you don’t tune memory usage
appropriately. Last time we ran it with a 512MB heap size, and we achieved 899.7 doc/
sec throughput. This time let’s give it only a 145MB heap size (anything below this will
likely hit OutOfMemoryError). Run the algorithm, adding -Dtask.mem=145M, and you
should see something like this:

Operation round runCnt recsPerRun rec/s elapsedSec avgUsedMem avgTotalMem
BuildIndex 0 1 200002 323.4 618.41 150,899,008 151,977,984
BuildIndex - 1 - 1 - 200002 344.0 - 581.36 150,898,992 151,977,984
BuildIndex 2 1 200002 334.4 598.05 150,898,976 151,977,984

Whoa, that’s 334.4 documents per second, which is 2.7 times slower than before! That
slowdown is due to excessive GC that the JVM must do to keep memory usage under
145MB. You can see the importance of giving Lucene enough RAM.

 Like any software, Lucene requires resources to get its job done, but you’re now
empowered to understand and control that usage. We’ll now switch to a crucial topic
for any high-availability application: backing up your index.

11.4 Hot backups of the index
So, it’s 2 a.m., and you’re having a pleasant dream about all the users who love your
Lucene search application when, suddenly, you wake up to the phone ringing. It’s an
emergency call saying your search index is corrupted and the search application won’t
start. No problem, you answer: restore from the last backup! You do back up your
search index, right?

 Things will inevitably go wrong: a power supply fails, a hard drive crashes, your
RAM becomes random. These events can suddenly render your index completely
unusable, almost certainly at the worst possible time. Your final line of protection
against such failures is a periodic backup of the index along with accessible steps to
restore it. In this section we’ll see a simple way to create and restore from backups.

11.4.1 Creating the backup

You can’t simply copy the files in an index while an IndexWriter is still open, because
the resulting copy can easily be corrupted, as the index can change during the copy.
So, the most straightforward way to back up an index is to close your writer and make
a copy of all files in the index directory. This approach will work, but it has some seri-
ous problems. During the copy, which could take a long time for a large index, you
can’t make any changes to the index. Many applications can’t accept such a long
downtime in their indexing. Another problem is that when a reader is open on the
index, you’ll copy more files than needed, if the reader is holding some files open that
are no longer current. Finally, the I/O load of the copy can slow down searching. You

might be tempted to throttle back the copy rate to compensate for this, but that will

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

375Hot backups of the index

increase your indexing downtime. No wonder so many people just skip backups
entirely, cross their fingers, and hope for the best!

 As of Lucene 2.3, there’s now a simple answer: you can easily make a “hot backup”
of the index, so that you create a consistent backup image, with just the files referenced
by the most recent commit point, without closing your writer. No matter how long the
copying takes, you can still make updates to the index. The approach is to use the
SnapshotDeletionPolicy, which keeps a commit point alive for as long it takes to
complete the backup. Your backup program can take as long as it needs to copy the
files. You could throttle its I/O or set it to low process or I/O priority to make sure it
doesn’t interfere with ongoing searching or indexing. You can spawn a subprocess to
run rsync, tar, robocopy, or your favorite backup utility, giving it the list of files to
copy. This can also be used to mirror a snapshot of the index to other computers.

 The backup must be initiated by the JVM that has your writer, and you must create
your writer using the SnapshotDeletionPolicy, like this:

IndexDeletionPolicy policy = new KeepOnlyLastCommitDeletionPolicy();
SnapshotDeletionPolicy snapshotter = new SnapshotDeletionPolicy(policy);
IndexWriter writer = new IndexWriter(dir, analyzer, snapshotter,
 IndexWriter.MaxFieldLength.UNLIMITED);

Note that you can pass any existing deletion policy into SnapshotDeletionPolicy (it
doesn’t have to be KeepOnlyLastCommitDeletionPolicy).
When you want to do a backup, just do this:

try {
 IndexCommit commit = snapshotter.snapshot();
 Collection<String> fileNames = commit.getFileNames();
 /*<iterate over & copy files from fileNames>*/
} finally {
 snapshotter.release();
}

Inside the try block, all files referenced by the commit point won’t be deleted by the
writer, even if the writer is still making changes, optimizing, and so forth as long as the
writer isn’t closed. It’s fine if this copy takes a long time because it’s still copying a sin-
gle point-in-time snapshot of the index. While this snapshot is kept alive, the files that
belong to it will hold space on disk. So while a backup is running, your index will use
more disk space than it normally would (assuming the writer is continuing to commit
changes to the index). Once you’re done, call release to allow the writer to delete
these files the next time it flushes or is closed.

 Note that Lucene’s index files are write-once. This means you can do an incremen-
tal backup by simply comparing filenames. You don’t have to look at the contents of
each file, nor its last modified timestamp, because once a file is written and refer-
enced from a snapshot, it won’t be changed. The only exception is the file seg-
ments.gen, which is overwritten on every commit, and so you should always copy this
file. You shouldn’t copy the write lock file (write.lock). If you’re overwriting a previous
backup, you should remove any files in that backup that aren’t listed in the current

snapshot, because they are no longer referenced by the current index.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

3
76 CHAPTER 11 Lucene administration and performance tuning

 SnapshotDeletionPolicy has a couple of small limitations:

It only keeps one snapshot alive at a time. You could fix this by making a similar
deletion policy that keeps track of more than one snapshot at a time.
The current snapshot isn’t persisted to disk. This means if you close your writer
and open a new one, the snapshot will be deleted. So you can’t close your writer
until the backup has completed. This is also easy to fix: you could store and
load the current snapshot on disk, then protect it on opening a new writer. This
would allow the backup to keep running even if the original writer is closed and
new one opened.

Believe it or not, that’s all there is to it! Now let’s move on to restoring your index.

11.4.2 Restoring the index

In addition to doing periodic backups, you should have a list simple of steps on hand
to quickly restore the index from backup and restart your application. You should
periodically test both backup and restore. Two o’clock in the morning is the worst
time to find out you had a tiny bug in your backup process!

 Here are the steps to follow when restoring an index:

1 Close any existing readers and writers on the index directory, so the file copies
will succeed. In Windows, if there are still processes using those files, you won’t
be able to overwrite them.

2 Remove all existing files from the index directory. If you see an “Access is
denied” error, double-check step 1.

3 Copy all files from your backup into the index directory. Be certain this copy
doesn’t encounter any errors, like a disk full, because that’s a sure way to cor-
rupt your index.

4 Speaking of corruption, let’s talk next about common errors you may run into
with Lucene.

11.5 Common errors
Lucene is wonderfully resilient to most common errors. If you fill up your disk, or see
an OutOfMemoryException, you’ll lose only the documents buffered in memory at the
time. Documents already committed to the index will be intact, and the index will be
consistent. The same is true if the JVM crashes, or hits an unhandled exception, or is
explicitly killed, or if the OS crashes or the electricity to the computer is suddenly lost.

 If you see a LockObtainFailedException, that’s likely because there’s a leftover
write.lock file in your index directory that wasn’t properly released before your appli-
cation or JVM shut down or crashed. Consider switching to NativeFSLockFactory,
which uses the OS provided locking (through the java.nio.* APIs) and will properly
release the lock whenever the JVM exits normally or abnormally. You can safely
remove the write.lock file, or use the IndexReader.unlock static method to do so. But
first be certain there’s no writer writing to that directory!
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

377Common errors

 If you see AlreadyClosedException, double-check your code: this means you’re
closing the writer or reader but then continuing to use it.

11.5.1 Index corruption

So maybe you’ve seen an odd, unexpected exception in your logs, or maybe the com-
puter is acting erratically, leading you to suspect a bad hard drive or RAM. Nervously,
you bring your Lucene application back up, and all seems to be fine, so you just shrug
and move on to the next crisis. But you can’t escape the sinking sensation and burn-
ing question deep in your mind: is it possible my index is now corrupted? A month or
two later, more strange exceptions start appearing. Corruption is insidious: it may
silently enter your index but take quite a long time to be discovered, perhaps when
the corrupted segment is next merged, or when a certain search term happens to hit
on a corrupted part of the index. How can you manage this risk?

 Unfortunately, there are certain known situations that can lead to index corrup-
tion. If this happens to you, try to get to the root cause of the corruption. Look
through your logs and explain all exceptions. Otherwise, it may simply reoccur. Here
are some typical causes of index corruption:

Hardware problems—Bad power supply, slowly failing hard drive, bad RAM, and so
forth.
Accidentally allowing two writers to write to the same index at the same time—Lucene’s
locking normally prevents this. But if you use a different LockFactory inappro-
priately, or if you incorrectly removed a write.lock that in fact indicated that a
writer was still open, that could lead to two writers open on the same index.
Errors when copying—If you have a step in your indexing process where an index
is copied from one place to another, an error in that copying can easily corrupt
the target index.
A previously undiscovered bug in Lucene—Take your case to the lists, or open an
issue with as much detail as possible about what led to the corruption. The
Lucene developers will jump on it!

Although you can’t eliminate these risks, you can be proactive in detecting index cor-
ruption. If you see a CorruptIndexException, you know your index is corrupted. But
all sorts of other unexplained exceptions are also possible. To proactively test your
index for corruption, here are two things to try:

Run Lucene with assertions enabled (java -ea:org.apache.lucene, when
launching Java at the command line). This causes Lucene to perform addi-
tional tests at many points during indexing and searching, which could catch
corruption sooner than you would otherwise.
Run the org.apache.lucene.index.CheckIndex tool, providing the path to
your index directory as the only command-line argument. This tool runs a thor-
ough check of every segment in the index, and reports detailed statistics, and
any corruption, for each. It produces output like this:
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

378 CHAPTER 11 Lucene administration and performance tuning

Opening index @ /lucene/work/index

Segments file=segments_2 numSegments=1

➥ version=FORMAT_SHARED_DOC_STORE [Lucene 2.3]
 1 of 1: name=_8 docCount=36845
 compound=false
 numFiles=11
 size (MB)=103.619
 docStoreOffset=0
 docStoreSegment=_0
 docStoreIsCompoundFile=false
 no deletions
 test: open reader.........OK
 test: fields, norms.......OK [4 fields]
 test: terms, freq, prox...OK [612173 terms;
 20052335 terms/docs pairs;
 42702159 tokens]
 test: stored fields.......OK [147380 total field count;
 avg 4 fields per doc]
 test: term vectors........OK [110509 total vector count;
 avg 2.999 term/freq vector fields per doc]
No problems were detected with this index.

If you find your index is corrupted, first try to restore from backups. But what if all
your backups are corrupted? This can easily happen because corruption may take a
long time to detect. What can you do, besides rebuilding your full index from scratch?
Fortunately, there’s one final resort: use the CheckIndex tool to repair it.

11.5.2 Repairing an index

When all else fails, your final resort is the CheckIndex tool. In addition to printing
details of your index, this tool can repair your index if you add the -fix command-
line option:

java org.apache.lucene.index.CheckIndex <pathToIndex> -fix

That will forcefully remove those segments that hit problems. Note that this com-
pletely removes all documents that were contained in the corrupted segments, so use
this option with caution and make a backup copy of your index first. You should use
this tool just to get your search operational again on an emergency basis. Once you
are back up, you should rebuild your index to recover the lost documents.

11.6 Summary
We’ve covered many important hands-on topics in this chapter! Think of this chapter
like your faithful Swiss army knife: you now have the necessary tools under your belt to
deal with all the important, real-world aspects of Lucene administration.

 Lucene has great out-of-the-box performance, and now you know how to further
tune that performance for specific metrics important to your application, using the
powerful and extensible contrib/benchmark framework to set up repeatable tests.
Unfortunately, tuning for one metric often comes at the expense of others, so you
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

379Summary

should decide up front which metric is most important to you. Sometimes this deci-
sion is not easy!

 You’ve seen how crucial it is to use threads during indexing and searching to take
advantage of the concurrency in modern computers, and now you have a couple of
drop-in classes that make this painless during indexing and searching. Taking a hot
backup of an index is a surprisingly simple operation.

 Lucene’s consumption of disk, file descriptors, and memory is no longer a mystery
and is well within your control. Index corruption is not something to fear; you know
what might cause it and you know how to detect and repair a corrupted index. The
common errors that happen are easy to understand and fix.

 This chapter wraps up our direct coverage of Lucene. You’ve learned a lot and
you’re now ready to go forth and build! The next three chapters describe several
interesting real-world applications using Lucene.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Part 3

Case studies

A picture is worth a thousand words. Examples of Lucene truly “in action”
are invaluable. Readers of the first edition of this book loved the case studies
chapter, so we’ve solicited a new set of case studies from the Lucene community
for this new edition of the book. Lucene is the driving force behind many appli-
cations. There are countless proprietary or top-secret uses of Lucene that we
may never know about, but there are also numerous applications that we can see
in action online. Lucene’s wiki has a section titled PoweredBy, at http://
wiki.apache.org/lucene-java/PoweredBy, which lists many sites and products
that use Lucene.

 Lucene’s API is straightforward, but the real magic happens when it’s used
cleverly. The case studies that follow are prime examples of intelligent uses of
Lucene. Read between the lines of the implementation details of each and bor-
row the gems within. The study from Krugle.org, in chapter 12, shows several
tricks they used for smart source code indexing and searching but that could be
applied to situations other than source code. Chapter 13 describes SIREn, a set
of Lucene extensions that enable efficient search on the semantic Web, also
known as Web 3.0. SIREn makes heavy use of Lucene’s extension points and is a
great demonstration of what can be done using payloads (see section 6.5).
Finally, chapter 14 describes two useful extensions to Lucene, the Bobo Browse
faceted search system and the Zoie real-time search system.

 If you’re new to Lucene, read these case studies at a high level and gloss over
any technical details or code listings; get a general feel for how Lucene is being
used in a diverse set of applications. If you’re an experienced Lucene developer
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://wiki.apache.org/lucene-java/PoweredBy
http://wiki.apache.org/lucene-java/PoweredBy
http://www.it-ebooks.info/

or you’ve digested the previous chapters in this book, you’ll enjoy the technical
details; perhaps some are worth borrowing directly for your applications.

 We’re enormously indebted to the contributors of these case studies who took time
out of their busy schedules to write what you see in the following chapters, but also to
Lucene developers and numerous contributors who made it possible to build such a
varied spectrum of search-related applications on top of the powerful yet flexible
Lucene foundation.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Case study 1: Krugle
Krugle: Searching source code
Contributed by KEN KRUGLER and GRANT GLOUSER
Krugle.org provides an amazing service: it’s a source-code search engine that con-
tinuously catalogs 4,000+ open source projects (including Lucene and its sister
projects under the Apache Lucene umbrella), enabling you to search the source
code itself as well as developers’ comments in the source code control system. A
search for lucene turns up matches not only from Lucene’s source code, but from
the many open source projects that use Lucene.

 Krugle is built with Lucene, but there are some fun challenges that emerge
when your documents are primarily source code. For example, a search for dele-
tion policy must match tokens like DeletionPolicy in the source code. Punctua-
tion like = and (, which in any other domain would be quickly discarded during
analysis, must instead be carefully preserved so that a search like for(int x=0

produces the expected results. Unlike a natural language where the frequent
terms are classified as stop words that are then discarded, Krugle must keep all
tokens from the source code.

 These unique requirements presented a serious challenge, but as we saw in
chapter 4, it’s straightforward to create your own analysis chain with Lucene, and
this is exactly what the Krugle team has done. A nice side effect of this process is
Krugle’s ability to identify which programming language is in use by each source
file; this allows you to restrict searching to a specific language. Krugle also carefully
crafts queries to match the tokenization done during analysis, such as controlling
the position of each term within a PhraseQuery.

 There’s also much to learn about how Krugle handles the administrative aspects
of Lucene: it must contend with tremendous scale, in both index size and query
rate, yet still provide both searching and indexing on a single computer. You can do
383

this by running dedicated, separate JREs for searching and indexing, carefully

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

384 CHAPTER 12 Case study 1: Krugle

assigning separate hard drives for each, and managing the “snapshots” that are
flipped between two environments. Krugle’s approach for reducing memory usage
during searching is also interesting.

 The clever approach the Krugle team uses for self-testing—by randomly picking
documents in the index to pass in as searches and asserting that the document is
returned in the search results—is a technique most search applications could use to
keep the end user’s trust.

 Without further ado, let’s go through the intricacies of how Krugle.org uses
Lucene to create a high-scale source code search engine.

12.1 Introducing Krugle
Krugle.org is a search engine for finding and exploring open source projects. The
current version has information on the top 4,000+ open source projects, including
project descriptions, licenses, SCM activity, and most importantly the source
code—more than 400 million lines and growing. Figure 12.1 shows Krugle.org’s
search results for the query lucene indexsearcher.

Figure 12.1 The Krugle.org search result page showing matches in multiple projects and multiple source

code files

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

385Appliance architecture

 Krugle.org is a free public service, running on a single Krugle enterprise appli-
ance. The appliance is sold to large companies for use inside the firewall. Enterprise
development groups use a Krugle appliance to create a single, comprehensive catalog
of source code, project metadata, and associated development organization informa-
tion. This helps them increase code reuse, reduce maintenance costs, improve impact
analysis, and monitor development activity across large and often distributed teams.

 The most important functionality provided by a Krugle appliance is search, which
is based on Lucene. For the majority of users, this means searching through their
source code. In this case study we’ll focus on how we used Lucene to solve some inter-
esting and challenging requirements for source code search. Some of these problems
often don’t come into play in search applications that involve indexing and searching
of human language you find in articles, books, emails, and so forth. But the “tricks”
we’ve applied to source code analysis aren’t limited to source code search.

 We initially used Nutch to crawl technical web pages, collecting and extracting
information about open source projects. We wound up running ten slave servers with
one master server in a standard Hadoop configuration, and crawled roughly 50 mil-
lion pages. The first version of the Krugle.org public site was implemented on top of
Nutch, with four remote code searchers, four remote web page searchers, a back-end
file server, and one master box that aggregated search results. This scaled easily to
150,000 projects and 2.6 billion lines of source code but wasn’t a suitable architecture
for a standalone enterprise product that could run reliably without daily care and
feeding. In addition, we didn’t have the commit comment data from the SCM systems
that hosted the project source code, which was a highly valuable source of informa-
tion for both searches and analytics.

 So we created a workflow system (internally called “the Hub”) that handled the
crawling and processing of data, and converted the original multiserver search system
into a single-server solution (“the API”).

12.2 Appliance architecture
For an enterprise search appliance, a challenge is doing two things well at the same
time: updating a live index and handling search requests. Both tasks can require
extensive CPU, disk, and memory resources, so it’s easy to wind up with resource con-
tention issues that kill your performance.

 We made three decisions that helped us avoid these issues. First, we pushed a signif-
icant amount of work “off the box” by putting a lot of the heavy lifting work into the
hands of small clients called source code management (SCM) interfaces (SCMIs). SCMIs run
on external customer servers instead of on our appliance, and act as collectors of infor-
mation about projects, SCM comments, source code, and other development-oriented
information. The information is then partially digested before being sent back to the
appliance via a typical HTTP Representational State Transfer (REST) protocol.

 Second, we use separate JVMs for the data processing/indexing tasks and the
searching/browsing tasks. This provides us with better controlled memory usage, at

the cost of some wasted memory. The Hub data processing JVM receives data from the

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

386 CHAPTER 12 Case study 1: Krugle

SCMI clients; manages the workflow for
parsing, indexing, and analyzing the
results; and builds a new “snapshot.” This
snapshot is a combination of multiple
Lucene indexes, along with all the con-
tent and other analysis results. When a
new snapshot is ready, a “flip” request is
sent to the API JVM that handles the
search side of things, and this new snap-
shot is gracefully swapped in.

 On a typical appliance, we have two
32-bit JVMs running, each with 1.5 GB of
memory. One other advantage to this
approach is that we can shut down and
restart each JVM separately, which makes
it easier to do live upgrades and debug
problems.

 Finally, we tune the disks being used to
avoid seek contention. There are two
drives devoted to snapshots: while one is
serving up the current snapshot, the
other is being used to build the new snapshot. The Hub also uses two other drives for
raw data and processed data, again to allow multiple tasks to run in a multithreaded
manner without running into disk thrashing. The end result is an architecture
depicted in figure 12.2.

12.3 Search performance
Due to the specific nature of the domain we’re dealing
with (programming languages), we uncovered some
interesting areas to optimize. The first issue was the com-
mon terms in source code. On the first version of our
public site, a search on for (i = 0; i < 10; i++) would
bring it to a screeching halt, due to the high frequency of
every term in the phrase. But we couldn’t just strip out
these common terms (or stop words)—that would pre-
vent phrase queries.

 So we borrowed a page from Nutch’s playbook and
combined common terms with subsequent terms while
indexing and querying using a similar approach as the
shingle filter (covered in section 8.2.3). The for loop example results in the com-
bined terms shown in table 12.1.

Table 12.1 Combined terms,
which improves performance
for common single terms

Term # Combined Term

1 for (

2 i =

3 0;

4 …

5 ++)

The Hub

The API

Snapshot
1

Snapshot
2

External Data
Sources via

SCMIs

Parsed
Data,

Indexes

Raw
Data
Files

Figure 12.2 Krugle runs two JVMs in a single
appliance and indexes content previously
collected and digested by external agents.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

387Parsing source code

The individual terms are still indexed directly, in case you had to search on just i for
some bizarre reason. Indexing combined terms results in many more unique terms in
the index, but it means that the term frequencies drop—there are a lot fewer docu-
ments with 10; than just 10. The resulting list of common terms is shown in table 12.2.

As an example, we have an index for our public site with just under 5 million source
files (documents). This results in an index with the attributes shown in table 12.3, for
the case where it doesn’t use combined terms versus using 200 combined terms.

We had to switch to a 64-bit JVM and allocate 4 GB of RAM before we achieved reason-
able performance with our index.

12.4 Parsing source code
During early beta testing, we learned a lot about how developers search in code, with
two features in particular proving to be important. First, we needed to support

Table 12.2 Most common single and combined terms in the source code index

Single Term Combined Terms Single Term Combined Terms

.) ; < . h

) ; } 1 ("

(({ / = =

; () : 0 ;

{)) - ; return

} } } * 0)

= if (if = "

, # include # { if

" ; if return # endif

> ") … …

0 = 0 add > <

Table 12.3 Index file growth after combining high-frequency individual terms

Result No combined terms With combined terms

Unique terms 102 million 242 million

Total terms 3.7 billion 13.5 billion

Terms dictionary file size (*.tis) 1.1 GB 2.5 GB

Prox file size (*.prx) 10 GB 18 GB

Freq file size (*.frq) 3.5 GB 7.3 GB

Stored fields file size (*.fdt) 1.0 GB 1.0 GB
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

388 CHAPTER 12 Case study 1: Krugle

semistructured searches—for example, where the user wants to limit the search to
only find hits in class definition names.

 To support this, we had to be able to parse the source code. But “parsing the
source code” is a rather vague description. There are lots of compilers that obviously
parse source code, but full compilation means that you need to know about include
paths (or classpaths), compiler-specific switches, the settings for the macro preproces-
sor in C/C++, and so forth. The end result is that you effectively need to be able to
build the project in order to parse it, and that in turn means you end up with a system
that requires constant care and feeding to keep it running. Often that doesn’t hap-
pen, so the end result is shelfware.

 Early on we made a key decision that we had to be able to process files individually,
without knowledge of such things as build settings and compiler versions. We also had
to handle a wide range of languages. This in turn meant that the type of parsing we
could do was constrained by what features we could extract from a fuzzy parse. We
couldn’t build a symbol table, for example, because that would require processing all
includes and imports.

 Depending on the language, the level of single-file parsing varies widely. Python,
Java, and C# are examples of languages where you can generate a good parse tree,
whereas C and C++ are at the other end of the spectrum. Dynamic languages like
Ruby and Perl create their own unique problems, because the meaning of a term (is
it a variable or a function?) sometimes isn’t determined until runtime. So what we
wind up with is a best guess, where we’re right most of the time but we’ll occasionally
get it wrong.

 We use ANTLR (Another Tool for Language Recognition) to handle most of our
parsing needs. Terence Parr, the author of ANTLR, added memoization support to
version 3.0, which allowed us to use fairly flexible rules without paying a huge perfor-
mance penalty for frequent backtracking.

12.5 Substring searching
The second important thing we learned from our beta testing was that we had to sup-
port some form of substring searching. For example, when a user searches on ldap,
she expects to find documents containing terms like getLDAPConfig, ldapTimeout, and
find_details_with_ldap.

 We could treat every search term as if it had implicit wildcards, like *ldap*, but
that’s both noisy and slow. The noise (false positive hits) comes from treating all con-
tiguous runs of characters as potential matches, so a search for heap finds a term like
theAPI.

 The performance hit comes from having to

Enumerate all terms in the index to find any that contain <term> as a substring
Use the resulting set of matching terms in a (potentially very large) OR query
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

389Substring searching

BooleanQuery allows a maximum of 1,024 clauses by default—searching on the
Lucene mailing list shows many people have encountered this limit while trying to
support wildcard queries.

 There are a number of approaches to solving the wildcard search problem, some
of which we covered in this book. For example, you can take every term and index it
using all possible suffix substrings of the text. For example, myLDAPhook gets indexed
as myldaphook, yldaphook, ldaphook, and so on. This then lets you turn a search for
ldap into ldap*, which cuts down on the term enumeration time by being able to do
a binary search for terms starting with ldap, rather than enumerating all terms. But
you still can end up with a very large number of clauses in the resulting OR query. And
the index gets significantly larger, due to term expansion.

 Another approach is to convert each term into ngrams—for example, using
3grams the term myLDAPhook would become myl, yld, lda, dap, and so on. Then a
search for ldap becomes a search for lda dap in 3grams, which would match. This
works as long as N (3, in this example) is greater than or equal to the minimum length
of any substring you’d want to find. It also significantly increases the size of the index,
and for long terms results in a large number of corresponding ngrams.

 Another approach is to preprocess the index, creating a secondary index that
maps each distinct substring to the set of all full terms that contain the substring.
When a query runs, the first step is to use this secondary index to quickly find all pos-
sible terms that contain the query term as a substring, and then use that list to gener-
ate the set of subclauses for an OR query. This gives you acceptable query-time speed,
at the cost of additional time during index generation. And you’re still faced with
potentially exceeding the maximum subclause limit.

 We chose a fourth approach, based on the ways identifiers naturally decompose
into substrings. We observed that arbitrary substring searches weren’t as important as
searches for whole subwords. For example, users expect a search for ldap to find docu-
ments containing getLDAPConfig, but it would be unusual for the user to search for
apcon with the same expectation.

 To implement this approach, we created a token filter that recognizes compound
identifiers and splits them up into subwords, a process vaguely similar to stemming
(chapter 4 shows how to create custom tokenizers and token filters for analysis). The
filter looks for identifiers that follow common conventions like camelCase, or contain-
ing numbers or underscores. Some programming languages allow other characters in
identifiers, sometimes any character; we stuck with letters, numbers, and underscores
as the most common baseline. Other characters are treated as punctuation, so identi-
fiers containing them are still split at those points. The difference is that the next step,
subrange enumeration, won’t cross the punctuation boundary.

 When we encounter a suitable compound identifier, we examine it to locate the off-
sets of subword boundaries. For example, getLDAPConfig appears to be composed of
the words get, LDAP, and Config, so the boundary offsets are at 0, 3, 7, and 13. Then we
produce a term for each pair of offsets (i,j) such that i < j. All terms with a common
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

390 CHAPTER 12 Case study 1: Krugle

start offset share a common Lucene index position value; each new start offset gets a
position increment of 1.

 Table 12.4 shows a table of terms produced for the example getLDAPConfig.
 An identifier with n subwords will produce n*(n+1)/2 terms by this method.

Because getLDAPConfig has three subwords, we wind up with six terms. By comparison,
the number of ngram grows only linearly with the length of the identifier. For exam-
ple, getLDAPConfig would produce eleven 3grams because it decomposes into get, etl,
tld, and so forth. The same level of expansion happens when you generate all suffix
substring terms: you end up with getladpconfig, etldapconfig, tldapconfig, and so on until
the length of the suffix string reaches your minimum length.

 Usually, identifiers consist of at most three or four subwords, so our subrange enu-
meration produces fewer terms. Pathological cases do exist, resulting in far too many
subwords for a given term, so it’s crucial to set some bounds on the enumeration pro-
cess. Three bounds we set are as follows:

The maximum length in characters of the initial identifier.
The maximum number of subwords.
The maximum span of subwords (k) used to create terms. This limits the num-
ber of terms to O(kn).

Because we set the term positions in a nonstandard way while indexing (every com-
pound identifier spans multiple term positions), we also set the term positions in que-
ries. In the simple case, a single identifier, even a compound identifier, becomes a
TermQuery. But what about a query that includes punctuation, something like
getLDAPConfig()? This becomes a PhraseQuery, where the three terms are getldapcon-
fig, (, and). In the index, getldapconfig spans three term positions, but with a naïve
PhraseQuery, Lucene will only match documents in which getldapconfig and a (are
exactly one term position apart. Fortunately, the PhraseQuery API allows you to spec-
ify the position of each term using the add(term, position) method, and by count-
ing the span of each term as we add them to the query, we can create a PhraseQuery
that exactly matches the position pattern of the desired documents in the index.
PhraseQuery is covered in section 3.5.7.

Start End Position Term

0 3 1 get

0 7 1 getldap

0 13 1 getldapconfig

3 7 2 ldap

3 13 2 ldapconfig

7 13 3 config

Table 12.4 A case-aware token filter
breaks a single token into multiple
tokens when the case changes, making
it possible to search on subtokens
quickly without resorting to more
expensive wildcards queries.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

391Future improvements

 One final snag: occasionally, users are too impatient or lazy to capitalize their que-
ries properly. When the user types getldapconfig() in the search field, we have no
basis for calculating how many term positions were supposed to have been spanned by
getldapconfig. In lieu of a smarter solution, we deal with this by adding setting the
PhraseQuery’s slop (described in section 3.4.6) based on the number and length of
such terms.

12.6 Query vs. search
One of the challenges we ran into was the fundamentally different perception of
results. In pure search, the user doesn’t know the full set of results and is searching for
the most relevant matches. For example, when a user does a search for lucene using
Google, he’s looking for useful pages, but he has little to no idea about the exact set of
matching pages.

 In what we’re calling a query-style search request, the user has more knowledge
about the result set and expects to see all hits. He might not look at each hit, but if a hit
is missing, the user will typically view this as a bug. For example, when one of our users
searches for all callers of a particular function call in their company’s source code, he
typically doesn’t know about every single source file where that API is used (otherwise
users wouldn’t need us), but users certainly do know of many files that should be part
of the result set. And if that “well-known hit” is missing, we’ve got big problems.

 So where did we run into this situation? When files are very large, the default set-
ting for Nutch was to only process the first 10,000 terms using Lucene’s field trunca-
tion (covered in section 2.7). This in general is okay for web pages but completely fails
the query test when dealing with source code. Hell hath no fury like a developer who
doesn’t find a large file he knows should be a hit because the search term only exists
near the end.

 Another example is where we misclassified a file—for example, if file xxx.h was a
C++ header instead of a C header. When the user filters search results by program-
ming language, this can exclude files that she knows of and is expecting to see in the
result set.

 There wasn’t a silver bullet for this problem, but we did manage to catch a lot of
problems once we figured out ways to feed our data back on itself. For example, we’d
take a large, random selection of source files from the http://www.krugle.org site and
generate a list of all possible multiline searches in a variety of sizes (such as 1 to 10
lines). Each search is a small section of source code excised from a random file. We’d
then verify that for every one of these code snippets, we got a hit in the original source
document.

12.7 Future improvements
As with any project of significant size and complexity, there’s always a long to-do list of
future fixes, improvements, and optimizations. A few examples that help illustrate
common issues with Lucene follow.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.krugle.org
http://www.it-ebooks.info/

392 CHAPTER 12 Case study 1: Krugle

12.7.1 FieldCache memory usage

You know that Lucene’s field cache is memory consuming (see section 5.1), and
indeed we noticed on our public site server that more than 1.1 GB was being used by
two Lucene field cache data structures. One of these contained the dates for SCM
comments, and the other had the MD5 hashes of source files. We need dates to sort
commit comments chronologically, and we need MD5s to remove duplicate source
files when returning hits. For a thorough explanation about field cache and sorting,
see chapter 5.

 But a gigabyte is a lot of memory, and this grows to 1.6 GB during a snapshot flip,
so we’ve looked into how to reduce the space required. The problems caused by a
FieldCache with many unique values is one that’s been discussed on the Lucene list in
the past.

 For dates, the easy answer is to use longs instead of ISO date strings. The only trick
is to ensure that they’re stored as strings with leading zeros so that they still sort in date
order. Another option is the use of NumericField, which is described in section 2.6.1.

 For MD5s, we did some tests and figured out that using the middle 60 bits of the
128-bit value still provided sufficient uniqueness for 10 million documents. In addi-
tion, we could encode 12 bits of data in each character of our string (instead of just 8
bits), so we only need five characters to store the 60 bits, rather than 32 characters for
a hex-encoded 128-bit MD5 hash value.

12.7.2 Combining indexes

The major time hit during snapshot creation is merging many Lucene indexes. We
cache an up-to-date index for each project, and combine all of these into a single index
when generating a snapshot. With over 4,000 projects, this phase of snapshot genera-
tion takes almost five hours, or 80 percent of the total snapshot generation time.

 Because we have a multicore box, the easiest first cut improvement is to fire off
multiple merge tasks (one for each core). The result is many indexes, which we can
easily use in the snapshot via a ParallelMultiSearcher (see section 5.8.2). A more
sophisticated approach involves segmenting the projects into groups based on update
frequency so that a typical snapshot generation doesn’t require merging the project
indexes for the projects that are infrequently updated.

12.8 Summary
In 2005 we were faced with a decision about which IR engine to use, and even which
programming language made sense for developing Krugle. Luckily we got accurate
and valuable input from a number of experienced developers, which answered our
two main concerns:

Java was “fast enough” for industrial-strength search.
Lucene had both the power and flexibility we needed.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

393Summary

The flexibility of Lucene allowed us to handle atypical situations, such as queries that
are actually code snippets or that include punctuation characters that other search
engines are typically free to discard. We were also able to handle searches where query
terms are substrings of input tokens by using a token filter that’s aware of typical
source code naming conventions and thus smart about indexing “compounds” often
found in the source code. Without Lucene and the many other open source compo-
nents we leveraged, there would have been no way to go from zero to beta in six
months. So many thanks to our friends for encouraging us to use Lucene, and to the
Lucene community for providing such an excellent search toolkit.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Case study 2: SIREn
Searching semistructured documents with SIREn
Contributed by RENAUD DELBRU, NICKOLAI TOUPIKOV, MICHELE CATASTA,
ROBERT FULLER, and GIOVANNI TUMMARELLO
In this case study, the crew from the Digital Enterprise Research Institute (DERI;
http://www.deri.ie) describes how they created the Semantic Information Retrieval
Engine (SIREn) using Lucene. SIREn (which is open source and available at http://
siren.sindice.com) searches the semantic web, also known as Web 3.0 or the “Web
of Data,” which is a quickly growing collection of semistructured documents avail-
able from web pages adopting the Resource Description Framework (RDF)1 stan-
dard. With RDF, pages publicly available on the web encode structural relationships
between arbitrary entities and objects via predicates. Although the standard has
been defined for some time, it’s only recently that websites have begun adopting it
in earnest.

 A publicly accessible demonstration of SIREn is running at http://sindice.com,
covering more than 50 million crawled structured documents, resulting in over 1
billion entity, predicate, and object triples. SIREn is a powerful alternative to the
more common RDF triplestores, typically backed by relational databases and thus
often limited when it comes to full-text search.

 One of the challenges when indexing RDF is the fact that there’s no fixed
schema: anyone can create new terms in their descriptions. This raises important
challenges. As you’ll see, SIREn first attempted to use a simplistic mapping of RDF
subject, predicate, object triples to documents, where each predicate was a new
field. But this led to performance challenges, because the number of fields is
unbounded. To solve this, payloads (covered in section 6.5) were used to efficiently
394

1 See http://en.wikipedia.org/wiki/Resource_Description_Framework.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.deri.ie
http://siren.sindice.com
http://en.wikipedia.org/wiki/Resource_Description_Framework
http://sindice.com
http://siren.sindice.com
http://www.it-ebooks.info/

395Introducing SIREn

encode the tuple information, and the resulting architecture provides a highly scal-
able schema free RDF search.

 SIREn perhaps sets the record for making use of Lucene’s customization APIs: it
has created a number of Lucene extensions, including tokenizers (TupleTokenizer),
token filters (URINormalisationFilter, SirenPayloadFilter), analyzers (Tuple-
Analzyer, SPARQLQueryAnalyzer), queries (CellQuery, TupleQuery), and its own
query parser to handle SPARQL RDF queries (a standard query language for RDF con-
tent, defined by the W3C (World Wide Web Consortium). SIREn’s analysis chain is a
good example of using a token’s type to record custom information per token, which
is then consumed downstream by another token filter to create the right payloads.
SIREn even includes integration with Solr. Such a componentized approach gives
SIREn its open architecture, allowing developers to choose components to create their
semantic web search application. Advanced stuff ahead!

13.1 Introducing SIREn
Although the specifications for RDF and Microformats2 have been out for quite some
time now, it’s only in the last few years that many websites have begun to make use of
them, thus effectively starting the Web of Data. Sites such as LinkedIn, Eventful, Digg,
Last.fm, and others are using these specifications to share pieces of information that
can be automatically reused by other websites or by smart clients. As an example, you
can visit a Last.fm concert page3 and automatically import the event in its calendar if
an appropriate Microformats browser plug-in is used.

 At DERI, we’re developing the Sindice.com search engine. The goal of this project
is to provide a search engine for the Web of Data. The challenge is that such an
engine is expected not only to answer textual queries but also structured que-
ries—that is, queries that use the structure of the data. To make things a bit more
complex, the RDF specifications allow people to freely create new terms to use in their
descriptions, making it effectively a schema-free indexing and structured answering
problem.

 Traditionally, querying graph-structured data has been done using ad hoc solu-
tions, called triplestores, typically based on a database management system (DBMS)
back-end. For Sindice, we needed something much more scalable than DBMSs and
with the desirable features of the typical web search engines: top documents matching
a query, real-time updates, full-text search, and distributed indexes.

 Lucene has long offered these capabilities, but as you’ll see in the next section, its
native capabilities aren’t intended for large semistructured document collections with
different schemas. For this reason we developed SIREn, a Lucene extension to over-
come these shortcomings and efficiently index and query RDF, as well as any textual
document with an arbitrary number of metadata fields. Among other things, we devel-
oped custom tokenizers, token filters, queries, and scorers.

2 See http://microformats.org/.

3 See http://www.last.fm/events.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://microformats.org/
http://www.last.fm/events
http://www.it-ebooks.info/

396 CHAPTER 13 Case study 2: SIREn

 SIREn is today in use not only in Sindice.com but also within enterprise data inte-
gration projects where it serves as a large-scale schema-free semantic search engine to
query across large volumes of documents and database records.

13.2 SIREn’s benefits
The Web of Data is composed of RDF statements. Specifically, an RDF statement is a tri-
ple consisting of a subject, a predicate, and an object, and asserts that a subject has a
property (the predicate) with some value (the object). A subject, or entity, has a refer-
ence that has the form of an URI (such as http://renaud.delbru.fr/rdf/foaf#me).

 There are two kinds of statements:

An attribute statement, A(e, v), where A is an attribute (foaf:name), e is an
entity reference, and v is a literal (such as an integer, string, or date)
A relation statement, R(e1, e2), where R is a relation (foaf:knows), and e1 and
e2 are entity references

Those RDF statements intrinsically form a giant graph of interlinked entities (people,
products, events, etc.). For example, figures 13.1 and 13.2 show a small RDF data set
and how it can be split into three entities: renaud, giovanni, and DERI. Each entity
graph forms a star composed of the incoming and outgoing relations of an entity node.
Oval nodes represent entity references and rectangular ones represent literals. For
space consideration, URIs have been replaced by their local names. In N-Triples syntax,
URIs are enclosed in angle brackets (< and >), literals are written using double quotes,
and a dot signifies the end of a triple. The following is a snippet of the N-Triples4 syntax
of the entity graph renaud:

http://renaud.delbru.fr/rdf/foaf#me

➥ <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

➥ <http://xmlns.com/foaf/0.1/Person> .
<http://renaud.delbru.fr/rdf/foaf#me

➥ http://xmlns.com/foaf/0.1/name

➥ "Renaud Delbru"
http://g1o.net#me

➥ <http://xmlns.com/foaf/0.1/knows>

➥ <http://renaud.delbru.fr/rdf/foaf#me>

SIREn follows an entity-centric view; its main purpose is to index and retrieve entities.
To search and locate an entity on the Web of Data, SIREn offers the ability to ask star-
shaped queries such as the one in figure 13.2. You could argue that Lucene already
has the possibility to create such star-shaped queries as the document fields need not
follow a fixed schema (see section 2.1.2). For example, each entity can be converted
into a Lucene document, where each distinct predicate is a dynamic field and objects
are values indexed into that field. Following this approach, a Lucene document will
contain as many dynamic fields as the entity has predicates. But the use of dynamic
4 N-Triples: http://www.w3.org/2001/sw/RDFCore/ntriples/

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://renaud.delbru.fr/rdf/foaf#me
http://www.w3.org/2001/sw/RDFCore/ntriples/
http://www.it-ebooks.info/

397SIREn’s benefits

fields isn’t suitable when dealing with semistructured information, as we’ll explain in a
moment, and a new data model like the one we proposed is necessary.

 The web provides access to large data sources of all kinds. Some of these data
sources contain raw data where the structure exists but has to be extracted. Some con-
tain data that has structure but isn’t as rigid and regular as data found in a database
system. Data that’s neither raw nor strictly typed is called semistructured data. Semistruc-
tured data can also arise when integrating several structured data sources because it’s
to be expected that the data sources won’t follow the same schemas and the same con-
ventions for their values.

 SIREn is intended for indexing and querying large amounts of semistructured
data. The use of SIREn is appropriate when

You have data with a large schema or multiple schemas
You have a rapidly evolving schema
The type of data elements is eclectic

SIREn lets you efficiently perform complex structured queries (when the program or
user is aware of the schema) as well as unstructured queries, such as simple keyword
searches. Moreover, even in the case of unstructured queries, SIREn will be able to

giovanni Person

DERI

renaud paper-9

Renaud Delbru

renaud.delbru@deri.org

knows

type name

member mailbox

madeGiovanni
Tummarello

Organization Galway

basetype

name

Figure 13.1 A visual representation of an RDF graph. The RDF graph is split (dashed
lines) into three entities identified by the nodes renaud, giovanni, and DERI.

giovanni Person

DERI

? *

renault~0.9

deri.org OR
deri.ie

knows
type *

member OR
employ mailbox

made

Figure 13.2 Star-shaped query matching
the entity renaud, where ? is the bound

variable and * a wildcard

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

398 CHAPTER 13 Case study 2: SIREn

“respect” the data structure during the query processing to avoid false positive
matches, as we’ll explain in the next section.

13.2.1 Searching across all fields

With semistructured documents, the data schema is generally unknown and the num-
ber of different fields in the data collection can be large. Sometimes, we aren’t able to
know which field to use when searching. In that case, we can execute the search in
every field.

 The only way to search multiple fields at the same time in Lucene is to use the wild-
card * pattern for the field element (WildcardQuery is covered in section 3.4.7). Inter-
nally, Lucene will expand the query by concatenating all the fields to each query
terms. As a consequence, this will generally cause the number of query terms to
increase significantly. A common workaround is to copy all other fields to a catchall
search field. This solution can be convenient in certain cases, but it duplicates the
information in the index and therefore increases the index size. Also, information
structure is lost, because all values are concatenated inside one field.

13.2.2 A single efficient lexicon

Because data schemas are free, many identical terms can appear in different fields.
Lucene maintains one lexicon per field by concatenating the field name with the
term. If the same term appears in multiple fields, it will be stored in multiple lexicons.
As SIREn primarily uses a single field, it has a single large lexicon and avoids term
duplication in the dictionary.

13.2.3 Flexible fields

The data schema is generally unknown, and it’s common to have many name varia-
tions for the same field. In SIREn, a field is a term as any other element of the data col-
lection and can thus be normalized before indexing. In addition, this enables full-text
search (Boolean operator, fuzzy operator, spelling suggestions, etc.) on a field name.
For example, on the Web of Data, we generally don’t know the exact terms (such as
URIs) used as predicates when searching entities. By tokenizing and normalizing the
predicate URI—for example, http://purl.org/dc/elements/1.1/author—we can
search for all the predicates from one or more schemas containing the term author.

13.2.4 Efficient handling of multivalued fields

In Lucene, multivalued fields are handled by concatenating values together before
indexing (see section 2.4.7). As a consequence, if two string values Mark James Smith
and John Christopher Davis are indexed in a field author, the query author:"James
AND Christopher" looking for an author called “James Christopher” will return a
false positive. In SIREn, values in a multivalued property remain independent in the
index and each one can be searched either separately or together.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://purl.org/dc/elements/1.1/author
http://www.it-ebooks.info/

399Indexing entities with SIREn

13.3 Indexing entities with SIREn
To understand how SIREn indexes entities, you need to understand the following:

The data model and how it’s implemented on top of the Lucene framework
The Lucene document schema that will index and store an entity
How data is prepared before indexing

Let’s take a look at each concept.

13.3.1 Data model

Given an entity, a way to represent its RDF description is to use two tables, each one
having a tuple per RDF triple: in one table (outgoing relationships), the tuple key is
the subject s (entity), the first cell is the predicate p (property), and the second one is
the object o (value). In the second table (incoming relationships), the order is
reversed; the key is the object o, and the second cell is the subject s. A generalized ver-
sion of this accounting for multivalued predicates (such as multiple statements having
the same s and p but different o) can be seen as two tuple tables composed by p and n
values. This is shown in table 13.1. In SIREn, there’s no limit on the number of cells
and null values are free.

 Each cell can be searched independently or together as one unit using full-text
search operations such as Boolean, proximity, or fuzzy operators. By combining multi-
ple cells, you can query a tuple pattern to retrieve a list of entity identifiers. It’s also
possible to combine tuples to query an entity description. The tuples listed in
section 13.2 provide an example of combining query operators to match the entity
described in table 13.1.

Table 13.1 Representation of an entity tuple table

Outgoing relations

Subject Predicate Object 1 Object 2 Object n

id1 rdf:type Person Student … Thing

id1 foaf:name Renaud Delbru R. Delbru …

id1 foaf:mailbox mail@deri.org …

id1 foaf:made paper-9 paper-12 … paper-n

… …

Incoming relations

Object Predicate Subject 1 Subject 2 Subject n

id1 foaf:knows giovanni nickolai …

id1 foaf:member DERI Ø …

… …
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

400 CHAPTER 13 Case study 2: SIREn

13.3.2 Implementation issues

Let’s now explore how the structural information associated with a term can be trans-
posed into Lucene. The data model is similar to the path-based model described in
Proceedings of International Symposium on Digital Media Information Base, Novem-
ber 1997.5 In this model, each term occurrence is associated with the following infor-
mation: entity, tuple, cell, and position.

 The content of a cell can be any kind of information (text, URI, integer, date, etc.)
and is itself decomposed into a sequence of terms. These terms are indexed, similarly
to a classical Lucene index, along with their position. In addition, we assign a cell
identifier (cid) to each term occurrence. The cid is derived from the cell index in
the tuple. For example, a term that occurs in the first cell will be labeled with cid=0.
The tuple can be addressed using an internal identifier (tid) for each tuple within an
entity. We assign to each entity a unique identifier (eid), which is in fact the internal
document identifier assigned by Lucene.

 The index format has been implemented using the Lucene payload feature
(described in section 6.5). Each term payload contains the tuple and cell identifier.
Therefore, a Lucene posting holds a sequence of term occurrences, in the following
format:

Term -> <eid, freq, TermPositions^freq>^tef
TermPositions -> <pos, Payload>
Payload -> <tid, cid>

The tef parameter is simply the number of entity descriptions that contains the term,
and it’s similar to the term document frequency in a normal document index. Those
identifiers are stored efficiently using variable-byte encoding because they’re gener-
ally small. In average, storing this information requires only 2 bytes per term.

13.3.3 Index schema

We designed a generic set of fields for Lucene documents that hold entities. The
Lucene document schema is described in table 13.2. Some of the fields, such as sub-
ject, context, and content, are necessary for implementing the SIREn index. The field
subject indexes and stores the subject (the resource identifier of the entity), whereas
context indexes the provenance (URL) of the entity. Those fields are returned as
search results but can also be used for restricting a query to a specific entity or con-
text. The content field holds the tuple table—that is, the RDF statements describing
the entity.

 We chose the other fields for implementing additional features for the Sindice use
case, such as query filter operators and faceted browsing. It’s then possible to filter
search results by ontology, domain, data source, or format.

5 R. Sacks-Davis, T. Dao, J. A. Thom, and J. Zobel. Indexing documents for queries on structure, content and
attributes. In Proceedings of International Symposium on Digital Media Information Base (DMIB), pages 236–245.

World Scientific, November 1997.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

401Indexing entities with SIREn

13.3.4 Data preparation before indexing

Lucene documents are sent to the index server. The document is analyzed before
indexing. We created our own Lucene analyzer for fields containing tuples. The field
content, of type tuple, has a special syntax derived from the N-Triples syntax:

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

➥ <http://xmlns.com/foaf/0.1/Person> .
<http://xmlns.com/foaf/0.1/name> "Renaud Delbru" .
<http://xmlns.com/foaf/0.1/knows> <http://g1o.net#me>

➥ _:node4321 .

URIs are enclosed in angle brackets, literals are written using double quotes, blank
nodes are written as _:nodeID, and a dot signifies the end of a tuple.

 A TupleTokenizer, a grammar-based tokenizer generated with JFlex, breaks text
using the tuple syntax into tokens. It generates tokens of different types, such as uri,
bnode, and literal for the elements of a tuple, but also cell_delimiter and
tuple_delimiter to inform the TupleAnalyzer downstream of the ending of a tuple
element or tuple (section 4.2.4 describes the token’s type attribute). The TupleToken-
izer embeds a Lucene analyzer for analysis of the literal tokens. Whenever a literal
token is created, it’s sent to this second analyzer in order to tokenize the literals. This
offers the flexibility of reusing Lucene components for analyzing the textual informa-
tion of the literals.

 The TupleAnalyzer defines the TokenFilters that are applied to the output of the
TupleTokenizer. We created two special filters for the SIREn extension: the URINor-
malisationFilter and the SirenPayloadFilter. Other original Lucene filters are
used, such as StopWordFilter and LowerCaseFilter.

 The URINormalisationFilter normalizes URIs by removing trailing slashes and by
breaking down a URI into subwords and generating multiple variations; for example:

"http://xmlns.com/foaf/0.1/name" ->
 (position:token)

Table 13.2 The Lucene document schema used for the Sindice use case

Field name Description

subject URI of the entity (subject element of the statement).

context URI of the data set containing the entity (context element of the statement) .

content The list of tuples describing the entity. This field is using the SIREn data format pre-
sented earlier.

ontology List of ontologies used in the entity description.

domain The domain where the entity is published.

data-source The source of the data: crawled, dumped, or pinged.

format The original format of the data: RDF, RDFa, Microformats, etc.
 0:"http"

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

402 CHAPTER 13 Case study 2: SIREn

 1:"xmlns.com",
 2:"foaf",
 3:"0.1",
 4:"name",
 5:"http://xmlns.com/foaf/0.1/name"

These variations are useful for enabling full-text search on a URI. It’s then possible to
write queries like name, foaf AND name or http://xmlns.com/foaf/0.1/.

 The class SirenPayloadFilter (shown in listing 13.1) assigns the structural infor-
mation to each token and encodes them into the token payload. Note that the token
filter uses the version 2.4 tokenizer APIs (for example, the next() method), which
have been removed in Lucene as of version 3.0. Payloads are covered in section 6.5.

public class SirenPayloadFilter extends TokenFilter {
 protected int tuple, tupleElement = 0;

 @Override
 public Token next(final Token result) throws IOException {
 if ((result = input.next(result)) == null) return result;
 if (result.type().equals("<TUPLE_DELIMITER>")) {
 tuple++; tupleElement = 0;
 }
 else if (result.type().equals("<CELL_DELIMITER>"))
 tupleElement++;
 else
 result.setPayload(new SirenPayload(tupleID, cellID));
 return result;
 }
}

13.4 Searching entities with SIREn
Next we’ll present a set of query operators, implemented into SIREn, for performing
operations on the content and structure of the tuple table. Those query components
are the building blocks for writing search queries for data sets and entities.

13.4.1 Searching content

SIREn includes primitive query operators that access the content of a tuple table.
These query operators provide basic operations, such as term lookups (TermQuery,
PhraseQuery) or more advanced functionality such as fuzzy or prefix operators. They
can then be combined with higher-level operators such as Boolean operators (inter-
section, union, difference), proximity operators (phrase, near, before, after, etc.), or
SIREn operators (cell, tuple).

 These operators reproduce the same strategy as the original Lucene operators with
the small difference that, during query processing, their scorers read tuple informa-
tion from the payload and use them to filter out irrelevant matches. For example, the

Listing 13.1 How SirenPayloadFilter processes the token stream
TermScorer scores a term and provides an iterator over the entity, tuple, cell, and

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

403Searching entities with SIREn

position (eid, tid, cid, pos) of the term. In fact, all the SIREn Scorers implement the
interface SirenIdIterator (shown in listing 13.2), which provides methods to skip
entities, tuples, or cells during the iteration.

public interface SirenIdIterator {
 public boolean skipTo(int entityID);
 public boolean skipTo(int entityID, int tupleID);
 public boolean skipTo(int entityID, int tupleID, int cellID);

 public int dataset();
 public int entity();
 public int tuple();
 public int cell();
 public int pos();
}

For operators performing a conjunction of multiple terms such as PhraseQuery, we
use the following merge-join algorithm:

1 We retrieve the postings list of each term.
2 We walk through the postings lists simultaneously.
3 At each step, we compare the entity, tuple, and cell identifiers.

If a mismatch occurs, we discard the current entry.
If they are the same, the scorer performs the usual strategy of checking if
each query term has valid positions (for example, adjacent positions). In
case of a match, the scorer returns eid, tid, cid as results (which will be
used by higher query components such as CellQuery) and advances the
pointers to the next position in each postings list.

13.4.2 Restricting search within a cell

The CellQuery allows us to combine the primitive query components such as Term-
Query or PhraseQuery with Boolean operations. The interface is similar to Lucene
BooleanQuery but offers the ability to add multiple clauses using the addClause
(PrimitiveSirenQuery c, Occur o) method.

 The CellScorer scores a Boolean combination of primitive queries matching
within a cell. The ConjunctionScorer, DisjunctionScorer, and ReqExclScorer
implement the scoring mechanism of a conjunction, disjunction, or exclusion of
terms inside a cell. They walk through the iterators of the scorers and perform joins
using eid, tid, and cid, keeping only matches that occur inside a same cell. A
CellScorer provides an iterator over the entities, tuples, and cells (eid, tid, cid)
matching the query so that higher query components such as TupleQuery can filter
matches per tuple.

 A CellQuery provides an interface called CellQuery.setConstraint(int index),
and, to add a cell index constraint cid=index. For example, imagine the cell index of

Listing 13.2 Interface of SirenIdIterator

Skips to
first match
after target

Returns current
structural element
identifier
a predicate is always 0. All matches that don’t have a cid equal to 0 are discarded. The

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

404 CHAPTER 13 Case study 2: SIREn

index constraint isn’t hard, and can be represented as an interval using CellQuery.
setConstraint(int start, int end) in order to search multiple cells where cid falls
between start and end.

13.4.3 Combining cells into tuples

A CellQuery allows us to express a search over the content of a cell. Multiple cell
query components can be combined to form a “tuple query” using the TupleQuery
component. A tuple query retrieves tuples matching a Boolean combination of the
cell queries. The TupleQuery provides a similar interface to BooleanQuery with the
ability to add multiple clauses using the addClause(CellQuery c, Occur o) method.

 The TupleScorer scores a Boolean combination of cells, and provides an itera-
tor over the entities and tuples (eid, tid) matching the query. It’s based on the
CellConjunctionScorer, CellDisjunctionScorer, and CellReqExclScorer to score
a conjunction, disjunction, or exclusion of cells inside a tuple. Each walks through
the iterators of the underlying scorers (CellScorer) and perform joins over entities
and tuples.

13.4.4 Querying an entity description

TupleQuery, CellQuery, and TermQuery can be combined using Lucene’s Boolean-
Query, allowing you to express rich queries for matching entities. The scoring is done
by Lucene’s BooleanScorer because each of the SIREn scorers complies with the
Lucene Scorer class. Listing 13.3 shows how to build a query using the previously
described operators. The query example will retrieve all entities related to DERI and
that have a property labeled name or fullname with a value of Renaud Delbru.

CellQuery predicate = new CellQuery();
predicate.addClause(new TermQuery(new Term("name")),
 Occur.SHOULD);
predicate.addClause(new TermQuery(new Term("fullname")),
 Occur.SHOULD);
predicate.setConstraint(0);

PhraseQuery q = new PhraseQuery();
q.add(new Term("renaud")); q.add(new Term("delbru"));

CellQuery object = new CellQuery();
object.addClause(q, Occur.MUST);
object.setConstraint(1, Integer.MAX_VALUE);

TupleQuery tuple1 = new TupleQuery();
tuple1.addClause(predicate, Occur.MUST);
tuple1.addClause(object, Occur.MUST);

BooleanQuery query = new BooleanQuery();
query.addClause(tuple1, Occur.MUST);5
query.addClause(new TermQuery(new Term("DERI")),

Listing 13.3 Creation of an entity description query

B

C

D

E

F

 Occur.MUST);

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

405Benchmark

Matches the predicate "name OR fullname".

Matches the phrase "renaud delbru".

Matches the object "renaud delbru".

Matches <"name OR fullname", "renaud delbru">.

Matches <"name OR fullname", "renaud delbru"> AND "DERI".

13.5 Integrating SIREn in Solr
Solr is an enterprise search server based on Lucene, developed within the same
Apache Lucene top-level project as Lucene. It provides many useful features, such as
faceted search, caching, replication, and distribution over shards. In this section we’ll
show you how easy it is to plug a new Lucene component into the Solr framework, and
how Sindice is able to benefit from all features provided by Solr.

 To connect SIREn to the Solr framework, we had to assign the TupleAnalyzer to
the tuple field type in the Solr schema file, as shown in listing 13.4. We also created a
parser for the SPARQL, the recommended RDF query language by the W3C.6

 The first component of the query parser is the SPARQLQueryAnalyzer that pro-
cesses the input SPARQL query into a stream of tokens. The second component is the
SPARQLParser, which extends the Solr.QParser that invokes the SPARQLQueryAna-
lyzer, parses the stream of tokens, and builds the corresponding SIREn query.

 To make the SPARQLParser available to the Solr front end, we created a SPARQL-
ParserPlugin class that extends Solr.QParserPlugin and a modification of the Solr
config file to register the plug-in; see listing 13.4.

<fieldType name="tuple" class="solr.TextField">
 <analyzer type="index"
 class="org.sindice.solr.plugins.analysis.TupleAnalyzer"
 words="stopwords.txt"/>
 <analyzer type="query"
 class="org.sindice.solr.plugins.analysis.SPARQLQueryAnalyzer"
 words="stopwords.txt"/>
</fieldType>
...
<fields>
 <field name="content" type="tuple" indexed="true" stored="false"/>
 ... Other field definition ...
</fields>

13.6 Benchmark
We performed the following benchmark using synthetic datasets of RDF entities on a
commodity server.7 We varied the number of distinct predicates (fields) of these data

6 See http://www.w3.org/TR/rdf-sparql-query/

Listing 13.4 Integration of SIREn through Solr schema.xml

7 8 GB of RAM, two-quad core Intel processors running at 2.23 GHz, 7200 RPM SATA disks, Linux 2.6.24-19,

 B

 C

 D

 E

 F
Java Version 1.6.0.06

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.w3.org/TR/rdf-sparql-query/
http://www.it-ebooks.info/

406 CHAPTER 13 Case study 2: SIREn

sets between 8 and 128. To generate the values in one field (a field is generally multi-
valued), we used a dictionary of 90,000 terms. We averaged the query time reported in
this benchmark over 500 query executions. Each query contains two keywords ran-
domly selected from the dictionary.

 Table 13.3 shows that SIREn keeps a concise dictionary (the term dictionary is rep-
resented by two files per segment, the main file (*.tis) and the index file (*.tii))
whereas Lucene dictionary size increases linearly with the number of fields. With 128
fields, the size of the SIREn dictionary is 1.6 MB, whereas the size of the Lucene dic-
tionary is 113 MB. In this case, SIREn is much more memory-efficient and lets us keep
a larger part of the dictionary in memory. The file containing the posting lists (that
is, the *.frq file that contains the lists of documents for each term, along with the fre-
quency of the term in each document) is smaller using SIREn. Lucene has a different
posting list for each term in each field; therefore, Lucene is creating more posting
lists than SIREn, and this causes storage overhead. But the file that contains the posi-
tional information (*.prx), which contains the lists of positions that each term occurs
at within documents along with the payload associated with the current term posi-
tion, becomes five times bigger than the Lucene one. This is due to the overhead of
storing the structural information (tuple and cell identifier) in the payload, but the
impact of this is limited because this file isn’t usually kept in memory. The overall
SIREn index size is below twice the size of Lucene index. Appendix B describes
Lucene’s index file format.

 In tables 13.4 and 13.5, we can see that either for conjunction and disjunction
Lucene performance decreases with the number of fields. To answer queries across a
number of fields, Lucene expands the query by concatenating each field name to
each keyword. For example, for a query with two keywords over 64 fields, the Lucene
MultiFieldQueryParser (covered in section 5.4) will expand the query to 2 x 64 =
128 query terms. In SIREn, there’s no query expansion. The worst case will be 2 (key-
word terms) + 64 (field terms) = 66 query terms—and only 2 if search is performed
across all fields (that is, when a field wildcard is used because no field terms have to be
intersected with the keyword terms).

 Similar performance for the field wildcard case could’ve been achieved with
Lucene by using a catchall field, where all the values are concatenated together. In
this case, doing so would duplicate information another time in the index (and in the
dictionary), induce false positives, and be of no use when only a subset of fields has to

Table 13.3 Comparison of size (in kb) of the main index files (synthetic data set with 128 fields)

Approach
TermInfoIndex

(.tii)
TermInfoFile

(.tis)
FreqFile

(.frq)
ProxFile
 (.prx)

Total

Lucene 1627 113956 1179180 509815 1804578

SIREn 38 3520 769798 2697581 3470937

SIREn/Lucene 2% 3% 65% 529% 192%
be searched.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

407Summary

Table 13.6 reports the execution time of keywords search over one, two, or three ran-
domly selected required terms in a BooleanQuery on the synthetic data set of 64 fields.
SIREn performs slightly worse than Lucene when search is restricted to one field. The
reason is that SIREn intersects three posting lists (the posting list of the field and the
posting lists of each keyword) whereas Lucene intersects only two (the posting list of
each keyword). But when keyword search is performed over two or three fields, SIREn
takes the advantage. The performance is similar in all the other cases, using disjunc-
tion or exclusion instead of conjunction. After profiling Lucene during query execu-
tion, we observed that 25 percent of the time is spent reading the dictionary (more
precisely in the method SegmentTermEnum.next()).

13.7 Summary
In this chapter, you learned about SIREn, a Lucene “extension” for efficient querying
of large amounts of schema-free semistructured data. We say “extension” because
SIREn is more like a whole purpose-built application running on top of Lucene with a
set of custom Lucene components—Analyzers, Tokenizers, TokenFilters, and so on.
SIREn enables Lucene and Solr to handle information directly coming from the “Web
of Data,” but can also be useful in enterprise data integration projects. The principal
advantages that SIREn brings are as follows:

It enables efficient search across a large number of fields.
It is memory efficient with respect to the lexicon size.
It enables flexible field names indexing (tokenized, wildcards, fuzzy matching
on field names).

Table 13.4 Query time (in ms) for conjunction of two keywords across all fields
(wildcard for field names)

Approach 8 fields 16 fields 32 fields 64 fields 128 fields

Lucene 100 356 659 1191 2548

SIREn 72 79 75 76 91

Table 13.5 Query time (in ms) for disjunction of two keywords across all fields
(wildcard for field names)

Approach 8 fields 16 fields 32 fields 64 fields 128 fields

Lucene 85 144 287 599 1357

SIREn 45 59 62 74 109

Approach Q-1F Q-2F Q-3F

Lucene 50 56 82

SIREn 77 53 58

Table 13.6 Query time (in ms) for
keyword search in one, two, or three
randomly selected fields
It handles multivalued fields in an accurate way.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

408 CHAPTER 13 Case study 2: SIREn

But when you expect to have data with a relatively small and fixed schema or when
field values are distinct across fields, direct Lucene is a better choice; it will produce a
smaller index and the query processing will be generally faster. In fact, SIREn isn’t
meant to replace Lucene features but to complement them. You can use Lucene fields
for fixed and frequent properties in the data collection and use SIREn for the other
properties or for to perform fast multifield queries.

 SIREn is in use in the Sindice search engine, which currently indexes more than 50
million structured documents (for a total of 1 billion triples) and can serve thousands
of queries per minutes on a commodity server machine.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

Case study 3: LinkedIn
Adding facets and real-time search
with Bobo Browse and Zoie
Contributed by JOHN WANG and JAKE MANNIX
LinkedIn.com is the largest social network for professionals in the world, with over
60 million users worldwide (as of March 2010), and has “people search” as a pri-
mary feature: users on the site have fully rich profiles that act as their public profes-
sional resume or curriculum vitae. A primary feature of the site is the ability to
search for other users based on complex criteria, enabling use cases such as

A hiring manager who wants to find potential employees
Salespeople who want to find leads
Tech-savvy executives of all levels who want to locate subject-matter experts
for consultation

Search for people at LinkedIn is an extremely complex topic, complete with tre-
mendous scalability issues, a distributed architecture, real-time indexing, and per-
sonalized search. Each search query is created by a registered user on the site who
has his own individual subset of the full social network graph, which affects the rel-
evance score of each hit differently for different searching users.

 Lucene powers LinkedIn’s searching. In this chapter we’ll see two powerful
extensions to Lucene developed and used at LinkedIn. The first, Bobo Browse
(available as open source at http://sna-projects.com/bobo) provides faceting infor-
mation for each search. Zoie, the second extension (available as open source at
http://sna-projects.com/zoie), is a real-time search system built on top of Lucene.
409

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://sna-projects.com/bobo
http://sna-projects.com/zoie
http://www.it-ebooks.info/

410 CHAPTER 14 Case study 3: LinkedIn

14.1 Faceted search with Bobo Browse
The standard full-text search engine—and Lucene is no exception—is designed to
quickly collect a few (say, 10) hits in the index that are the most relevant to the query
provided, discarding the rest. If none of the “most relevant” documents are what the
user wants, he must refine his query by adding further required terms. But the user
has no guidance on what may be considered good terms for refinement, a process
that’s error-prone and adds a lot of work for the user. Sometimes the effort to refine
goes too far: no results are found and the user must backtrack and try again. This is a
common problem with search engines, not specific to Lucene.

 With faceted search,1 in addition to the top results, the user sees the distribution of
field values for all documents in the result set. As an example, on LinkedIn each doc-
ument is a person’s profile; when a user searches for java engineer, she sees the top 10
of 177,878 people, but is also presented with the fact that of all of those people, IBM is the
most popular value for the current company of the person with 2,090 hits; Oracle is
the second-most popular value, with 1,938 people; Microsoft is the third, with 1,344;
and so forth. The term facet is used to describe the field—current_company—for
which we’re returning these results, and facet value is the value of this field, such as
IBM. Facet count is the number of hits on the particular facet value—2,090 for IBM.
These are presented as links, and the user can refine her query by clicking IBM, which
returns the 2,090 people matching the effective Lucene query of +java +engineer
+current_company:IBM. Because the search engine will only return links for facet val-
ues with greater than 0 facet count, the user knows in advance how many hits she will
get to her query, and in particular that it won’t be 0. Figure 14.1 shows a LinkedIn
facet search powered by Bobo Browse and Lucene.

14.1.1 Bobo Browse design

The Bobo Browse open source library is built on top of Lucene, and can add faceting
to any Lucene-based project. A browsable index is simply a Lucene index with some
declarations on how a field is used to support faceting. Such declaration can be
defined in either the form of a Spring2 configuration file added to the Lucene index
directory with the name bobo.spring, as seen in table 14.1, or constructed program-
matically while creating a BoboIndexReader. This architectural decision was made to
allow for making a Lucene index facet browsable without reindexing. Each field in
the declaration file is specified with a FacetHandler instance that loads a forward view
of the data in a compressed form. Bobo Browse uses these FacetHandlers for count-
ing, sorting, and field retrieval.

 The Bobo Browse API follows closely with the Lucene search API, with structured
selection and facet grouping specification as additional input parameters, and the
output appended with facet information for each field. As with many software librar-
ies, seeing example code linked against bobo-browse.jar will probably be more

1 See http://en.wikipedia.org/wiki/Faceted_search.

2 See http://www.springsource.org.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://en.wikipedia.org/wiki/Faceted_search
http://www.springsource.org
http://www.it-ebooks.info/

411Faceted search with Bobo Browse

instructive than a couple of paragraphs. Let’s walk through a simplified user profile
example, where each document represents one person with the following fields:

geo_region: One per document, formatted as a String. Examples: New York
City, SF BayArea.
industry_id: One per document, values of type integer greater than 0.
locale: Multiple values per document. Examples: en, fr, es.
company_id: Multiple values per document, each of type integer greater than 0.
num_recommendations: One per document, values of type integer greater
than or equal to 0; we’ll facet on ranges [1 – 4], [5 – 10], [11 +].

Figure 14.1 The LinkedIn.com search result page with facets, facet values, and their counts on the right
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

412 CHAPTER 14 Case study 3: LinkedIn

Table 14.1 Bobo Browse allows you to configure facets declaratively through a Spring file.

Lucene document
construction

Spring Beans specifying faceting information

geo_region:
• Store.No
• Index.NotAnalyzed-

NoNorms
• omitTf

<bean id = "geo_region"

➥class="com.browseengine.bobo.facets.impl.SimpleFacetHandler">

 <constructor-arg value="geo_region">
</bean>

industry_id:
• Store.No
• Index.NotAnalyzed-

NoNorms
• omitTf
• 10-digit 0 padding

<bean id = "industry_id"

➥class="com.browseengine.bobo.facets.impl.SimpleFacetHandler">
 <constructor-arg value="industry_id">
 <constructor-arg>
 <bean class=
➥"com.browseengine.bobo.facets.data.PredefinedTermListFactory">
 <constructor-arg value="java.lang.Integer" />
 <constructor-arg value="0000000000"/>
 </constructor-arg>
</bean>

locale:
• Store.No
• Indexed.Analyzed-

NoNorms
• omitTf

<bean id = "locale" class=

➥"com.browseengine.bobo.facets.impl.CompactMultiValueFacetHandler">
 <constructor-arg value="locale">
</bean>

company_id:
• Store.No
• Indexed.Analyzed-

NoNorms
• omitTf
• with 10-digit 0

padding

<bean id = "company_id"

➥class=

➥"com.browseengine.bobo.facets.impl.MultiValueFacetHandler">
 <constructor-arg value="company_id">
 <constructor-arg>
 <bean class=

➥"com.browseengine.bobo.facets.data.PredefinedTermListFactory">
 <constructor-arg value="java.lang.Integer" />
 <constructor-arg value="0000000000"/>
 </constructor-arg>
</bean>

num_recommendations:
• Store.No
• Indexed.NotAnalyzed-

NoNorms
• omitTf
• with 10-digit 0

padding

<bean id = "num_recommendations"

➥class="com.browseengine.bobo.facets.impl.RangeFacetHandler">
 <constructor-arg value="num_recommendations">
 <constructor-arg>
 <bean class=

➥"com.browseengine.bobo.facets.data.PredefinedTermListFactory">
 <constructor-arg value="java.lang.Integer" />
 <constructor-arg value="0000000000"/>
 </constructor-arg>
 <constructor-arg>
 <list>
 <value>[1 TO 4]</value>
 <value>[5 TO 10]</value>
 <value>[11 TO *]</value>
 </list>
 </constructor-arg>

</bean>

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

413Faceted search with Bobo Browse

To browse the Lucene index built with fields from table 14.1, we’ll do something as
simple as the following. First, let’s assume that the application has a way of getting an
IndexReader opened on the Lucene index at hand:

IndexReader reader = getLuceneIndexReader();

We then decorate it with Bobo Browse’s index reader:

BoboIndexReader boboReader = BoboIndexReader.getInstance(reader);

Next we create a browse request:

// use setCount() and setOffset() for pagination:
BrowseRequest br = new BrowseRequest();
br.setCount(10);
br.setOffset(0);

One core component of a BrowseRequest is the driving query. Any subclass of
Lucene’s Query class works here, and all added facet constraints further restrict the
driving query. In the extreme “pure browse” case, the application would use Match-
AllDocsQuery as the driving query (see section 3.4.9).

QueryParser queryParser;
Query query = queryParser.parse("position_description:(software OR

engineer)");
br.setQuery(query);

We could add on any Lucene Filter (see section 5.6) as well, with Browse-
Request.setFilter(Filter). We request facet information from this request by cre-
ating specific FacetSpecs, in which you specify the following:

The maximum number of facets to return for each field.
The ordering on the facets returned for each field: whether they’re returned in
the lexicographical order of the facet values or in the order of facets with the
most associated hits. For example, imagine the color field has three facets
returned: red(100), green(200), blue(30). We can either order them by lexico-
graphical order:
blue(30), green(200), red(100)

or by hits:
green(200), red(100), blue(30)

That you only want to return a facet for a given field with a hit count greater
than some value.

For the current example, we want to return not only the top 10 users with the term
software or engineer in some of their position descriptions in their profiles, but we also
want to find the top 20 company names out of the whole result set, and how many hits
each company would have if you were to add it to the query, as in
"+company_name:<foo>":

FacetSpec companyNameSpec = new FacetSpec();
companyNameSpec.setOrderBy(B

 FacetSortSpec.OrderHitsDesc);

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

414 CHAPTER 14 Case study 3: LinkedIn

companyNameSpec.setMaxCount(20);
br.setFacetSpec("company_name", companyNameSpec);

We first request B that the facets be sorted by facet count, descending, and then set
C the number of facets to be returned to 20. We may also want to find out something
about the geographical distribution of the results:

FacetSpec geoRegionSpec = new FacetSpec();
geoRegionSpec.setMinHitCount(100);
geoRegionSpec.setMaxCount(50);
geoRegionSpec.setOrderBy(
 FacetSortSpec.OrderValueAsc);
br.setFacetSpec("geo_region", geoRegionSpec);

Instead of simply showing the top 20 regions, we get C all the geo-regions (imagine
that these were specifically the 50 US state abbreviations) that have B at least 100 hits,
and we order D them in the usual alphabetical order.

 Now we’re ready to browse. With raw Lucene, we’d create an IndexSearcher wrap-
ping an IndexReader. In the faceting world, we want a BoboBrowser—the analog of an
IndexSearcher. In fact, BoboBrowser is a subclass of IndexSearcher, and implements
the Browsable interface—which is the analog of Lucene’s Searchable interface
(which IndexSearcher implements). Browsable extends Searchable as well. This
class mirroring and extending is common in Bobo Browse, and makes it easy for
someone familiar with Lucene to quickly gain proficiency with Bobo Browse. The
library is meant to extend all aspects of Lucene searching to the browsing paradigm.
For example, this is how you create a browser:

Browseable browser = new BoboBrowser(boboReader);

Just as with Searchable, Browsable allows a high-level method for ease of use to just
get your results:

BrowseResult result = browser.browse(br);

You can find out how many total results there were and get access to the hit objects:

int totalHits = result.getNumHits();
BrowseHit[] hits = result.getHits();

BrowseHits are like Lucene’s ScoreDocs, but also contain facet values for all config-
ured faceting fields, because there’s essentially no cost to fill these in from the in-
memory cache. The facet information is contained within a map whose keys are the
field names and whose values are FacetAccessible objects. FacetAccessible con-
tains a sorted List<BrowseFacet>, retrievable with getFacets(). Each BrowseFacet is
a pair of value (a String) and count (an int).

Map<String, FacetAccessible> facetMap = result.getFacetMap();

Let’s say the user’s search matches a total of 1,299 hits, and that the top three compa-
nies were IBM, Oracle, and Microsoft. To narrow her search and look only at people
who’ve worked at IBM or Microsoft but didn’t work at Oracle, the user can take the

C

B
C

D

same BrowseRequest she had before (or, more likely in a stateless web framework, a

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

415Faceted search with Bobo Browse

recreated instance), and add to it a new BrowseSelection instance. A BrowseSelec-
tion corresponds to a SQL WHERE clause, which provides some structured filtering on
top of a text search query.

 For example, in SQL, the clause WHERE (company_id=1 OR company_id=2) AND
(company_id <> 3) can be represented in a BrowseSelection as

BrowseSelection selection = new BrowseSelection("company_id");
selection.addValue("1"); // 1 = IBM
selection.addValue("2"); // 2 = Microsoft
selection.addNotValue("3"); // 3 = Oracle
selection.setSelectionOperation(ValueOperation.ValueOperationOr);
br.addSelection(selection);

14.1.2 Beyond simple faceting

Although Lucene provides access to the inverted index, Bobo Browse provides a for-
ward view through FacetHandlers. Bobo Browse thus provides useful functionality
beyond faceting.
FAST FIELD RETRIEVAL

Bobo Browse can retrieve the field values for a specific document ID and field name.
With Lucene, a Field with the Store.YES attribute turned on can be stored:

doc.add(new Field("color","red",Store.YES,Index.NOT_ANALYZED_NO_NORMS));

then retrieved via the API:

Document doc = indexReader.document(docid);
String colorVal = doc.get("color");

We devised a test to understand performance better. We created an optimized index
of 1 million documents, each with one field named color with a value to be one of
eight color strings. This was a very optimized scenario for retrieval of stored data
because there was only one segment and much of the data could fit in memory. We
then iterated through the index and retrieved the field value for color. This took
1,250 milliseconds (ms).

 Next, we did the same thing, but instead of creating a BoboIndexReader with a
FacetHandler, we built on the indexed data of the color field. We paid a penalty of 133
ms to load the FacetHandler once the index loads, and retrieval time took 41 ms. By
paying a 10 percent penalty once, we boosted the retrieval speed over 3,000 percent.
SORTING

One of the coolest parts of Lucene is sorting. Lucene cleverly leverages the field cache
and the fact that strings are indexed in a lexicographical order for fast sorting: the
comparison between string values of two documents can be reduced to comparing the
array indexes of these string values in the term table, and the cost of string compari-
son is reduced to integer arithmetic. Chapter 5 covers Lucene’s sorting and its use of
the field cache.

 Currently, Lucene sorting has a restriction that sort fields must not be tokenized:
every document in the index must have at most one value in a sortable field (see

section 2.4.6). While developing Bobo Browse, we devised a way of removing this

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

416 CHAPTER 14 Case study 3: LinkedIn

restriction: FieldCache is a forward view of the index. We extended the idea by incor-
porating FieldCache into FacetHandlers. Because we’ve made FacetHandlers plugga-
ble, we started adding other powerful features into FacetHandlers, such as the ability
to handle documents with multiple values in a given field. We’re therefore able to facet
and sort on multivalued fields (for example, any tokenized field).

 We took a sample of our member profile index, about 4.6 million documents,
sorted the entire index on a tokenized field (such as last name) and took the top 10
hits. The entire search/sort call on a development-type box took 300 ms.

 Faceting need not be restricted to index-time-only content.
RUNTIME FACETHANDLERS

When we started designing the FacetHandler architecture, we realized that at index
time we didn’t have the data needed for faceting, such as personalized data or the
searcher’s social network. So we designed the framework to allow for runtime
FacetHandlers. Such FacetHandlers are constructed at query time to support faceting
on data provided at search time, such as a user’s social graph and connection counts.
ZOIE INTEGRATION

Because of our scale both in terms of number of searchers as well as corpus size, along
with our real-time requirement, we needed a distributed real-time solution for facet
search. For this, we leveraged Zoie, an open source, real-time search and indexing sys-
tem built on Lucene; we’ll describe Zoie in section 14.2. Integration was easy: we cre-
ated an IndexReaderDecorator that decorates a ZoieIndexReader into a
BoboIndexReader:

class BoboIndexReaderDecorator<BoboIndexReader>
 implements IndexReaderDecorator{
 public BoboIndexReader decorate(ZoieIndexReader indexReader)
 throws IOException{
 return new BoboIndexReader(indexReader);
 }
}

and gave it to Zoie. In turn, Zoie acts as a BoboIndexReader factory that returns Bobo-
IndexReaders in real time. In our search code, we simply do this:

List<BoboIndexReader> readerList = zoie.getIndexReaders();
Browsable[] browsers = new Browsable[readerList.size()];
for (int i = 0; i < readerList.size(); ++i){
 browsers[i] = new BoboBrowser(readerList.get(i));
}

Browsable browser = new MultiBoboBrowser(browsers);

Next we’ll describe how LinkedIn achieves another important search capability: real-
time search.

14.2 Real-time search with Zoie
A real-time search system makes it possible for queries to find a new document imme-

diately (or almost immediately) after it’s been updated. In the case of LinkedIn’s

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

417Real-time search with Zoie

people search, this means we want to make a member profile searchable as soon as
the profile is created or updated.

NOTE To be precise, as soon as the profile arrives at a node, the next search
request that node receives can include the newly updated profile. In a
distributed system, where indexing events are queued and delivered
independently to each node, clients of the entire distributed system are
only guaranteed to get results as up-to-date as the nodes they hit.

With Lucene’s incremental update functionality, we believe we can extend Lucene to
support real-time searching. A naïve solution would be to commit as often as possible
while reopening the IndexReader for every search request. This poses a few scalability
problems:

The latency is relatively high. The cost of IndexWriter.commit on a disk-based
index isn’t negligible.
The index would be fragmented heavily because each commit would create a
new index segment, and index segment merge cost becomes significant if we
commit per document.
We may waste a lot of indexing work: the same member profile tends to be
updated frequently in a short period of time. It ends up with a lot of deleted
documents in the index, which affects search performance.
We have to reload IndexReader frequently to make new documents available
for search users. Opening an IndexReader per search request adds a significant
amount of latency at search time.

An alternative is to keep the entire index in memory (for example, via a RAMDirectory,
described in section 2.10). This alleviates the problems of high indexing latency and
index fragmentation. But we’d still process wasteful indexing requests due to fast
updates. Furthermore, even with the introduction of the IndexReader.reopen() API
(see section 3.2.1), which improves the index reader load time, with customized
IndexReader instances the cost of loading the index reader might be higher than what
we’d be willing to pay. Here are some examples of extra data we’re loading for our cus-
tomized IndexReader:

Zoie by default loads an array mapping Lucene docIDs to application UIDs.
Zoie loads data structures for faceted search (see the Bobo Browse study in sec-
tion 14.1).
Zoie loads static ranking, for example “people rank” from an external source.
At LinkedIn, we use usage and search tracking data in combination with the
social network to calculate a static people rank

It’s clear that loading our custom IndexReader for each search request isn’t feasible at
scale. These problems motivated us to develop a real-time searching architecture at
LinkedIn, and Zoie (http://sna-projects.com/zoie) is an open source project that’s an

offspring of this effort.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://sna-projects.com/zoie
http://www.it-ebooks.info/

418 CHAPTER 14 Case study 3: LinkedIn

14.2.1 Zoie architecture

Let’s look at the main Zoie components as well as some code. If you’re impatient or
just like pretty diagrams, jump to figure 14.2.
DATA PROVIDER AND DATA CONSUMER

When we started building Zoie, we imagined a constant stream of indexing requests
flowing into our indexing system and our indexing system acting as a consumer of this
stream. We abstracted this access pattern into a provider-consumer paradigm, and we
defined data provider as the source of this stream and data consumer as our indexing sys-
tem. A data provider in Zoie is just a marker interface to identify the concept; there’s
no contract defined in the interface.

 Upon further abstraction, data providers can provide a stream of indexing
requests from various sources, such as files, networks, and databases. A data consumer
can be any piece of code that deals with the flow of indexing requests, and can even
act as a data provider—by serving as an intermediate data massage or filtering layer to
relay the indexing requests. With this abstraction, we give our system the flexibility to
have our data arbitrarily massaged or aggregated before finally being consumed by
the indexing system.

 To have a fault-tolerant system, we need to be able to handle situations where the
system is shut down ungracefully due a system crash or power outage. Although we’re
able to rely on the Lucene indexing mechanism to be solid so that our index isn’t eas-
ily corrupted, we’d lose track of where we are in the stream of indexing requests. Hav-
ing to reindex from scratch every time a system goes down isn’t acceptable. Because of
this, we have built into Zoie a versioning mechanism to persist the point in the stream
where the last batch of indexing request was processed. From this version, a data pro-
vider can retrack so that the indexing requests can be regenerated. The version num-
bers are provided by the application; such version numbers can be timestamps or
database commit numbers, for example.

 Take a look at listing 14.1. We have data stored in a table in a relational database
and we want to create a Lucene index for fast text search capabilities. In this table,
there are three columns: id (long), content (String), and timestamp (long). The
number of rows in this table is very large.

class Data {
 long id;
 String content;
}

class NoNullDataConsumer implements
 DataConsumer<Data>, DataProvider {
 private DataConsumer<Data> _subConsumer;
 NoNullDataConsumer(DataConsumer<Data> subConsumer) {
 _subConsumer = subConsumer;
 }

Listing 14.1 Indexing data events with Zoie

Hold
indexing
data

B

Filter out
null content

C

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

419Real-time search with Zoie

 public void consume(Collection<DataEvent<Data>> data) throws ZoieException
{

 List<DataEvent<Data>> events = new LinkedList<DataEvent<Data>>();
 for (DataEvent<Data> evt : data){
 if (evt.content != null){
 events.add(evt);
 }
 }
 _subConsumer.consume(events);
 }
}

ZoieSystem indexingSystem ... ;
indexingSystem.start();

ZoieSystemAdminMBean adminMBean =
 indexingSystem.getAdminMBean();
long lastVersion = adminMBean.getCurrentDiskVersion();

JDBCDataProvider dataProvider = new JDBCDataProvider(
 "SELECT id,content,tmstmp FROM newstable WHERE tmstmp >= "+lastVersion);
Collection<DataEvent<Data>> indexingRequests =
 dataProvider.getIndexingRequests();

NoNullDataConsumer consumer = new NoNullDataConsumer(indexingSystem);
consumer.consume(indexingRequests);

Let’s understand some Zoie internals. To implement real-time search, we decided to
use multiple indexes: one main index on disk, plus two helper indexes in memory to
handle transient indexing requests.
DISK INDEX

The disk index will grow to be rather large; therefore, indexing updates on disk will
be performed in batches. Processing updates in batches allows us to merge updates of
the same document to reduce redundant updates. Moreover, the disk index wouldn’t
be fragmented as the indexer wouldn’t be thrashed by a large number of small index-
ing calls and requests. We keep a shared disk-based IndexReader to serve search
requests. Once batch indexing is performed, we build and load a new IndexReader
and then publish the new shared IndexReader. The cost of building and loading the
IndexReader is thus hidden from the cost of search.
RAM INDEX(ES)

To ensure real-time behavior, the two helper memory indexes (MemA and MemB)
alternate in their roles. One index, say MemA, accumulates indexing requests and
serves real-time results. When a flush or commit event occurs, MemA stops receiving
new indexing events, and indexing requests are sent to MemB. At this time search
requests are served from all three indexes: MemA, MemB, and the disk index. These
indexes are shown in figure 14.2.

 Once the disk merge is completed, MemA is cleared and MemB and MemA get
swapped. Until the next flush or commit, searches will be served from the new disk
index, new MemA, and the now empty MemB.

 Table 14.2 shows the states of different parts of the system as time (T) progresses.

Create,
start Zoie

D
Get last
committed
version

E

Retrieve
indexing data

F

Create consumer chain G
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

420 CHAPTER 14 Case study 3: LinkedIn

For each search request, we open and load a new IndexReader from each of the in-mem-
ory indexes, and along with the shared disk IndexReader, we build a list of IndexReaders
for the user. See the following code snippet used in a simple search thread. The Zoie
instance also implements the interface proj.zoie.api.indexReaderFactory (the
explicit cast is used to make this clear):

static IndexReader buildIndexReaderFromZoie(ZoieSystem indexingSystem){
 IndexReaderFactory readerFactory = (IndexReaderFactory) indexingSystem;

Table 14.2 State of Zoie’s indexes over time

Time MemA MemB DiskIndex

T1: Request 1 Request 1 indexed Empty Empty

T2: Request 2 Request 1 and 2
indexed

Empty Empty

T3: Request 3 Request 1 and 2
indexed

Request 3 indexed Copying index data from
MemA

T4: disk index published,
memA and memB swaps

Request 3 indexed Empty Request 1 and 2
indexed

T5: Request 4 Request 3 and 4
indexed

Empty Request 1 and 2
indexed

T5: Request 5 Request 3 and 4
indexed

Request 5 indexed Request 1 and 2
indexed,
Copying index data from
MemA

T6: disk index published,
memA and memB swaps

Request 5 indexed Empty Request 1, 2, 3, and 4
indexed

RAM A RAM BSwap

Flush

Indexing Feed

Figure 14.2 Zoie’s three-index architecture: two
in-memory indexes, and one disk-based index
 List<ZoieIndexReader> readerList = readerFactory.getIndexReaders();

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

421Real-time search with Zoie

 MultiReader reader = new MultiReader(readerList.toArray(
 new IndexReader[readerList.size()]), false);
 return reader;
}

IndexSearcher searcher = new IndexSearcher(
 buildIndexReaderFromZoie(indexingSystem));
...
indexingSystem.returnIndexReaders(readerList);

Next, let’s look at what knobs Zoie exposes to let us tune just how real-time we want
Zoie to be.

14.2.2 Real-time vs. near-real-time

With the helper in-memory index mechanism built into Zoie and the power of
Lucene’s incremental update feature, we’re able to achieve real-time search and
indexing. But there are applications where the real-time requirement may be relaxed
and near real time may be good enough. Say there’s a small gap of time between when
a document is indexed or updated and when it or its new version is reflected in the
search result. Zoie can be configured either programmatically or at runtime via JMX
to support the relaxed real-time behavior by doing the following:

Disabling real-time altogether (that is, don’t use in-memory indexes)
Adjusting the batchSize parameter, which is the number of indexing requests
that should be in the queue before the queue is flushed and indexed to
disk—only if this occurs before the batchDelay time condition is met
Adjusting the batchDelay parameter, which is the amount of time Zoie should
wait before the queue is flushed and indexed to disk—only if this occurs before
the batchSize condition is met

With this configuration, Zoie becomes a one-disk index-based streaming search and
indexing system, with real-time or content freshness tuned with the batchSize and
batchDelay parameters. The Zoie managed beans (MBeans) exposed via Java Man-
agement Extensions (JMX) can be seen in figures 14.3 and 14.4.

14.2.3 Documents and indexing requests

In Zoie, each document is expected to have a unique long ID (UID). Zoie keeps track
of any document change such as creation, modification, or deletion by UID. It’s the
application’s responsibility to provide a UID for each document to be inserted into the
index. The UID is also used to perform duplicate removal of documents in both the
memory index as well as the disk index. We also benefit by having a quick mapping
between Lucene docIDs to UIDs.

 Any manipulation of a document (creation, modification, or deletion) is propa-
gated to Zoie as an indexing request. The indexing requests are transformed to
proj.zoie.api.indexing.ZoieIndexable instances via a proj.zoie.api.index-
ing.ZoieIndexableInterpreter that’s provided to Zoie. The code in listing 14.2

demonstrates this.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

422 CHAPTER 14 Case study 3: LinkedIn

class DataIndexable implements ZoieIndexable {
 private Data _data;
 public DataIndexable(Data data) {
 _data = data;
 }

 public long getUID() {
 return _data.id;
 }

 public IndexingReq[] buildIndexingReqs() {
 Document doc = new Document();
 doc.add(new Field("content",
 _data.content,
 Store.NO,
 Index.ANALYZED));

 return new IndexingReq[]{new IndexingReq(doc)};
 }

 public boolean isDeleted() {
 return

"_MARKED_FOR_DELETE".equals(_data.content);

Listing 14.2 All indexing in Zoie is achieved through indexing requests

Figure 14.3 The read-only JMX view of Zoie’s attributes, as rendered by JConsole

Skip id field
(Zoie manages it)

B

Determine
deleted, skipped
at runtime

C

 }

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

423Real-time search with Zoie

 public boolean isSkip() {
 return "_MARKED_FOR_SKIP".equals(_data.content);
 }
}

class DataIndexableInterpreter implements ZoieIndexableInterpreter<Data> {
 public ZoieIndexable interpret(Data src) {
 return new DataIndexable(src);
 }
}

14.2.4 Custom IndexReaders

We find the ability to have application-specific IndexReaders very useful. In our case,
we wanted to provide facet search capabilities through Bobo Browse in conjunction
with Zoie for real-time search. So we’ve designed Zoie to pass on creating and loading
custom IndexReaders if desired.

 To do this, provide Zoie with a proj.zoie.api.indexing.IndexReaderDecorator
implementation:

class MyDoNothingFilterIndexReader extends FilterIndexReader {
 public MyDoNothingFilterIndexReader(IndexReader reader) {
 super(reader);

C

Figure 14.4 Zoie exposes controls via JMX, allowing an operator to change its behavior at runtime.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

424 CHAPTER 14 Case study 3: LinkedIn

 }
 public void updateInnerReader(IndexReader inner) {
 in = inner;
 }
}

class MyDoNothingIndexReaderDecorator implements
IndexReaderDecorator<MyDoNothingFilterIndexReader> {

 public MyDoNothingIndexReaderDecorator decorate(
 ZoieIndexReader indexReader)
 throws IOException {
 return new MyDoNothingFilterIndexReader(indexReader);
 }
 public MyDoNothingIndexReaderDecorator redecorate(
 MyDoNothingIndexReaderDecorator decorated,
 ZoieIndexReader copy)
 throws IOException {
 decorated.updateInnerReader(copy);
 return decorated;
 }
}

Notice we’re given a ZoieIndexReader, which is a Lucene IndexReader that can
quickly map a Lucene docID to the application UID:

long uid = zoieReader.getUID(docid);

And voilà, we’ve got ourselves our very own IndexReader. Next, let’s compare and
contrast Zoie and Lucene’s near-real-time search.

14.2.5 Comparison with Lucene near-real-time search

Lucene near-real-time search (NRT) capability, described in section 3.2.5, was intro-
duced with the 2.9.0 release, and it aims to solve the same problem. Lucene NRT adds
a couple of new methods to IndexWriter: getReader() and setIndexReader-
Warmer(). The former method gives a reference to an IndexReader that has visibility
into documents that have been indexed by that writer but that haven’t yet been com-
mitted using IndexWriter.commit(). The second method, setIndexReaderWarmer(),
lets callers specify a way to “warm up” the newly created IndexReader returned by
getReader() so it’s ready to be searched. The idea behind the IndexReaderWarmer is
that its warm(IndexReader) method will be called on the SegmentReader for newly
merged segments, letting you load any FieldCache state you need, for example.

 Although Zoie and Lucene NRT share functionality, there are important differ-
ences. From an API perspective, Lucene NRT is effectively a private view on the inter-
nals of IndexWriter as it indexes documents, writes segments, merges them, and
manages commit checkpoints. Zoie, on the other hand, is an indexing system on top
of a real-time indexing engine. Zoie acts as an asynchronous consumer of incoming
documents, and is optimized for managing the decisions to write to disk and make
balanced segment merges for you, specifically for the case of real-time search. As a
real time–enabled indexing system, Zoie is designed with smooth failover as well: if
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

425Real-time search with Zoie

you’re indexing too fast for Lucene to keep up with, Zoie buffers these documents
into a batch, which it tries to empty as fast as it can. But if you reach the limit on how
large that queue has been set to max out, the indexing system drops out of real-time
mode and starts blocking on the consume() call, forcing clients who are trying to
index too fast to slow down.

 Another feature of Zoie’s indexing system that’s different from raw Lucene NRT is
that Zoie keeps track of UID-to–internal docID mapping, for de-duplication of docu-
ments that have been modified in memory but that the disk directory doesn’t know
about yet. This UID can also be used for other things if your application keeps track of
that UID (for example, many advanced search techniques involve scoring or filtering
based on an external join with data that doesn’t live in your index but that shares the
same UID of the entities that become Lucene documents). Zoie’s form of index
reader warming is a little different than Lucene NRT, in that it allows you to plug in a
“generified” decorator that can be whatever subclass of ZoieIndexReader your appli-
cation needs, and it goes through whatever initialization and warming process you
specify before being returned from the ZoieSystem. At LinkedIn, we do facet-based
search with Bobo Browse (see section 14.1 for details), and this involves loading some
in-memory uninverted field data before the facet-enabled reader can be used.

 Lucene NRT took a different implementation approach to the concept of real-time
search: because the IndexWriter has a full in-memory workspace that it uses for index-
ing, the idea was to clone whatever of that structure is needed for searching and return
it for each getReader() call. The cost here is in choosing what in-memory state is
cloned when callers ask for readers during heavy indexing. Zoie took the approach
instead of trying to keep a RAMDirectory around to index into first, and keep it small
enough that doing a completely fresh reopen() call was still inexpensive, even when
done for each query request. Finally, as Zoie lives on top of Lucene without modifying
any Lucene-internal code, Lucene NRT can in fact be plugged into Zoie as the real-
time indexing engine. As of this writing, we have run some performance tests to com-
pare Zoie with Lucene’s NRT, but haven’t yet run a comprehensive enough set of tests.
We published our findings so far at http://code.google.com/p/zoie/wiki/
Performance_Comparisons_for_ZoieLucene24ZoieLucene29LuceneNRT, but we urge
you to run comparison tests yourself. To help with that, we’ve put together a detailed
recipe for running Zoie performance tests and published it on http://
code.google.com/p/zoie/wiki/Running_Performance_Test.

14.2.6 Distributed search

Zoie can be distributed easily by configuring the data provider to stream indexing
requests for a given partition and by including brokering and merging logic on the
result set. We assume documents are uniformly distributed across partitions, so we
don’t have a global IDF and we assume scores returned from different partitions are
comparable. The diagram in figure 14.5 shows this setup.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://code.google.com/p/zoie/wiki/Performance_Comparisons_for_ZoieLucene24ZoieLucene29LuceneNRT
http://code.google.com/p/zoie/wiki/Running_Performance_Test
http://code.google.com/p/zoie/wiki/Performance_Comparisons_for_ZoieLucene24ZoieLucene29LuceneNRT
http://code.google.com/p/zoie/wiki/Running_Performance_Test
http://www.it-ebooks.info/

426 CHAPTER 14 Case study 3: LinkedIn

The Broker/Merger in this case can be a separate service—for example, a servlet or
simply a MultiSearcher instance with RemoteSearchers from each of the Zoie-
Systems. Listing 14.3 shows an oversimplified example.

ZoieSystem system1 ... ;
IndexReader reader1 = buildIndexReaderFromZoie(system1);
IndexSearcher searcher1 = new IndexSearcher(reader1);
Naming.bind("//localhost/Searchable1",new RemoteSearchable(searcher1));

ZoieSystem system2 ... ;
IndexReader reader2 = buildIndexReaderFromZoie(system2);
IndexSearcher searcher2 = new IndexSearcher(reader2);
Naming.bind("//localhost/Searchable2",new RemoteSearchable(searcher2));

ZoieSystem system3 ... ;
IndexReader reader3 = buildIndexReaderFromZoie(system3);
IndexSearcher searcher3 = new IndexSearcher(reader3);
Naming.bind("//localhost/Searchable3",new RemoteSearchable(searcher3));

Searchable s1 = (Searchable)Naming.lookup("//localhost/Searchable1");
Searchable s2 = (Searchable)Naming.lookup("//localhost/Searchable2");
Searchable s3 = (Searchable)Naming.lookup("//localhost/Searchable3");
MultiSearcher broker = new MultiSearcher(new Searchable[]{s1,s2,s3});

We don’t actually use RMI (remote method invocation) in production. We have search
services running as servlets inside Jetty containers a remote procedure call (RPC)
through Spring-RPC.

Listing 14.3 Distributed search with Zoie

Partition 1

Zole System

Partition 3

Zole System

Partition 2

Zole System

Broker/Merger

Indexing Requests Figure 14.5 Distributed
search with Zoie

Create
search node 1

Create
search node 2

Create
search node 3

Create broker/merger
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

427Summary

14.3 Summary
This chapter examined two powerful packages created on top of Lucene for Linke-
dIn’s substantial search needs. The first is Bobo Browse, a system that adds support for
faceted search to Lucene. Bobo is a good example of a project that integrates well
with Lucene, and can even make itself immediately useful through Spring-based con-
figuration files, thus making it possible to add facets to an existing index and requir-
ing no reindexing.

 Zoie is a free and open source system for real-time indexing and searching that,
like Bobo Browse, works on top of Lucene. Zoie is being used in the LinkedIn produc-
tion search cluster serving search requests for people, jobs, companies, news, groups,
forum discussions, and so forth. For people search, Zoie is deployed in distributed
mode and is serving over 50 million documents in real time. As of this writing, Linke-
dIn runs Zoie on quad-core Solaris servers with 32 GB of RAM. Each server runs two
JVMs, each with one Zoie instance managing about 5 million document partitions. In
such a setup, Zoie handles about 5 million queries per day, per server with an average
latency of only 50 ms, while also processing about 150,000 updates per day. Add to
that the fact that some of the queries can be rather complex (such as 50 Boolean OR
clauses containing phrase queries etc.), and it’s clear that Zoie is a powerful system
that you ought to consider when looking for real-time search solutions. Zoie can be
downloaded from http://sna-projects.com/zoie/.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://sna-projects.com/zoie/
http://www.it-ebooks.info/

appendix A
Installing Lucene

The Java version of Lucene is just another JAR file, less than 1 MB in size. Using
Lucene’s API in your code requires only this single JAR file on your build and run-
time classpath; it has no dependencies. This appendix provides the specifics of
where to obtain Lucene, how to work with the distribution contents, and how to
build Lucene directly from its source code. If you’re using a port of Lucene in a
language other than Java, refer to chapter 10 and the documentation provided
with the port. If you’re using a contrib module, chapter 8 describes how they’re
built. This appendix covers the core library of the Java version only.

A.1 Binary installation
To obtain the binary distribution of Lucene, follow these steps:

1 Download the latest binary Lucene release from the download area of the
Apache Lucene website: http://lucene.apache.org/java. As of this writing,
the latest version is 3.0.1; the subsequent steps assume this version. Down-
load either the .zip or .tar.gz file, whichever format is more convenient for
your environment.

2 Extract the binary file to the directory of your choice on your file system. The
archive contains a top-level directory named lucene-3.0.1, so it’s safe to
extract to c:\ on Windows or your home directory on Unix. On Windows, if
you have WinZip handy, use it to open the .zip file and extract its contents to
c:\. If you’re on Unix or you’re using cygwin on Windows, unzip and untar
(tar zxvf lucene-3.0.1.tar.gz) the .tar.gz file in your home directory.

3 Under the created lucene-3.0.1 directory, you’ll find lucene-core-3.0.1.jar.
This is the only file required to introduce Lucene into your applications.
How you incorporate Lucene’s JAR file into your application depends on
your environment; there are numerous options. We recommend using Ant
428

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://lucene.apache.org/java
http://www.it-ebooks.info/

429Running the command-line demo

to build your application’s code. Be sure your code is compiled against the
Lucene JAR using the classpath options of the <javac> task.

4 Include Lucene’s JAR file in your application’s distribution appropriately. For
example, a web application using Lucene would include lucene-core-3.0.1.jar in
the WEB-INF/lib directory. For command-line applications, be sure Lucene is
on the classpath when launching the JVM.

The binary distribution includes a substantial amount of documentation, including
Javadocs. The root of the documentation is docs/index.html, which you can open in a
web browser. Lucene’s distribution also ships two demonstration applications. We
apologize in advance for the crude state of these demos—they lack polish when it
comes to ease of use—but the documentation (found in docs/demo.html) describes
how to use them step by step; we also cover the basics of running them here.

A.2 Running the command-line demo
The command-line Lucene demo consists of two command-line programs: one that
indexes a directory tree of files and another that provides a simple search interface.
They’re contained in a separate JAR file, lucene-demos-3.0.1.jar, and are similar to the
Indexer and Searcher examples we covered in chapter 1. To run this demo, set your
current working directory to the directory where the binary distribution was
expanded. Next, run IndexFiles like this:

java -cp lucene-core-3.0.1.jar;lucene-demos-3.0.1.jar

 ➥ org.apache.lucene.demo.IndexFiles docs
…
adding docs/queryparsersyntax.html
adding docs/resources.html
adding docs/systemproperties.html
adding docs/whoweare.html
9454 total milliseconds

This command indexes the entire docs directory tree into an index stored in the
index subdirectory of the location where you executed the command.

NOTE Literally every file in the docs directory tree is indexed, including binary
files such as *.png and *.jpg. None of the files are parsed; instead, each
file is indexed by streaming its bytes into StandardAnalyzer.

To search the index just created, execute SearchFiles in this manner:

java -cp lucene-core-3.0.1.jar;lucene-demos-3.0.1.jar
 org.apache.lucene.demo.SearchFiles

Query: IndexSearcher AND QueryParser
Searching for: +indexsearcher +queryparser
10 total matching documents
0. docs/api/index-all.html
1. docs/api/allclasses-frame.html
2. docs/api/allclasses-noframe.html

3. docs/api/org/apache/lucene/search/class-use/Query.html

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

430 APPENDIX A Installing Lucene

4. docs/api/overview-summary.html
5. docs/api/overview-tree.html
6. docs/demo2.html
7. docs/demo4.html
8. docs/api/org/apache/lucene/search/package-summary.html
9. docs/api/org/apache/lucene/search/package-tree.html

SearchFiles prompts interactively with Query:. QueryParser is used with StandardA-
nalyzer to create a Query. A maximum of 10 hits are shown at a time; if there are
more, you can page through them. Press Ctrl-C to exit the program.

 Next, let’s look at the web demo.

A.3 Running the web application demo
The web demo is slightly involved to set up and run properly. You need a web con-
tainer; our instructions are for Tomcat 6.0.18. The docs/demo.html documentation
provides detailed instructions for setting up and running the web application, but you
can also follow the steps provided here.

 The index used by the web application differs slightly from that in the command-
line demo. First, it restricts itself to indexing only .html, .htm, and .txt files. Each file it
processes (including .txt files) is parsed using a custom rudimentary HTML parser. To
build the index initially, execute IndexHTML:

java -cp lucene-core-3.0.1.jar;lucene-demos-3.0.1.jar
 org.apache.lucene.demo.IndexHTML -create -index webindex docs
…
adding docs/resources.html
adding docs/systemproperties.html
adding docs/whoweare.html
Optimizing index...
7220 total milliseconds

The -index webindex switch sets the location of the index directory. In a moment,
you’ll need the full path to this directory to configure the web application. The final
docs argument to IndexHTML is the directory tree to index. The –create switch creates
an index from scratch. Remove this switch to update the index with files that have
been added or changed since the last time the index was built.

 Next, deploy luceneweb.war (from the root directory of the extracted distribution)
into CATALINA_HOME/webapps. Start Tomcat, wait for the container to complete the
startup routine, then edit CATALINA_HOME/webapps/lucene-web/configuration.jsp
using a text editor (Tomcat should have expanded the .war file into a luceneweb
directory automatically). Change the value of indexLocation appropriately, as in this
example, specifying the absolute path to the index you built with IndexHTML:

String indexLocation =
 "/dev/LuceneInAction/install/lucene-3.0.1/webindex";

Now you’re ready to try the web application. Visit http://localhost:8080/luceneweb in
your web browser, and you should see “Welcome to the Lucene Template applica-

tion…” (you can also change the header and footer text in configuration.jsp). If all is

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://localhost:8080/luceneweb
http://www.it-ebooks.info/

431Building from source

well with your configuration, searching for Lucene-specific words such as "Query-
Parser AND Analyzer" should list valid results based on Lucene’s documentation.

 You may try to click on one of the search results links and receive an error.
IndexHTML indexes a url field, which in this case is a relative path of docs/…. To make
the result links work properly, copy the docs directory from the Lucene distribution to
CATALINA_HOME/webapps/luceneweb.

NOTE Now that you’ve built two indexes, one for the command-line demo and
the other for the web application demo, it’s a perfect time to try Luke.
See section 8.1 for details on using Luke. Point it at the index, and surf
around a bit to get a feel for Luke and the contents of the index.

Next you’ll see how to build Lucene from sources, which is useful if you’d like to start
tinkering with your own changes to Lucene’s source code.

A.4 Building from source
Lucene’s source code is freely and easily available from Apache’s Subversion reposi-
tory. The prerequisites to obtain and build Lucene from source are Subversion client,
Java Developer Kit (JDK), and Apache Ant. Follow these steps to build Lucene:

1 Check out the source code from Apache’s Subversion repository. Follow the
instructions at the Lucene Java website (http://lucene.apache.org/java) to
access the repository using anonymous read-only access. This boils down to exe-
cuting the following commands (from cygwin on Windows, or a Unix shell):

svn checkout https://svn.apache.org/repos/asf/lucene/dev/trunk/lucene
lucene-trunk

2 Build Lucene with Ant. At the command prompt, set your current working
directory to the directory where you checked out the Lucene Subversion repos-
itory (C:\apache\lucene-trunk, for example). Type ant at the command line.
Lucene’s JAR will be compiled to the build subdirectory. The JAR filename is
lucene-core-<version>.jar, where <version> depends on the current state of the
code you obtained. It will typically be the next minor release, with a –dev
attached, for example 3.1-dev.

3 Run the unit tests. If the Ant build succeeds, next run ant test (add JUnit’s JAR
to ANT_HOME/lib if it isn’t already there) and ensure that all of Lucene’s unit
tests pass.

Lucene uses JFlex grammars for StandardTokenizer, and JavaCC grammars for
QueryParser and the demo HTMLParser. The already-compiled .java version of the .jj
files exists in the Subversion source code, so neither JFlex nor JavaCC are needed for
compilation. But if you wish to modify the parser grammars, you need JFlex and
JavaCC; you must also run the ant jflex or ant javacc target. You can find more
details in the BUILD.txt file in the root directory of Lucene’s Subversion repository.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://lucene.apache.org/java
http://www.it-ebooks.info/

432 APPENDIX A Installing Lucene

A.5 Troubleshooting
We’d rather not try to guess what kinds of issues you may run into as you follow the
steps to install Lucene, build Lucene, or run the demos. Checking the FAQ, searching
the archives of the lucene-user email list, and using Lucene’s issue-tracking system are
good first steps when you have questions or issues. You’ll find details at the Lucene
website: http://lucene.apache.org/java.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://lucene.apache.org/java
http://www.it-ebooks.info/

appendix B
Lucene index format

In this book we’ve treated the Lucene index more or less as a black box and have
concerned ourselves only with its logical view. Although you don’t need to under-
stand index structure details in order to use Lucene, you may be curious about the
“magic.” Lucene’s index structure is a case study in itself of highly efficient data
structures to maximize performance and minimize resource usage. You may see it
as a purely technical achievement, or you can view it as a masterful work of art.
There’s something innately beautiful about representing rich structure in the most
efficient manner possible. (Consider the information represented by fractal formu-
las or DNA as nature’s proof.)

 In this appendix, we’ll first review the logical view of a Lucene index, where
we’ve fed documents into Lucene and retrieved them during searches. Then, we’ll
expose the inner structure of Lucene’s inverted index.

B.1 Logical index view
Let’s first take a step back and start with a review of what you already know about
Lucene’s index. Consider figure B.1. From the perspective of a software developer
using Lucene’s API, an index can be considered a black box represented by the
abstract Directory class. When indexing, you create instances of the Lucene Docu-
ment class and populate it with Fields that consist of name and value pairs. The
Document is then indexed by passing it to IndexWriter.addDocument(Document).
When searching, you again use the abstract Directory class to represent the index.
You pass that Directory to the IndexSearcher class and then find Documents that
match a given query by passing search terms encapsulated in the Query object to
one of IndexSearcher’s search methods. The results are matching Documents rep-
resented by the ScoreDoc object.
433

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

434 APPENDIX B Lucene index format

B.2 About index structure
When we described Lucene’s Directory class in section 1.5.2, we pointed out that one
of its concrete subclasses, SimpleFSDirectory, stores the index in a file system direc-
tory. We’ve also used Indexer, a program for indexing text files, shown in listing 1.1.
Recall that we specified several arguments when we invoked Indexer from the com-
mand line and that one of those arguments was the directory in which we wanted
Indexer to create a Lucene index. What does that directory look like once Indexer is
done running? What does it contain? In this section, we’ll peek into a Lucene index
and explain its structure.

 Before we start, you should know that the index file format often changes between
releases. It’s free to change without breaking backward compatibility because the
classes that access the index can detect when they’re interacting with an older format
index and act accordingly. The current format is always documented with each
release, for example here, for the 3.0.1 release:

http://lucene.apache.org/java/3_0_1/fileformats.html

Lucene supports two index structures: multifile and compound. Multifile indexes use
quite a few files to represent the index, whereas compound indexes use a special file,
much like an archive such as a zip file, to hold multiple index files in a single file. Let’s
look at each type of index structure, starting with multifile.

B.2.1 Understanding the multifile index structure

If you look at the index directory created by our Indexer, you’ll see a number of files
whose names may seem random at first. These are index files, and they look similar to
those shown here:

-rw-rw-rw- 1 mike users 12327579 Feb 29 05:29 _2.fdt
-rw-rw-rw- 1 mike users 6400 Feb 29 05:29 _2.fdx

Figure B.1 The logical, black-box view
of a Lucene index
-rw-rw-rw- 1 mike users 33 Feb 29 05:29 _2.fnm

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

435About index structure

-rw-rw-rw- 1 mike users 1036074 Feb 29 05:29 _2.frq
-rw-rw-rw- 1 mike users 2404 Feb 29 05:29 _2.nrm
-rw-rw-rw- 1 mike users 2128366 Feb 29 05:29 _2.prx
-rw-rw-rw- 1 mike users 14055 Feb 29 05:29 _2.tii
-rw-rw-rw- 1 mike users 1034353 Feb 29 05:29 _2.tis
-rw-rw-rw- 1 mike users 5829 Feb 29 05:29 _2.tvd
-rw-rw-rw- 1 mike users 10227627 Feb 29 05:29 _2.tvf
-rw-rw-rw- 1 mike users 12804 Feb 29 05:29 _2.tvx
-rw-rw-rw- 1 mike users 20 Feb 29 05:29 segments.gen
-rw-rw-rw- 1 mike users 53 Feb 29 05:29 segments_3

Notice that some files share the same prefix. In this example index, most of the files
start with the prefix _2, followed by various extensions. This leads us to the notion of
segments.
INDEX SEGMENTS

A Lucene index consists of one or more segments, and each segment is made up of
several index files. Index files that belong to the same segment share a common prefix
and differ in the suffix. In the previous example index, the index consisted of a single
segment whose files started with _2.

 The following example shows an index with two segments, _0 and _1:

-rw-rw-rw- 1 mike users 7743790 Feb 29 05:28 _0.fdt
-rw-rw-rw- 1 mike users 3200 Feb 29 05:28 _0.fdx
-rw-rw-rw- 1 mike users 33 Feb 29 05:28 _0.fnm
-rw-rw-rw- 1 mike users 602012 Feb 29 05:28 _0.frq
-rw-rw-rw- 1 mike users 1204 Feb 29 05:28 _0.nrm
-rw-rw-rw- 1 mike users 1337462 Feb 29 05:28 _0.prx
-rw-rw-rw- 1 mike users 10094 Feb 29 05:28 _0.tii
-rw-rw-rw- 1 mike users 737331 Feb 29 05:28 _0.tis
-rw-rw-rw- 1 mike users 2949 Feb 29 05:28 _0.tvd
-rw-rw-rw- 1 mike users 6294227 Feb 29 05:28 _0.tvf
-rw-rw-rw- 1 mike users 6404 Feb 29 05:28 _0.tvx
-rw-rw-rw- 1 mike users 4583789 Feb 29 05:28 _1.fdt
-rw-rw-rw- 1 mike users 3200 Feb 29 05:28 _1.fdx
-rw-rw-rw- 1 mike users 33 Feb 29 05:28 _1.fnm
-rw-rw-rw- 1 mike users 405527 Feb 29 05:28 _1.frq
-rw-rw-rw- 1 mike users 1204 Feb 29 05:28 _1.nrm
-rw-rw-rw- 1 mike users 790904 Feb 29 05:28 _1.prx
-rw-rw-rw- 1 mike users 7499 Feb 29 05:28 _1.tii
-rw-rw-rw- 1 mike users 548646 Feb 29 05:28 _1.tis
-rw-rw-rw- 1 mike users 2884 Feb 29 05:28 _1.tvd
-rw-rw-rw- 1 mike users 3933404 Feb 29 05:28 _1.tvf
-rw-rw-rw- 1 mike users 6404 Feb 29 05:28 _1.tvx
-rw-rw-rw- 1 mike users 20 Feb 29 05:28 segments.gen
-rw-rw-rw- 1 mike users 78 Feb 29 05:28 segments_3

You can think of a segment as a subindex, although each segment isn’t a fully inde-
pendent index.

 As you’ll see in the next section, each segment contains one or more Lucene Doc-
uments, the same ones we add to the index with the addDocument(Document) method
in the IndexWriter class. By now you may be wondering what function segments serve

in a Lucene index; what follows is the answer to that question.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

436 APPENDIX B Lucene index format

INCREMENTAL INDEXING

Using segments lets you quickly add new Documents to the index by adding them to
newly created index segments and only periodically merging them with other, existing
segments. This process makes additions efficient because it minimizes physical index
modifications. Figure B.2 shows an index that holds 24 Documents. This figure shows
an unoptimized index—it contains multiple segments. If this index were to be opti-
mized using the default Lucene indexing parameters, all 24 of its documents would
be merged into a single segment.

 One of Lucene’s strengths is that it supports incremental indexing, which isn’t
something every IR library is capable of. Whereas some IR libraries need to reindex
the whole corpus when new data is added, Lucene doesn’t. After a document has been
added to an index, its content is immediately made searchable. In IR terminology, this
important feature is called incremental indexing. The fact that Lucene supports
incremental indexing makes Lucene suitable for environments that deal with large
bodies of information where complete reindexing would be unacceptable.

 Because new segments are created as new Documents are indexed, the number of
segments, and hence index files, varies while indexing is in progress. Once an index is
fully built, the number of index files and segments remains steady.
A CLOSER LOOK AT INDEX FILES

Each index file carries a certain type of information essential to Lucene. If any index
file is modified or removed by anything other than Lucene itself, the index becomes
corrupted, and the only option is to run the CheckIndex tool (described in
section 11.5.2) or perform a complete reindexing of the original data. On the other
hand, you can add random files to a Lucene index directory without corrupting the
index. For instance, if we add a file called random.txt to the index directory, as shown
here, Lucene ignores that file, and the index doesn’t become corrupted:

-rw-rw-rw- 1 mike users 12327579 Feb 29 05:29 _2.fdt
-rw-rw-rw- 1 mike users 6400 Feb 29 05:29 _2.fdx

Document

Segment 1

Segment 2

Segment 3

Figure B.2 Unoptimized index with three
segments, holding 24 documents
-rw-rw-rw- 1 mike users 33 Feb 29 05:29 _2.fnm

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

437About index structure

-rw-rw-rw- 1 mike users 1036074 Feb 29 05:29 _2.frq
-rw-rw-rw- 1 mike users 2404 Feb 29 05:29 _2.nrm
-rw-rw-rw- 1 mike users 2128366 Feb 29 05:29 _2.prx
-rw-rw-rw- 1 mike users 14055 Feb 29 05:29 _2.tii
-rw-rw-rw- 1 mike users 1034353 Feb 29 05:29 _2.tis
-rw-rw-rw- 1 mike users 5829 Feb 29 05:29 _2.tvd
-rw-rw-rw- 1 mike users 10227627 Feb 29 05:29 _2.tvf
-rw-rw-rw- 1 mike users 12804 Feb 29 05:29 _2.tvx
-rw-rw-rw- 1 mike users 17 Mar 30 03:34 random.txt
-rw-rw-rw- 1 mike users 20 Feb 29 05:29 segments.gen
-rw-rw-rw- 1 mike users 53 Feb 29 05:29 segments_3

The secret to this is the segments file (segments_3). As you may have guessed from its
name, the segments file stores the name and certain details of all existing index seg-
ments. Every time an IndexWriter commits a change to the index, the generation
(the _3 in the previous code snippet) of the segments file is incremented. For exam-
ple, a commit to this index would write segments_4 and remove segments_3 as well as
any now unreferenced files. Before accessing any files in the index directory, Lucene
consults this file to figure out which index files to open and read. Our example index
has a single segment, _2, whose name is stored in this segments file, so Lucene knows
to look only for files with the _2 prefix. Lucene also limits itself to files with known
extensions, such as .fdt, .fdx, and other extensions shown in our example, so even sav-
ing a file with a segment prefix, such as _2.txt, won’t throw Lucene off. Of course, pol-
luting an index directory with non-Lucene files is strongly discouraged.

 The exact number of files that constitute a Lucene index and each segment varies
from index to index and depends how the fields were index (for example, indexing
term vectors adds three files per segment). But every index contains one segments file
per commit and a single segments.gen file. The segments.gen file is always 20 bytes
and contains the suffix (generation) of the current segments as a redundant way for
Lucene to determine the most recent commit.
CREATING A MULTIFILE INDEX

By now you should have a good grasp of the multifile index structure; but how do you
use the API to instruct Lucene to create a multifile index and not the default com-
pound-file index? Here’s the answer:

IndexWriter writer = new IndexWriter(indexDir,
 new StandardAnalyzer(Version.LUCENE_30),
 true, IndexWriter.MaxFieldLength.UNLIMITED);
writer.setUseCompoundFile(false);

Because the compound-file index structure is the default, we disable it and switch to a
multifile index by calling setUseCompoundFile(false) on an IndexWriter instance.

B.2.2 Understanding the compound index structure

A multifile index stores many separate files per segment. Furthermore, because new
segments are created whenever documents are added to the index, there will be a vari-
able and possibly large number of files in an index directory. Although the multifile

index structure is straightforward and works for most scenarios, it can result in too

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

438 APPENDIX B Lucene index format

many open files when an index has many segments, or when many indexes are open
within a single JVM. Section 11.3.2 provides more details on understanding Lucene’s
use of file descriptors.

 Modern OSs limit the number of files in the system, and per process, that can be
opened at one time. Recall that Lucene creates new segments as new documents are
added, and every so often it merges them to reduce the number of index files. But
while the merge procedure is executing, the number of index files temporarily
increases. If Lucene is used in an environment with lots of indexes that are being
searched or indexed simultaneously, it’s possible to hit the limit of open files set by the
OS. This can also happen with a single Lucene index if the index isn’t optimized or if
other applications are running simultaneously and keeping many files open. Lucene’s
use of open file handles depends on the structure and state of an index.
Section 11.3.2 describes approaches to control the number of open files.
COMPOUND INDEX FILES

The only visible difference between the compound and multifile indexes is the con-
tents of an index directory. Here’s an example of a compound index:

-rw-rw-rw- 1 mike users 12441314 Mar 30 04:27 _2.cfs
-rw-rw-rw- 1 mike users 15 Mar 30 04:27 segments_4
-rw-rw-rw- 1 mike users 20 Mar 30 04:27 segments.gen

Instead of having to open and read 13 files from the index, as in the multifile index,
Lucene must open only three files when accessing this compound index, thereby con-
suming fewer system resources. The compound index reduces the number of index
files, but the concept of segments, documents, fields, and terms still applies. The dif-
ference is that a compound index contains a single .cfs file per segment, whereas each
segment in a multifile index consists of seven different files. The compound structure
encapsulates individual index files in a single .cfs file.
CREATING A COMPOUND INDEX

Because the compound index structure is the default, you don’t have to do anything
to specify it. But if you like explicit code, you can call the setUseCompoundFile(bool-
ean) method, passing in true:

IndexWriter writer = new IndexWriter(indexDir,
 new StandardAnalyzer(Version.LUCENE_30),
 true, IndexWriter.MaxFieldLength.UNLIMITED);
writer.setUseCompoundFile(true);

You aren’t locked into the multifile or compound format. After indexing, you can still
switch from one format to another, although this will only affect newly written seg-
ments. But there is a trick!

B.2.3 Converting from one index structure to the other

It’s important to note that you can switch between the two described index structures
at any point during indexing. All you have to do is call the IndexWriter’s setUseCom-
poundFiles(boolean) method at any time during indexing; the next time Lucene

merges index segments, it will write the new segment in the format you specified.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

439Inverted index

 Similarly, you can convert the structure of an existing index without adding more
documents. For example, you may have a multifile index that you want to convert to a
compound one, to reduce the number of open files used by Lucene. To do so, open
your index with IndexWriter, specify the compound structure, optimize the index,
and close it:

IndexWriter writer = new IndexWriter(indexDir,
 new StandardAnalyzer(Version.LUCENE_30),
 IndexWriter.MaxFieldLength.UNLIMITED);
writer.setUseCompoundFile(true);
writer.optimize();
writer.close();

We discussed optimizing indexes in section 2.9. Optimizing forces Lucene to merge
index segments, thereby giving it a chance to write them in a new format specified via
the setUseCompoundFile(boolean) method.

B.3 Inverted index
Lucene uses a well-known index structure called an inverted index. Quite simply, and
probably unsurprisingly, an inverted index is an inside-out arrangement of documents
in which terms take center stage. Each term refers to the documents that contain it.
Let’s dissect our sample book data index to get a deeper glimpse at the files in an
index Directory.

 Regardless of whether you’re working with a RAMDirectory, an FSDirectory, or
any other Directory implementation, the internal structure is a group of files. In a
RAMDirectory, the files are virtual and live entirely within RAM. FSDirectory literally
represents an index as a file system directory, as described earlier in this appendix.

 The compound file mode adds an additional twist regarding the files in a Direc-
tory. When an IndexWriter is set for compound file mode, the “files” are written to a
single .cfs file, which alleviates the common issue of running out of file handles. See
section B.2.2 for more information on the compound file mode.

 Our summary glosses over most of the intricacies of data compression used in the
actual data representations. This extrapolation is helpful in giving you a feel for the
structure instead of getting caught up in the minutiae (which, again, are detailed on
the Lucene website).

 Figure B.3 represents a slice of our sample book index. The slice is of a single seg-
ment (in this case, we had an optimized index with only a single segment). A segment
is given a unique filename prefix (_c in this case).

 The following sections describe each of the files shown in figure B.3 in more
detail.
FIELD NAMES (.FNM)

The .fnm file contains all the field names used by documents in the associated seg-
ment. Each field is flagged to indicate options that were used while indexing:

Is it indexed?

Does it have term vectors enabled?

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

440 APPENDIX B Lucene index format

Does it store norms?
Does it have payloads?

The order of the field names in the .fnm file is determined during indexing and isn’t
necessarily alphabetical. Each field is assigned a unique integer, the field number,
according to the order in this file. That field number, instead of the string name, is
used in other Lucene files to save space.
TERM DICTIONARY (.TIS, .TII)

All terms (tuples of field name and value) in a segment are stored in the .tis file.
Terms are ordered first alphabetically, according to the UTF 16 Java character, by field
name and then by value within a field. Each term entry contains its document frequency:
the number of documents that contain this term within the segment.

 Figure B.3 shows only a sampling of the terms in our index, one or more from
each field. Not shown is the .tii file, which is a cross-section of the .tis file designed to
be kept in physical memory for random access to the .tis file. For each term in the .tis
file, the .frq file contains entries for each document containing the term.

Field Name Indexed? V ectored?

subject

contents

modified

pubmonth

title

category

isbn

path

author

url

✔ ✔

✔

✔

✔

✔

✔

✔

✔

✔

.fnm

Document # Frequency
...

5

6

...

1

2

.frq

.prx

Position

...

9

1

3

...

Field Value doc freq.

author

category

contents

isbn

modified

path

pubmonth

subject

title

Andy Hunt

Bob Flaws

/education/pedagogy

/health/alternative/chinese

action

junit

0060812451

Odrgbnk28

/Users/erik/dev/LuceneInAction...

197903

agile

action

1

1

1

1

3

2

1

2

1

1

2

3

.tis
Figure B.3 Detailed look inside the Lucene index format

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

441Inverted index

 In our sample index, two books have the value “junit” in the contents field: JUnit
in Action, Second Edition (document ID 6), and Ant in Action (document ID 5).
TERM FREQUENCIES

Term frequencies in each document are listed in the .frq file. In our sample index,
Ant in Action (document ID 5) has the value junit once in the contents field. JUnit in
Action, Second Edition has the value junit twice, provided once by the title field and
once by the subject field. Our contents field is an aggregation of title, subject, and
author. The frequency of a term in a document factors into the score calculation (see
section 3.3) and typically boosts a document’s relevance for higher frequencies.

 For each document listed in the .frq file, the positions (.prx) file contains entries
for each occurrence of the term within a document.
TERM POSITIONS

The .prx file lists the position of each term within a document. The position informa-
tion is used when queries demand it, such as phrase queries and span queries. Posi-
tion information for tokenized fields comes directly from the token position
increments designated during analysis. This file also contains the payloads, if any.

 Figure B.3 shows three positions, for each occurrence of the term junit. The first
occurrence is in document 5 (Ant in Action) in position 9. In the case of document 5,
the field value (after analysis) is ant action apache jakarta ant build tool java
development junit erik hatcher steve loughran. We used the StandardAnalyzer;
thus stop words (in in Ant in Action, for example) are removed. Document 6, JUnit in
Action, Second Edition, has a contents field containing the value junit twice, once in
position 1 and again in position 3: junit action junit unit testing mock objects
vincent massol ted husted.1

STORED FIELDS

When you request that a field be stored (Field.Store.YES), it’s written into two files:
the .fdx file and the .fdt file. The .fdx file contains simple index information, which is
used to resolve document number to exact position in the .fdt file for that document’s
stored fields. The .fdt file contains the contents of the fields that were stored.
TERM VECTORS

Term vectors are stored in three files. The .tvf file is the largest and stores the specific
terms, sorted alphabetically, and their frequencies, plus the optional offsets and posi-
tions for the terms. The .tvd file lists which fields had term vectors for a given docu-
ment and indexes byte offsets into the .tvf file so specific fields can be retrieved.
Finally, the .tvx file has index information, which resolves document numbers into the
byte positions in the .tvf and .tvd files.
NORMS

The .nrm file contains normalization factors that represent the boost information
gathered during indexing. Each document has one byte in this file, which encodes the
combination of the document’s boost, that field’s boost, and a normalization factor

1 We’re indebted to Luke, the fantastic index inspector, for allowing us to easily gather some of the data pro-

vided about the index structure.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

442 APPENDIX B Lucene index format

based on the overall length of the content in that field. Section 2.5.3 describes norms
in more detail.
DELETIONS

If any deletions have been committed to the index against documents contained in
the segment, there will be a .del file present, named _X_N.del, where X is the name of
the segment and N is an integer that increments every time new deletes are commit-
ted. This file contains a bit vector that’s set for any deleted documents.

B.4 Summary
The rationale for the index structure is twofold: maximum performance and mini-
mum resource utilization. For example, if a field isn’t indexed it’s a quick operation to
dismiss it entirely from queries based on the indexed flag of the .fnm file. The .tii file,
cached in RAM, allows for rapid random access into the term dictionary .tis file. Phrase
and span queries need not look for positional information if the term itself isn’t pres-
ent. Streamlining the information most often needed, and minimizing the number of
file accesses during searches is of critical concern. These are just some examples of
how well thought out the index structure design is. If this sort of low-level optimiza-
tion is of interest, refer to the Lucene index file format details on the Lucene website,
where you’ll find details we’ve glossed over here.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

appendix C
Lucene/contrib benchmark

The contrib/benchmark module is a useful framework for running repeatable per-
formance tests. By creating a short script, called an algorithm (file.alg), you tell the
benchmark module what test to run and how to report its results. In chapter 11 we
saw how to use benchmark for measuring Lucene’s indexing performance. In this
appendix we delve into more detail. Benchmark is quite new and will improve over
time, so always check the Javadocs. The package-level Javadocs in the byTask sub-
package have a good overview.

 You might be tempted to create your own testing framework instead of learning
how to use benchmark. Likely you’ve done so already many times in the past. But
there are some important reasons to make the up-front investment and use bench-
mark instead:

Because an algorithm file is a simple text file, it’s easily and quickly shared
with others so they can reproduce your results. This is vitally important in
cases where you’re trying to track down a performance anomaly and you’d
like to isolate the source. Whereas for your own testing framework often there
are numerous software dependencies and perhaps resources like local files or
databases, that would have to be somehow transferred for someone else to
run the test.
The benchmark framework already has built-in support for common stan-
dard sources of documents (such as Reuters, Wikipedia, or TREC).
With your own test, it’s easy to accidentally create performance overhead in
the test code itself (or even sneaky bugs!), which skews results. The bench-
mark package—because it’s open source—is well debugged and well tuned,
so it’s less likely to suffer from this issue. And it only gets better over time!
Thanks to a great many built-in tasks, you can create rich algorithms without
writing any Java code. By writing a few lines (the algorithm file) you can craft
443

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

444 APPENDIX C Lucene/contrib benchmark

nearly any test you’d like. You only have to change your script and rerun if you
want to test something else. No compilation required!
Benchmark has multiple extension points, to easily customize the source of
documents, source of queries, and how the metrics are reported in the end. For
advanced cases, you can also create and plug in your own tasks, as we did in sec-
tion 11.2.1.
Benchmark already gathers important metrics, like runtime, documents per
second, and memory usage, saving you from having to instrument these in your
custom test code.

Let’s get started with a simple algorithm.

C.1 Running an algorithm
Save the following lines to a file, test.alg:

The analyzer to use
analyzer=org.apache.lucene.analysis.standard.StandardAnalyzer

Content source
content.source=org.apache.lucene.benchmark.byTask.feeds.ReutersContentSource

Directory
directory=FSDirectory

Turn on stored fields
doc.stored = true

Turn on term vectors
doc.term.vectors = true

Don't use compound-file format
compound = false

Make only one pass through the documents
content.source.forever = false

Repeat 3 times
{"Rounds"

 # Clear the index
 ResetSystemErase

 # Name the contained tasks "BuildIndex"
 {"BuildIndex"

 # Create a new IndexWriter
 -CreateIndex

 # Add all docs
 { "AddDocs" AddDoc > : *

 # Close the index
 -CloseIndex
 }

 # Start a new round
 NewRound

} : 3

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

445Running an algorithm

Report on the BuildIndex task
RepSumByPrefRound BuildIndex

As you can probably guess, this algorithm indexes the entire Reuters corpus, three
times, and reports the performance of the BuildIndex step separately for each round.
Those steps include creating a new index (opening an IndexWriter), adding all Reu-
ters documents, and closing the index. Remember, when testing indexing perfor-
mance it’s important to include the time to close the index because necessary time-
consuming tasks happen during close(). For example, Lucene waits for any still-run-
ning background merges to finish, then syncs all newly written files in the index. To
run your algorithm, use this:

ant run-task -Dtask-alg=<file.alg> -Dtask.mem=512M

Note that if you’ve implemented any custom tasks, you’ll have to include the classpath
to your compiled sources by also adding this to the Ant command line:

-Dbenchmark.ext.classpath=/path/to/classes

Ant first runs a series of dependency targets—for example, making sure all sources
are compiled and downloading, and unpacking the Reuters corpus. Finally, it runs
your task and produces something like this under the run-task output:

Working Directory: /lucene/clean/contrib/benchmark/work
Running algorithm from: /lucene/clean/contrib/benchmark/eg1.alg
------------> config properties:
analyzer = org.apache.lucene.analysis.standard.StandardAnalyzer
compound = false
content.source =

➥ org.apache.lucene.benchmark.byTask.feeds.ReutersContentSource
content.source.forever = false
directory = FSDirectory
doc.stored = true
doc.term.vectors = true
work.dir = work

------------> algorithm:
Seq {
 Rounds_3 {
 ResetSystemErase
 BuildIndex {
 -CreateIndex
 AddDocs_Exhaust {
 AddDoc
 > * EXHAUST
 -CloseIndex
 }
 NewRound
 } * 3
 RepSumByPrefRound BuildIndex
}

 ------------> starting task: Seq
1.88 sec --> main added 1000 docs

4.04 sec --> main added 2000 docs

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

446 APPENDIX C Lucene/contrib benchmark

4.48 sec --> main added 3000 docs
…yada yada yada…
12.18 sec --> main added 21000 docs

--> Round 0-->1

------------> DocMaker statistics (0):
total bytes of unique texts: 17,550,748

0.2 sec --> main added 22000 docs
0.56 sec --> main added 23000 docs
0.92 sec --> main added 24000 docs
…yada yada yada…
8.02 sec --> main added 43000 docs

--> Round 1-->2

0.29 sec --> main added 44000 docs
0.63 sec --> main added 45000 docs
1.04 sec --> main added 46000 docs
…yada yada yada…
9.43 sec --> main added 64000 docs

--> Round 2-->3

-->Report sum by Prefix (BuildIndex) and Round (3 about 3 out of 14)
Operation round runCnt recsPerRun rec/s elapsedSec avgUsedMem avgTotalMem
BuildIndex 0 1 21578 1,682 12.83 26,303,608 81,788,928
BuildIndex - 1 - 1 - 21578 2,521 - 8.56 44,557,144 81,985,536
BuildIndex 2 1 21578 2,126 10.15 37,706,752 80,740,352
####################
D O N E !!!
####################

The benchmark module first prints all the settings you’re running with, under config
properties. It’s best to look this over and verify the settings are what you intended. Next
it “pretty-prints” the steps of the algorithm. You should also verify this algorithm is
what you expected. If you put a closing } in the wrong place, this is where you will spot
it. Finally, benchmark runs the algorithm and prints the status output, which usually
consists of

The content source periodically printing how many documents it has produced
The Rounds task printing whenever it finishes a new round

When this finishes, and assuming you have reporting tasks in your algorithm, the
report is generated, detailing the metrics from each round.

 The final report shows one line per round, because we’re using a report task (Rep-
SumByPrefRound) that breaks out results by round. For each round, it includes the
number of records (added documents in this case), records per second, elapsed sec-
onds, and memory usage. The average total memory is obtained by calling java.
lang.Runtime.getRuntime().totalMemory(). The average used memory is com-
puted by subtracting freeMemory() from totalMemory().

 What exactly is a record? In general, most tasks count as +1 on the record count.
For example, every call to AddDoc adds 1. Task sequences aggregate all records counts

of their children. To prevent the record count from incrementing, you prefix the task

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

447Parts of an algorithm file

with a hyphen (-) as we did earlier for CreateIndex and CloseIndex. This allows you
to include the cost (time and memory) of creating and closing the index yet correctly
amortize that total cost across all added documents.

 So that was pretty simple, right? From this you could probably poke around and
make your own algorithms. But to shine, you’ll need to know the full list of settings
and tasks that are available.

C.2 Parts of an algorithm file
Let’s dig into the various parts of an algorithm file. This is a simple text file. Com-
ments begin with the # character, and whitespace is generally not significant. Usually
the settings, which bind global names to their values, appear at the top. Next comes
the heart of the algorithm, which expresses the series of tasks to run, and in what
order. Finally, there’s usually one or more reporting tasks at the very end to generate
the final summary. Let’s look first at the settings.

 Settings are lines that match this form:

name = value

where name is a known setting (the full list of settings is shown in tables C.1, C.2, and
C.3). For example, compound = false tells the CreateIndex or OpenIndex task to cre-
ate the IndexWriter with setUseCompoundFile set to false.

 Often you want to run a series of rounds where each round uses different combi-
nations of settings. Imagine you’d like to measure the performance impact of chang-
ing RAM buffer sizes during indexing. You can do this like so:

name = header:value1:value2:value3

For example, ram.flush.mb = MB:2:4:8:16 would use a 2.0 MB, 4.0 MB, 8.0 MB, and
16.0 MB RAM buffer size in IndexWriter for each round of the test, and label the cor-
responding column in the report as “MB.” Table C.1 shows the general settings, table
C.2 shows settings that affect logging, and table C.3 shows settings that affect Index-
Writer. Be sure to consult the online documentation for an up-to-date list. Also, your
own custom tasks can define their own settings.

Table C.1 General settings

Name
Default value

Description

work.dir Specifies the root directory for data and indexes.
System property
benchmark.work.dir or work.

analyzer Contains the fully qualified class name to instantiate as the analyzer
for indexing and parsing queries.StandardAnalyzer

content.source Specifies the class that provides the raw content.
SingleDocSource

doc.maker Specifies the class used to create documents from the content pro-
vided by the content source.DocMaker
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

448 APPENDIX C Lucene/contrib benchmark

content.source.forever Boolean. If true, the content.source will reset itself upon run-
ning out of content and keep producing the same content forever.
Otherwise, it will stop when it has made one pass through its source.

true

content.source.verbose Specifies whether messages from the content source should be
printed.false

content.source.encoding Specifies the character encoding of the content source.
null

html.parser Contains the class name to filter HTML to text. The default is null
(no HTML parsing is invoked). You can specify
org.apache.lucene.benchmark.byTask.feeds.DemoHTMLP
arser to use the simple HTML parser included in Lucene’s demo
package.

Not set

doc.stored Boolean. If true, fields added to the document by the doc.maker
are created with Field.Store.YES.false

doc.tokenized Boolean. If true, fields added to the document by the doc.maker
are created with Field.Index.ANALYZED or
Field.Index.ANALYZED_NO_NORMS.

true

doc.tokenized.norms Specifies whether non-body fields in the document should be indexed
with norms.false

doc.body.tokenized.norms Specifies whether the body field should be indexed with norms.
true

doc.term.vector Boolean. If true, fields are indexed with term vectors enabled.
false

doc.term.vector.positions Boolean. If true, then term vectors positions are indexed.
false

doc.term.vector.offsets Boolean. If true, term vector offsets are indexed.
false

doc.store.body.bytes Boolean. If true, the document’s fields are indexed with
Field.Store.YES into the field docbytes.false

doc.random.id.limit Integer. If not equal to -1 the LineDocMaker tasks will randomly
pick IDs within this bound. This is useful with the UpdateDoc task
for testing IndexWriter’s updateDocument performance

-1

docs.dir Contains the string directory name. Used by certain document
sources as the root directory for finding document files in the file sys-
tem.

Depends on document source

docs.file Contains the string directory name. Used by certain document
sources as the root filename. Used by LineDocSource,
WriteLineFile, and EnwikiContentSource as the file for sin-
gle-line documents.

Not set

Table C.1 General settings (continued)

Name
Default value

Description
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

449Parts of an algorithm file

doc.index.props If true, the properties set by the content source for each document
will be indexed as separate fields. Presently only
SortableSingleDocMaker and any HTML content processed by
the HTML parser set properties.

false

doc.reuse.fields Boolean. If true, a single shared instance of Document and a sin-
gle shared instance of Field for each field in the document are
reused. This gains performance by avoiding allocation and GC costs.
But if you create a custom task that adds documents to an index
using private threads, you’ll need to turn this off. The normal parallel
task sequence, which also uses threads, may leave this at true
because the single instance is per thread.

true

query.maker Contains the string class name for the source of queries. See section
C.2.2 for details.SimpleQueryMaker

file.query.maker.file Specifies the string path to the filename used by
FileBasedQueryMaker. This is the file that contains one text
query per line

Not set

file.query.maker.default.field Specifies the field that FileBasedQueryMaker will issue its que-
ries against.body

doc.delete.step When deleting documents in steps, this is the step that’s added in
between deletions. See the DeleteDoc task for more detail.8

Table C.2 Settings that affect logging

Name
Default value

Description

log.step Integer. Specifies how often to print the progress line for non-content-
source tasks. You can also specify log.step.<TASK> (for example,
log.step.AddDoc) to set a separate step per task. A value of -1 turns
off logging for that task.

1000

content.source.log.step Integer. Specifies how often to print the progress line, as measured by the
number of docs created by the content source.0

log.queries Boolean. If true, the queries returned by the query maker are printed.
false

task.max.depth.log Integer. Controls which nested tasks should do any logging. Set this to a
lower number to limit how many tasks log. 0 means to log only the top-level
tasks.

0

writer.info.stream Enables IndexWriter’s infoStream logging. Use SystemOut for
System.out; SystemErr for System.err; or a filename to direct the
output to the specified file.

Not set

Table C.1 General settings (continued)

Name
Default value

Description
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

450 APPENDIX C Lucene/contrib benchmark

C.2.1 Content source and document maker

When running algorithms that index documents, you’ll need to specify a source that
creates documents. There are two settings:

content.source specifies a class that provides the raw content to create docu-
ments from.
doc.maker specifies a class that takes the raw content and produces Lucene
documents.

The default doc.maker, org.apache.lucene.benchmark.byTask.feeds.DocMaker, is
often sufficient. It will pull content from the content source, and based on the doc.*
settings (for example, doc.stored) create the appropriate Document. The list of built-
in ContentSources is shown in table C.4. In general, all content sources can decom-
press compressed bzip files on the fly and accept arbitrary encoding as specified by

Table C.3 Settings that affect IndexWriter

Setting
Default

Description

compound Boolean. True if the com-
pound file format should
be used.

true

merge.factor Merge factor

10

max.buffered Max buffered docs

-1 (don’t flush by doc count)

max.field.length Maximum field length

10000

directory Directory

RAMDirectory

ram.flush.mb RAM buffer size

16.0

merge.scheduler Merge scheduler

org.apache.lucene.index.ConcurrentMergeScheduler

merge.policy Merge policy

org.apache.lucene.index.LogByteSizeMergePolicy

deletion.policy Deletion policy

org.apache.lucene.index.KeepOnlyLastCommitDeletionPolicy
the content.source.encoding setting.

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

451Parts of an algorithm file

 Each of these classes is instantiated once, globally, and then all tasks will pull docu-
ments from this source. Table C.4 describes the built-in ContentSource classes.

 You can also create your own content source or doc maker by subclassing Content-
Source or DocMaker. But take care to make your class thread-safe because multiple
threads will share a single instance.

Table C.4 Built-in ContentSources

Name Description

SingleDocSource Provides a short (~150 words) fixed English text, for simple testing.

SortableSingleDocSource Like SingleDocSource, but also includes an integer field, sort_field; a
country field, country; and a random short string field, random_string. Their
values are randomly selected per document to enable testing sort perfor-
mance on the resulting index.

DirContentSource Recursively visits all files and directories under a root directory (specified with
the docs.dir setting), opening any file ending with the extension .txt, and
yielding the file’s contents. The first line of each file should contain the date,
the second line should contain the title, and the rest of the document is the
body.

LineDocSource Opens a single file, specified with the docs.file setting, and reads one
document per line. Each line should have title, date, and body, separated by
the tab character. Generally this source has far less overhead than the others
because it minimizes the I/O cost by working with only a single file.

EnwikiContentSource Generates documents directly from the large XML export provided by http://
wikipedia.org. The setting keep.image.only.docs, a Boolean setting that
defaults to true, decides whether image-only (no text) documents are kept.
Use docs.file to specify the XML file.

ReutersContentSource Generates documents unpacked from the Reuters corpus. The Ant task get-
files retrieves and unpacks the Reuters corpus. Documents are created as
*.txt files under the output directory work/reuters-out. The setting
docs.dir, defaulting to work/reuters-out, specifies the root location of
the unpacked corpus.

TrecContentSource Generates documents from the TREC corpus. This assumes you have already
unpacked the TREC into the directory set by docs.dir.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://wikipedia.org
http://wikipedia.org
http://www.it-ebooks.info/

452 APPENDIX C Lucene/contrib benchmark

C.2.2 Query maker

The query.maker setting determines which class to use for generating queries. Table
C.5 describes the built-in query makers.

C.3 Control structures
We’ve finished talking about settings, content sources, doc makers, and query makers.
Now we’ll talk about the available control structures in an algorithm, which is the all-
important “glue” that allows you to take built-in tasks and combine them in interesting
ways. Here are the building blocks:

Serial sequences are created with { … }. The enclosed tasks are run one after
another, by a single thread. For example:
{CreateIndex AddDoc CloseIndex}

creates a new index, adds a single document pulled from the doc maker, then
closes the index.

Run a task in the background by appending &. For example:
OpenReader

{ Search > : * &

{ Search > : * &

Wait(30)

CloseReader

opens a reader, runs two search threads in the background, waits for 30 sec-
onds, asks the background threads to stop, and closes the reader.

Table C.5 Built-in query makers

Name Description

FileBasedQueryMaker Reads queries from a text file one per line. Set
file.query.maker.default.field (defaults to body)
to specify which index field the parsed queries should be
issued against. Set file.query.maker.file to specify
the file containing the queries.

ReutersQueryMaker Generates a small fixed set of 10 queries that roughly match
the Reuters corpus.

EnwikiQueryMaker Generates a fixed set of 90 common and uncommon actual
Wikipedia queries.

SimpleQueryMaker Used only for testing. Generates a fixed set of 10 synthetic
queries.

SimpleSloppyPhraseQueryMaker Takes the fixed document text from SimpleDocMaker and
programmatically generates a number of queries with varying
degrees of slop (from 0 to 7) that would match the single
document from SimpleDocMaker.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

453Control structures

Parallel sequences are created with […]. A parallel sequence runs the
enclosed tasks with as many threads as there are tasks, with each task running in
its own thread. For example:
[AddDoc AddDoc AddDoc AddDoc]

creates four threads, each of which adds a single document, then stops.

Repeating a task multiple times is achieved by appending :N to the end. For
example:
{AddDoc}: 1000

adds the next 1,000 documents from the document source. Use * to pull all
documents from the doc maker. For example:
{AddDoc}: *

adds all documents from the doc maker. When you use this, you must also set
content.source.forever to false.

Repeating a task for a specified amount of time is achieved by appending :Xs to
the end. For example:
{AddDoc}: 10.0s
runs the AddDoc task for 10 seconds.

Name a sequence like this:
{"My Name" AddDoc} : 1000

This defines a single AddDoc called “My Name,” and runs that task 1,000 times.
The double quotes surrounding the name are required even if the name
doesn’t have spaces. Your name will then be used in the reports.

Some tasks optionally take a parameter string, in parentheses, after the task. For
example, AddDoc(1024) will create documents whose body field consists of
approximately 1,024 characters (an effort is made not to split words). If you try
to pass a parameter to a task that doesn’t take one, or the type isn’t correct,
you’ll hit a “Cannot understand algorithm” error. Tables C.6 and C.7 detail the
parameters accepted by each task.
Turning off statistics of the child task requires the > character instead of } or].
This is useful for avoiding the overhead of gathering statistics when you don’t
require that level of detail. For example:
{ "ManyAdds" AddDoc > : 10000

adds 10,000 docs and won’t individually track statistics of each AddDoc call (but
the 10,000 added docs are tracked by the outer sequence containing "Many-
Adds").

In addition to specifying how many times a task or task sequence should be
repeated, you can specify the target rate in count per second (default) or count
per minute. Do this by adding : N : R after the task. For example:
{ AddDoc } : 10000 : 100/sec

adds 10,000 documents at a rate of 100 documents per second. Or
 [AddDoc]: 10000: 3
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

454 APPENDIX C Lucene/contrib benchmark

adds 10,000 docs in parallel, spawning one thread for each added document, at
a rate of three new threads per second.

Each task contributes to the records count that’s used for reporting at the end.
For example, AddDoc returns 1. Most tasks return count 1, some return count 0,
and some return a count greater than 1. Sometimes you don’t want to include
the count of a task in your final report. To do that, simply prepend a hyphen
before your task. For example, if you use this:
{"BuildIndex"

 -CreateIndex

 {AddDoc}:10000

 -CloseIndex

 }

the report will record exactly 10,000 records, but if you leave the – out, it
reports 10,002.

C.4 Built-in tasks
We’ve discussed the settings and the control structures, or glue, that allow you to com-
bine tasks into larger sequences of tasks. Now, finally, let’s review the built-in tasks.
Table C.6 describes the built-in administration tasks, and table C.7 describes the tasks
for indexing and searching

 If the commands available for use in the algorithm don’t meet your needs, you can
add commands by adding a new task under the org.apache.lucene.bench-

mark.byTask.tasks package. You should extend the PerfTask abstract class. Make
sure that your new task class name is suffixed by Task. For example, once you compile
the class SliceBreadTask.java and ensure it’s on the classpath that you specify to
Ant, then you can invoke this task by using SliceBread in your algorithm.

Table C.6 Administration tasks

Task Name Description

ClearStats Clears all statistics. Report tasks run after this point will only include statistics from
tasks run after this task.

NewRound Begins a new round of a test. This command makes the most sense at the end of an
outermost sequence. This increments a global “round counter.” All tasks that start will
record this new round count and their statistics would be aggregated under that new
round count. For example, see the RepSumByNameRound reporting task.
In addition, NewRound moves to the next setting if the setting specified different set-
tings per round. For example, with setting merge.factor=mrg:10:100:10:100,
merge.factor would change to the next value after each round. Note that if you have
more rounds than number of settings, it simply wraps around to the first setting again.

ResetInputs Reinitializes the document and query sources back to the start. For example, it’s a
good idea to insert this call after NewRound to make sure your document source feeds
the exact same documents for each round. This is only necessary when you aren’t run-
ning your content source to exhaustion.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

455Built-in tasks

ResetSystemErase Resets all index and input data, and calls System.gc(). This doesn’t reset statistics.
It also calls ResetInputs. All writers and readers are closed, nulled, and deleted. The
index and directory are erased. You must call CreateIndex to create a new index
after this call if you intend to add documents to an index.

ResetSystemSoft Just like ResetSystemErase, except the index and work directory aren’t erased. This
is useful for testing performance of opening an existing index for searching or updating.
You can use the OpenIndex task after this reset.

Table C.7 Built-in tasks for indexing and searching

Task Name
Description

Parameter

CreateIndex
Creates a new index with IndexWriter. You can
then use the AddDoc tand UpdateDoc tasks to
make changes to the index.

OpenIndex
Opens an existing index with IndexWriter. You
can then use the AddDoc and UpdateDoc tasks
to change the index.

commitName
A string label specifying which commit should be
opened. This must match the commitName
passed to a previous CommitIndex call.

OptimizeIndex
Optimizes the index. This task optionally takes an
integer parameter, which is the maximum number
of segments to optimize. This calls the
IndexWriter.optimize(int
maxNumSegments) method. If there’s no parame-
ter, it defaults to 1. This requires that an
IndexWriter be opened with either
CreateIndex or OpenIndex.

maxNumSegments
This is an integer, allowing you to perform a partial
optimize if it’s greater than 1.

CommitIndex
Calls commit on the currently open
IndexWriter. This requires that an
IndexWriter be opened with either
CreateIndex or OpenIndex.

commitName
A string label that’s recorded into the commit and
can later be used by OpenIndex to open a specific
commit.

RollbackIndex
Calls IndexWriter.rollback to undo all
changes done by the current IndexWriter since
the last commit. This is useful for repeatable tests
where you want each test to perform indexing but
not commit any of the changes to the index so that
each test always starts from the same index.

Table C.6 Administration tasks (continued)

Task Name Description
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

456 APPENDIX C Lucene/contrib benchmark

CloseIndex
Closes the open index. doWait

true or false, passed to
IndexWriter.close. If false, the
IndexWriter will abort any running merges and
forcefully close. This parameter is optional and
defaults to true.

OpenReader
Creates an IndexReader and IndexSearcher,
available for the search tasks. If a Read task is
invoked, it will use the currently open reader. If no
reader is open, it will open its own reader, perform
its task, and then close the reader. This enables
testing of various scenarios: sharing a reader,
searching with a cold reader, searching with a warm
reader, etc.

readOnly,commitName
readOnly is true or false. commitName is a
string name of the specific commit point that
should be opened.

NearRealtimeReader
Creates a separate thread that periodically calls
getReader() on the current IndexWriter to
obtain a near-real-time reader, printing to
System.out how long the reopen took. This task
also runs a fixed query body:1, sorting by
docdate, and reports how long the query took to
run.

pauseSec
A float that specifies how long to wait before open-
ing each near-real-time reader.

FlushReader
Flushes but doesn’t close the currently open
IndexReader. This is only meaningful if you’ve
used one of the Delete tasks to perform dele-
tions.

commitName
A string name of the specific commit point that
should be written.

CloseReader
Closes the previously opened reader.

NewAnalyzer
Switches to a new analyzer. This task takes a sin-
gle parameter, which is a comma-separated list of
class names. Each class name can be shortened
to just the class name, if it falls under the
org.apache.lucene.analysis package; oth-
erwise, it must be fully qualified. Each time this
task is executed, it will switch to the next analyzer
in its list, rotating back to the start if it hits the
end.

Search
Searches an index. If the reader is already opened
(with the OpenReader task), it’s searched. Other-
wise, a new reader is opened, searched, and
closed. This task simply issues the search but
doesn’t traverse the results.

Table C.7 Built-in tasks for indexing and searching (continued)

Task Name
Description

Parameter
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

457Built-in tasks

SearchWithSort
Searches an index with a specified sort. sortDesc

A comma-separated list of field:type values.
For example
"country:string,sort_field:int". doc
means to sort by Lucene’s docID; noscore
means to not compute scores; nomaxscore
means to not compute the maximum score.

SearchTrav
Searches an index and traverses the results. Like
Search, except the top ScoreDocs are visited.
This task takes an optional integer parameter,
which is the number of ScoreDocs to visit. If no
parameter is specified, the full result set is visited.
This task returns as its count the number of docu-
ments visited.

traversalSize
Integer count of how many ScoreDocs to visit.

SearchTravRet
Searches an index and traverses and retrieves the
results. Like SearchTrav, except for each
ScoreDoc visited, the corresponding document is
also retrieved from the index.

traversalSize
Integer count of how many ScoreDocs to visit.

SearchTravRetLoadFieldSelector
Search an index and traverse and retrieve only spe-
cific fields in the results, using FieldSelector.
Like SearchTrav, except this task takes an
optional comma-separated string parameter, speci-
fying which fields of the document should be
retrieved.

fieldsToLoad
A comma-separated list of fields to load.

SearchTravRetHighlight
Searches an index; traverses, retrieves, and high-
lights certain fields from the results using
contrib/highlighter.

highlightDesc
This task takes a comma-separated parameter list
to control details of the highlighting. Please consult
its Javadocs for the details.

SearchTravRetVectorHighlight
Searches an index; traverses, retrieves, and high-
lights certain fields from the results using
contrib/fast-vector-highlighter.

highlightDesc
This task takes a comma-separated parameter list
to control details of the highlighting. Please consult
its Javadocs for the details.

SetProp
Changes a property’s value. Normally a property’s
value is set once when the algorithm is first
loaded. This task lets you change a value mid-
stream. All tasks executed after this one will see
the new value.

propertyName,value
Name and new value for the property.

Table C.7 Built-in tasks for indexing and searching (continued)

Task Name
Description

Parameter
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

458 APPENDIX C Lucene/contrib benchmark

Warm
Warms up a previously opened searcher by retriev-
ing all documents in the index. Note that in a real
application, this isn’t sufficient as you’d also want
to prepopulate the FieldCache if you’re using it,
and possibly issue initial searches for commonly
searched for terms. Alternatively, you could create
steps in your algorithm that simply run your own
sequence of queries, as your custom warm-up.

DeleteDoc
Deletes a document by document ID, or by incre-
menting step size to compute the document ID to
be deleted. Note that this task performs its dele-
tions using IndexReader, so you must first open
one using OpenReader.

docID
An integer. If the parameter is negative, deletions
are done by the doc.delete.step setting. For
example, if the step size is 10, then each time this
task is executed it will delete the document IDs in
the sequence 0, 10, 20, 30, etc. If the parameter
is non-negative, then this is a fixed document ID to
delete.

DeleteByPercent
Removes the specified percentage of all docu-
ments (maxDoc()). If the index has already
removed more than this percentage, then first
undeleteAll is called, and then the target per-
centage is deleted. Note that this task performs its
deletions using IndexReader, so you must first
open one using OpenReader.

Percent
Double value (from 0 to 100) specifying what per-
centage of all docs should be deleted.

AddDoc
Adds the next document to the index.
IndexWriter must already be opened.

docSize
A numeric parameter indicating the size of the
added document, in characters. The body of each
document from the content source will be trun-
cated to this size, with the leftover being
prepended to the next document. This requires that
the doc maker support changing the document
size.

UpdateDoc
Calls IndexWriter.updateDocument to
replace documents in the index. The docid field of
the incoming document is passed as the Term to
specify which document should be updated. The
doc.random.id.limit setting, which randomly
assigns docIDs, is useful when testing
updateDocument.

docSize
Same meaning as AddDoc.

Table C.7 Built-in tasks for indexing and searching (continued)

Task Name
Description

Parameter
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

459Built-in tasks

C.4.1 Creating and using line files

Line files are simple text files that contain one document per line. Indexing docu-
ments from a line file incurs quite a bit less overhead than other approaches, such as
opening and closing one file per document, pulling files from a database, or parsing
an XML file. Minimizing such overhead is important if you’re trying to measure per-
formance of just the core indexing. If instead you’re trying to measure indexing per-
formance from a particular content source, then you should not use a line file.

 The benchmark framework provides a simple task, WriteLineDoc, to create line
files from any content source. Using this task, you can translate any source into a line
file. The one limitation is that each document only has a date, title, and body field.
The line.file.out setting specifies the file that’s created. For example, use this algo-
rithm to translate the Reuters corpus into a single-line file:

Where to get documents from:
content.source=org.apache.lucene.benchmark.byTask.feeds.ReutersContentSource

Stop after processing the document feed once:
content.source.forever=false

Where to write the line file output:
line.file.out=work/reuters.lines.txt

Process all documents, appending each one to the line file:
{WriteLineDoc}: *

ReadTokens
This task tests the performance of just the ana-
lyzer’s tokenizer. It simply reads the next document
from the doc maker and fully tokenizes all its fields.
As the count, this task returns the number of
tokens encountered. This is a useful task to mea-
sure the cost of document retrieval and tokeniza-
tion. By subtracting this cost from the time spent
building an index, you can get a rough measure of
what the actual indexing cost is.

WriteLineDocTask
Creates a line file that can then be used by
LineDocMaker. See section C.4.1 for details.

docSize
Same meaning as addDoc.

Wait
Simply waits for the specified amount of time. This
is useful when a number of prior tasks are running
in the background (simply append &).

Time to wait. Append s for seconds, m for minutes,
and h for hours.

Table C.7 Built-in tasks for indexing and searching (continued)

Task Name
Description

Parameter
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

460 APPENDIX C Lucene/contrib benchmark

 Once you’ve done this, you can then use reuters.lines.txt and LineDocSource like
this:

Feed that knows how to process the line file format:
content.source=org.apache.lucene.benchmark.byTask.feeds.LineDocSource

File that contains one document per line:
docs.file=work/reuters.lines.txt

Process documents only once:
content.source.forever=false

Create a new index, index all docs from the line file, close the
index, produce a report.
CreateIndex
{AddDoc}: *
CloseIndex

RepSumByPref AddDoc

C.4.2 Built-in reporting tasks

Reporting tasks generate a summary report at the end of the algorithm, showing how
many records per second were achieved, how much memory was used, showing one
line per task or task sequence that gathered statistics. The reporting tasks themselves
aren’t measured or reported. Table C.8 describes the built-in reporting tasks. If
needed, additional reports can be added by extending the abstract class ReportTask
and by manipulating the statistics data in Points and TaskStats.

Table C.8 Reporting tasks

Task name Description

RepAll All (completed) tasks run.

RepSumByName All statistics, aggregated by name. So, if AddDoc was executed
2,000 times, only one report line would be created for it, aggre-
gating all those 2,000 statistic records.

RepSelectByPref prefix All records for tasks whose name start with prefix.

RepSumByPref prefix All records for tasks whose name start with prefix aggregated
by their full task name.

RepSumByNameRound All statistics, aggregated by name and by round. So, if AddDoc
was executed 2,000 times in each of three rounds, three report
lines would be created for it, aggregating all those 2,000 statis-
tic records in each round. See more about rounds in the
NewRound task description in table C.6.

RepSumByPrefRound prefix Similar to RepSumByNameRound, except only tasks whose
name starts with prefix are included.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

461Evaluating search quality

C.5 Evaluating search quality
How do you test the relevance or quality of your search application? Relevance testing
is crucial because, at the end of the day, your users won’t be satisfied if they don’t get
relevant results. Many small changes to how you use Lucene, from the analyzer chain,
to which fields you index, to how you build up a Query, to how you customize scoring,
can have large impacts on relevance. Being able to properly measure such effects
allows you to make changes that improve your relevance.

 Yet, despite being the most important aspect of a search application, quality is dev-
ilishly difficult to pin down. There are certainly many subjective approaches. You can
run a controlled user trial, or you can play with the application yourself. What do you
look for? Besides checking if the returned documents are relevant, there are many
other things to check: Are the excerpts accurate? Is the right metadata presented? Is
the UI easily consumed on quick glance? No wonder so few applications are tuned for
their relevance!

 That said, if you’d like to objectively measure the relevance of returned docu-
ments, you’re in luck: the quality package, under benchmark, allow you to do so.
These classes provide concrete implementations based on the formats from the TREC
corpus, but you can also implement your own. You’ll need a “ground truth” tran-
scribed set of queries, where each query lists the documents that are relevant to it.
This approach is entirely binary: a given document from the index is deemed either
relevant or not. From these we can compute precision and recall, which are the stan-
dard metrics in the information retrieval community for objectively measuring rele-
vance of search results. Precision measures what subset of the documents returned for
each query were relevant. For example, if a query has 20 hits and only one is relevant,
precision is 0.05. If only one hit was returned and it was relevant, precision is 1.0.
Recall measures what percentage of the relevant documents for that query was
returned. So if the query listed eight documents as being relevant but six were in the
result set, that’s a recall of 0.75.

 In a properly configured search application, these two measures are naturally at
odds with each other. Let’s say, on one extreme, you only show the user the very best
(top 1) document matching his query. With such an approach, your precision will typ-
ically be high, because the first result has a good chance of being relevant, whereas
your recall would be very low, because if there are many relevant documents for a
given query you have only returned one of them. If we increase top 1 to top 10, then
suddenly we’ll be returning many documents for each query. The precision will neces-
sarily drop because most likely you’re now allowing some nonrelevant documents into
the result set. But recall should increase because each query should return a larger
subset of its relevant documents.

 Still, you’d like the relevant documents to be higher up in the ranking. To account
for this, average precision is computed. This measure computes precision at each of
the N cutoffs, where N ranges from 1 to a maximum value, and then takes the average.

So this measure is higher if your search application generally returns relevant

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

462 APPENDIX C Lucene/contrib benchmark

documents earlier in the result set. Mean average precision (MAP) then measures the
mean of average precision across a set of queries. A related measure, mean reciprocal
rank (MRR), measures 1/M, where M is the first rank that had a relevant document.
You want both of these numbers to be as high as possible.

 Listing C.1 shows how to use the quality package to compute precision and recall.
Currently, in order to measure search quality, you must write your own Java code
(there are no built-in tasks for doing so that would allow you to solely use an algo-
rithm file). The queries to be tested are represented as an array of QualityQuery
instances. The TrecTopicsReader knows how to read the TREC topic format into
QualityQuery instances, but you could also implement your own. Next, the ground
truth is represented with the simple Judge interface. The TrecJudge class loads TREC’s
Qrel format and implements Judge. QualityQueryParser translates each Quality-
Query into a real Lucene query. Finally, QualityBenchmark tests the queries by run-
ning them against a provided IndexSearcher. It returns an array of QualityStats,
one each for each of the queries. The QualityStats.average method computes and
reports precision and recall.

public class PrecisionRecall {

 public static void main(String[] args) throws Throwable {

 File topicsFile = new File("src/lia/benchmark/topics.txt");
 File qrelsFile = new File("src/lia/benchmark/qrels.txt");
 Directory dir = FSDirectory.open(new File("indexes/MeetLucene"));
 Searcher searcher = new IndexSearcher(dir, true);

 String docNameField = "filename";

 PrintWriter logger = new PrintWriter(System.out, true);

 TrecTopicsReader qReader = new TrecTopicsReader();
 QualityQuery qqs[] = qReader.readQueries(
 new BufferedReader(new FileReader(topicsFile)));

 Judge judge = new TrecJudge(new BufferedReader(
 new FileReader(qrelsFile)));

 judge.validateData(qqs, logger);

 QualityQueryParser qqParser = new SimpleQQParser(
 "title", "contents");

 QualityBenchmark qrun = new QualityBenchmark(qqs,
 qqParser, searcher, docNameField);
 SubmissionReport submitLog = null;
 QualityStats stats[] = qrun.execute(judge,
 submitLog, logger);

 QualityStats avg =
QualityStats.average(stats);

 avg.log("SUMMARY",2,logger, " ");
 dir.close();
 }

Listing C.1 Computing precision and recall statistics for your IndexSearcher

Read TREC topics
as QualityQuery[]

Create Judge from
TREC Qrel fileVerify query

and Judge match

Create
QueryParser

Run benchmark

Print precision and
recall measures
}

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

463Errors

When you run the code in listing C.1 by entering ant PrecisionRecall at the com-
mand line within the book’s source code directory, it will produce something like this:

SUMMARY
 Search Seconds: 0.015
 DocName Seconds: 0.006
 Num Points: 15.000
 Num Good Points: 3.000
 Max Good Points: 3.000
 Average Precision: 1.000
 MRR: 1.000
 Recall: 1.000
 Precision At 1: 1.000
 Precision At 2: 1.000
 Precision At 3: 1.000
 Precision At 4: 0.750
 Precision At 5: 0.600
 Precision At 6: 0.500
 Precision At 7: 0.429
 Precision At 8: 0.375
 Precision At 9: 0.333
 Precision At 10: 0.300
 Precision At 11: 0.273
 Precision At 12: 0.250
 Precision At 13: 0.231
 Precision At 14: 0.214

Note that this test uses the MeetLucene index, so you’ll need to run ant Indexer if
you skipped over that in chapter 1. This was a trivial test, because we ran on a single
query that has exactly three correct documents (see the source files src/lia/bench-
mark/topics.txt for the queries and src/lia/benchmark/qrels.txt for the correct docu-
ments). You can see that the precision was perfect (1.0) for the top three results,
meaning the top three results were in fact the correct answer to this query. Precision
then gets worse beyond the top three results because any further document is incor-
rect. Recall is perfect (1.0) because all three correct documents were returned. In a
real test you won’t see perfect scores.

C.6 Errors
If you make a mistake in writing your algorithm, which is in fact very easy to do, you’ll
see a somewhat cryptic exception like this:

java.lang.Exception: Error: cannot understand algorithm!
 at org.apache.lucene.benchmark.byTask.Benchmark.<init>(Benchmark.java:63)
 at org.apache.lucene.benchmark.byTask.Benchmark.main(Benchmark.java:98)
Caused by: java.lang.Exception: colon unexpexted: - Token[':'], line 6
 at org.apache.lucene.benchmark.byTask.utils.Algorithm.<init>

➥(Algorithm.java:120)
 at org.apache.lucene.benchmark.byTask.Benchmark.<init>(Benchmark.java:61)

When this happens, simply scrutinize your algorithm. One common error is a misbal-
anced { or }. Try iteratively simplifying your algorithm to a smaller part and run that
to isolate the error.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

464 APPENDIX C Lucene/contrib benchmark

C.7 Summary
As you’ve seen, the benchmark package is a powerful framework for quickly creating
indexing and searching performance tests and for evaluating your search application
for precision and recall. It saves you tons of time because all the normal overhead in
creating a performance test is handled for you. Combine this with the large library of
built-in tasks for common indexing and searching operations, plus extensibility to add
your own report, task, document, or query source, and you’ve got one very useful tool
under your belt.
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

appendix D
Resources

Web search engines are your friends. Type lucene in your favorite web search engine and
you’ll find many interesting Lucene-related projects. Other good places to look are Source-
Forge, Google Code, and GitHub; a search for lucene on any of those sites displays a num-
ber of open source projects written on top of Lucene.

D.1 Lucene knowledgebases
 Search Lucene: http://search-lucene.com/
 LucidFind: http://search.lucidimagination.com/

D.2 Internationalization
 Unicode page in Wikipedia: http://en.wikipedia.org/wiki/Unicode
 The Unicode Consortium: http://unicode.org
 Bray, Tim, “Characters vs. Bytes”: www.tbray.org/ongoing/When/200x/2003/04/26/UTF
 Green, Dale, “Trail: Internationalization”: http://java.sun.com/docs/books/tutorial/i18n/

index.html
 Lindenberg, Norbert, and Masayoshi Okutsu, “Supplementary Characters in the Java Plat-

form”: http://java.sun.com/developer/technicalArticles/Intl/Supplementary/
 Peterson, Erik, “Chinese Character Dictionary—Unicode Version”: www.mandarin-

tools.com/chardict_u8.html
 Spolsky, Joel, “The Absolute Minimum Every Software Developer Absolutely, Positively Must

Know About Unicode and Character Sets (No Excuses!)”: www.joelonsoftware.com/
articles/Unicode.html

 Davis, Mark, “Globalization Gotchas”: http://macchiato.com/slides/GlobalizationGot-
chas.ppt
465

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://java.sun.com/docs/books/tutorial/i18n/index.html
http://macchiato.com/slides/GlobalizationGotchas.ppt
http://macchiato.com/slides/GlobalizationGotchas.ppt
http://search-lucene.com/
http://search.lucidimagination.com/
http://en.wikipedia.org/wiki/Unicode
http://unicode.org
www.tbray.org/ongoing/When/200x/2003/04/26/UTF
http://java.sun.com/developer/technicalArticles/Intl/Supplementary/
www.mandarintools.com/chardict_u8.html
www.mandarintools.com/chardict_u8.html
http://java.sun.com/docs/books/tutorial/i18n/index.html
http://www.it-ebooks.info/

466 APPENDIX D Resources

D.3 Language detection
 Rosette Language Identifier, http://basistech.com/language-identification
 Marr, Rich, “Creating a Language Detection API in 30 minutes”: http://richmarr.word-

press.com/2008/10/24/creating-a-language-detection-api-in-30-minutes/
 Prager, John M., “Linguini: Language Identification for Multilingual Documents”: ftp://

ftp.software.ibm.com/software/globalization/documents/linguini.pdf
 Java Text Categorization Library: http://textcat.sourceforge.net/
 NGramJ: http://ngramj.sourceforge.net
 Google Ajax Language API: http://code.google.com/apis/ajaxlanguage/documentation/
 Sematext Language Identifier: www.sematext.com/products/language-identifier/index.html
 Language identification on Wikipedia: http://en.wikipedia.org/wiki/Language_identification

D.4 Term vectors
 Vector Space Model on Wikipedia: http://en.wikipedia.org/wiki/Vector_space_model
 Latent Semantic Analysis on Wikipedia: http://en.wikipedia.org/wiki/

Latent_semantic_analysis
 The Latent Semantic Indexing home page: http://lsa.colorado.edu/
 “Latent Semantic Indexing (LSI)”: www.cs.utk.edu/~lsi
 Stata, Raymie, Krishna Bharat, and Farzin Maghoul, “The Term Vector Database: Fast Access to

Indexing Terms for Web Pages”: www9.org/w9cdrom/159/159.html

D.5 Lucene ports
 CLucene: www.sourceforge.net/projects/clucene/
 Lucene.Net: http://incubator.apache.org/lucene.net/
 KinoSearch: www.rectangular.com/kinosearch
 Apache Lucy: http://lucene.apache.org/lucy/
 PyLucene: http://lucene.apache.org/pylucene/
 Ferret: http://ferret.davebalmain.com
 PHP, (Zend_Search_Lucene, part of Zend Framework): http://framework.zend.com/

D.6 Case studies
 Krugle: www.krugle.org/
 DERI, SIREn: http://siren.sindice.com/
 LinkedIn, Bobo-Browse: http://snaprojects.jira.com/browse/BOBO/
 LinkedIn, Zoie: http://snaprojects.jira.com/browse/ZOIE

D.7 Miscellaneous
 Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze, Introduction to Information

Retrieval (Cambridge University Press, 2008). See www-nlp.stanford.edu/IR-book/.
 Calishain, Tara, and Rael Dornfest, Google Hacks (O’Reilly, 2003).
 Gilleland, Michael, “Levenshtein Distance, in Three Flavors”: www.merriampark.com/ld.htm
 GNU Compiler for the Java Programming Language: http://gcc.gnu.org/java/
 Google search results for Lucene: www.google.com/search?q=lucene
 Apache Lucene Java: http://lucene.apache.org/java
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://richmarr.wordpress.com/2008/10/24/creating-a-language-detection-api-in-30-minutes/
http://richmarr.wordpress.com/2008/10/24/creating-a-language-detection-api-in-30-minutes/
ftp://ftp.software.ibm.com/software/globalization/documents/linguini.pdf
ftp://ftp.software.ibm.com/software/globalization/documents/linguini.pdf
http://textcat.sourceforge.net/
http://ngramj.sourceforge.net
http://nlp.stanford.edu/%7Emanning/
http://www.google.com/search?q=lucene
http://code.google.com/apis/ajaxlanguage/documentation/
www.sematext.com/products/language-identifier/index.html
http://en.wikipedia.org/wiki/Language_identification
http://en.wikipedia.org/wiki/Vector_space_model
http://en.wikipedia.org/wiki/Latent_semantic_analysis
http://en.wikipedia.org/wiki/Latent_semantic_analysis
http://lsa.colorado.edu/
www.cs.utk.edu/~lsi
www9.org/w9cdrom/159/159.html
www.sourceforge.net/projects/clucene/
http://incubator.apache.org/lucene.net/
www.rectangular.com/kinosearch
http://lucene.apache.org/lucy/
http://lucene.apache.org/pylucene/
http://ferret.davebalmain.com
http://framework.zend.com/
www.krugle.org/
http://siren.sindice.com/
http://snaprojects.jira.com/browse/BOBO/
http://snaprojects.jira.com/browse/ZOIE
www-nlp.stanford.edu/IR-book/
www.merriampark.com/ld.htm
http://gcc.gnu.org/java/
http://lucene.apache.org/java
http://basistech.com/language-identification
http://www.it-ebooks.info/

467Doug Cutting’s publications

 Lucene Sandbox: http://lucene.apache.org/java/3_0_1/lucene-contrib/index.html
 Suffix trees on Wikipedia: http://en.wikipedia.org/wiki/Suffix_tree

D.8 IR software
 dmoz results for information retrieval: http://dmoz.org/Computers/Software/

Information_Retrieval/
 Egothor: www.egothor.org/
 Minion: https://minion.dev.java.net/
 Google Directory results for information retrieval: http://directory.google.com/Top/

Computers/Software/Information_Retrieval/
 ht://Dig: www.htdig.org
 Managing Gigabytes for Java (MG4J): http://mg4j.dsi.unimi.it
 Terrier: http://ir.dcs.gla.ac.uk/terrier
 Namazu: www.namazu.org
 Hounder: http://hounder.org
 Search Tools for Web Sites and Intranets: www.searchtools.com
 SWISH++: http://swishplusplus.sourceforge.net/
 SWISH-E: http://swish-e.org/
 Autonomy: www.autonomy.com
 Aperture: http://aperture.sourceforge.net/
 WebGlimpse: http://webglimpse.net
 Xapian: www.xapian.org
 The Lemur Toolkit: www.lemurproject.org

D.9 Doug Cutting’s publications
Doug’s official list of publications, from which this was derived, is available at http://
lucene.sourceforge.net/publications.html.

D.9.1 Conference papers

 “An Interpreter for Phonological Rules,” coauthored with J. Harrington, Proceedings of Insti-
tute of Acoustics Autumn Conference, November 1986

 “Information Theater versus Information Refinery,” coauthored with J. Pedersen, P.-K. Hal-
vorsen, and M. Withgott, AAAI Spring Symposium on Text-Based Intelligent Systems,
March 1990

 “Optimizations for Dynamic Inverted Index Maintenance,” coauthored with J. Pedersen, Pro-
ceedings of SIGIR ’90, September 1990

 “An Object-Oriented Architecture for Text Retrieval,” coauthored with J. O. Pedersen and P.-K.
Halvorsen, Proceedings of RIAO ‘91, April 1991

 “Snippet Search: A Single Phrase Approach to Text Access,” coauthored with J. O. Pedersen
and J. W. Tukey, Proceedings of the 1991 Joint Statistical Meetings, August 1991

 “A Practical Part-of-Speech Tagger,” coauthored with J. Kupiec, J. Pedersen, and P. Sibun, Pro-
ceedings of the Third Conference on Applied Natural Language Processing, April 1992

 “Scatter/Gather: A Cluster-Based Approach to Browsing Large Document Collections,” coau-
thored with D. Karger, J. Pedersen, and J. Tukey, Proceedings of SIGIR ’92, June 1992

 “Constant Interaction-Time Scatter/Gather Browsing of Very Large Document Collections,”

coauthored with D. Karger and J. Pedersen, Proceedings of SIGIR ’93, June 1993

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://lucene.apache.org/java/3_0_1/lucene-contrib/index.html
http://en.wikipedia.org/wiki/Suffix_tree
http://dmoz.org/Computers/Software/Information_Retrieval/
http://dmoz.org/Computers/Software/Information_Retrieval/
www.egothor.org/
https://minion.dev.java.net/
http://directory.google.com/Top/Computers/Software/Information_Retrieval/
http://directory.google.com/Top/Computers/Software/Information_Retrieval/
ht://Dig: www.htdig.org
http://mg4j.dsi.unimi.it
http://ir.dcs.gla.ac.uk/terrier
www.namazu.org
http://hounder.org
www.searchtools.com
http://swishplusplus.sourceforge.net/
http://swish-e.org/
www.autonomy.com
http://aperture.sourceforge.net/
http://webglimpse.net
www.xapian.org
www.lemurproject.org
http://lucene.sourceforge.net/publications.html
http://lucene.sourceforge.net/publications.html
http://www.it-ebooks.info/

468 APPENDIX D Resources

 “Porting a Part-of-Speech Tagger to Swedish,” Nordic Datalingvistik Dagen 1993, Stockholm,
June 1993

 “Space Optimizations for Total Ranking,” coauthored with J. Pedersen, Proceedings of RIAO
’97, Montreal, Quebec, June 1997

D.9.2 U.S. Patents

 5,278,980: “Iterative technique for phrase query formation and an information retrieval system
employing same,” with J. Pedersen, P.-K. Halvorsen, J. Tukey, E. Bier, and D. Bobrow, filed
August 1991

 5,442,778: “Scatter-gather: a cluster-based method and apparatus for browsing large document
collections,” with J. Pedersen, D. Karger, and J. Tukey, filed November 1991

 5,390,259: “Methods and apparatus for selecting semantically significant images in a document
image without decoding image content,” with M. Withgott, S. Bagley, D. Bloomberg, D.
Huttenlocher, R. Kaplan, T. Cass, P.-K. Halvorsen, and R. Rao, filed November 1991

 5,625,554 “Finite-state transduction of related word forms for text indexing and retrieval,” with
P.-K. Halvorsen, R.M. Kaplan, L. Karttunen, M. Kay, and J. Pedersen, filed July 1992

 5,483,650 “Method of Constant Interaction-Time Clustering Applied to Document Browsing,”
with J. Pedersen and D. Karger, filed November 1992

 5,384,703 “Method and apparatus for summarizing documents according to theme,” with M.
Withgott, filed July 1993

 5,838,323 “Document summary computer system user interface,” with D. Rose, J Bornstein, and
J. Hatton, filed September 1995

 5,867,164 “Interactive document summarization,” with D. Rose, J. Bornstein, and J. Hatton,
filed September 1995

 5,870,740 “System and method for improving the ranking of information retrieval results for
short queries,” with D. Rose, filed September 1996
Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

index
A

Abstract Window Toolkit. See AWT
access control list. See ACL
ACL 11
Activity Monitor process monitor 357
administration interface 17
Adobe Flash, extracting text from 235, 237
Adobe PDF, extracting text from 235, 237

See also PDF
AFP 59

used for indexing 59
AgoFilterBuilder 304–305
AllDocCollector 213–214, 297
AlreadyClosedException 376
analysis 110

bigrams 149
by QueryParser 78
chain 117
character normalization 145–146
CJK languages 146
creating payloads from token attributes 264
custom attributes 123
during indexing 113
field-specific 140
highlighting 124
in Nutch 149–151
letter ngrams 387
multivalued fields 140
non-English languages 144–149
position gaps 138
programming languages 385–386
removing common words 127
shingles 139, 149
splitting source code terms 387
stemming example 264

token filter 393
tokenizer 393
tokenizing URIs 400
versus parsing 114
with QueryParser 114
zero position increment 165

analysis, Snowball, supported languages 265
See also indexing, analysis

analytics interface 17
Google Analytics 18
Lucene-specific metrics 17

analyzer, provided during indexing 38
AnalyzerDemo 120–121, 147, 261
Analyzers 115

additional 262
Arabic 262
Brazilian 262
Chinese 262
CJK 262
compound words 262
Czech 262
Dutch 263
field types 113
French 263
German 262
getPositionIncrementGap 140
getPreviousTokenStream 115
Greek 262
miscellaneous 263
ngram 263
payloads 263
Persian 263
positions 263
Russian 263
setPreviousTokenStream 115
shingles 263
469

substring searching using tokens 386–389 Snowball 262

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

470 INDEX

Analyzers (continued)
Thai 263
Wikipedia export 263

analyzers
buffering 133
building blocks 118
built into Lucene 13
built-in 111–115, 127
choosing 111, 128
creating your own 128
definition 110
getOffsetGap 140
injecting synonyms 131–138, 297
language-specific 264
multiple tokens at the same position 131
ngram 265–266
reusable token streams 115
shingle 267

uses 267
ShingleFilter 139
Snowball 264

TestApp 267
StandardAnalyzer 128
stemming 138–139
StopAnalyzer 127
tokens vs. terms 116
visualizing 120

AnalyzerUtils 121, 130
displayTokens 121, 137
displayTokensWithFullDetails 122
displayTokensWithPositions 137
tokensFromAnalysis 125

AnalyzingQueryParser 323
Another Tool for Language Recognition.

See ANTLR
Ant, building Lucene 429

See also Apache Ant
ANTLR 108, 386
Apache Ant

preparing to use 22
to build contrib modules 286

Apache Commons 129
columnar formatting 157
Digester, indexing using 250

Apache Jakarta 7
Apache JMeter 353
Apache POI project 247
Apache Software Foundation 7
Apache Software License 6
Apache subversion instance 286
Apache Tika. See Tika
Aperture 12

open source project 253
Apple Mac OS X, search feature 4
AR Archives, extracting text from 237

Aroush, George 331
ASCIIFoldingFilter 118, 145
Asian language analysis 146–148
Attribute 123
AttributeSource

addAttribute 123
analysis 123
captureState 124
restoreState 124

audio formats, extracting text from metadata 237
AutoDetectParser 239, 245

Tika class 240
Autonomy 253
AWT 147

B

backward compatibility. See Version
BalancedMergePolicy 349
BalancedSegmentMergePolicy 322
Balmain, David 336–337
Beagle 332, 341
benchmark, OpenIndex 445
Berkeley DB, storing index 292–293
BerkeleyDBJESearcher 293
Bialecki, Andrzej 256
Bobo Browse 407–414

beyond simple faceting 413–414
integration with Zoie 414
Runtime FacetHandlers 414
sorting 413

BoboBrowser 412
BoboIndexReader 408, 413–414
BodyContentHandler 239, 246
BookLinkCollector 212–213
BooksLikeThis 192

using MoreLikeThis 283
BooleanClause 166

Occur
MUST 166
MUST_NOT 166
SHOULD 166

BooleanFilter 304
BooleanQuery 143, 165, 211, 277, 387, 402, 405

combining queries 94
from QueryParser 77
used with PhraseQuery 163
using as a filter 183

BooleanQueryBuilder 305
BooleanScorer 402
boosting 87

by recency 187
dangers 48
documents 48–49
ArabicAnalyzer 262 fields 49

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

471INDEX

BoostingQuery 284
negativeQuery 284
positiveQuery 284

boosts 13
BrazilianAnalyzer 262
Browsable 412
Browse Engine, denormalization 34
BrowseFacet 412
BrowseHit 412
BrowseRequest 411–412

setFilter 411
BrowseResult

getFacets 412
getHits 412

BrowseSelection 413
Builder 304–305
BulletinPayloadsAnalyzer 226
BulletinPayloadsFilter 226
BZIP2 files, extracting text from 235, 237

C

C#, tokenizing 386
C++, tokenizing 386
CachedFilter 303
caching

field values 153
filter 184

CachingSpanFilter 178
CachingTokenFilter 118

used during highlighting 271
CachingWrapperFilter 178, 183–184, 223, 291
CartesianTierPlotter 310–311
Cascading Style Sheets. See CSS
Catasta, Michele 392
catchall field, for searching multiple fields 166
categorizing documents, using term vectors 191
CellConjunctionScorer 402
CellDisjunctionScorer 402
CellQuery 393
CellReqExclScorer 402
CellScorer 402
ChainedFilter 185

combining with AND 291
combining with ANDNOT 291
combining with OR 290
combining with XOR 291
security filter example 289

chaining filters 185
Chandler 341

project 292
charades 129
CharFilter 146
CharReader 146

CharTokenizer 118
CheckIndex 377, 434

tool 376
Chinese analysis 262
Chinese, Japanese, and Korean. See CJK
ChineseAnalyzer 146
ChineseDemo 147
ChineseTest 146
CIFS. See Samba file system
CJK, analysis of 146
CJKAnalyzer 146, 262
client-server port definition 327
CloseIndex benchmark task 348
CLucene 328–331

API compatibility 329
supported platforms 329
Unicode support 331

Collator, used for sorting String fields 163
Collector 83, 191, 201

acceptsDocsOutOfOrder 211
collect 211
custom 210–214
setNextReader 210
setScorer 210
using field cache 155

common errors 375
Comparable 209
Compass 19

denormalization 34
ComplexPhraseQueryParser 323
compound index, creating 436
CompressionTools 44
ConcurrentMergeScheduler 55, 72, 349, 356, 363

setMaxThreadCount 369
ConcurrentModificationException 356
ConstantScoreQuery 184
content

acquiring 11–12
dividing into shards 18
raw, extracting for documents 12

ContentHandler 239, 242
ContentSource 349, 352
contrib

analyzers 262–268
benchmark 348

AddDoc 444, 456
adding custom task 359
algorithm output 444
analyzer 445
ClearStats 452
CloseIndex 445, 454
CloseReader 454
CommitIndex 453
compound 448
CharStream 145 content sources 449

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

472 INDEX

contrib, benchmark (continued)
content.source 445
content.source.encoding 446, 448
content.source.forever 446
content.source.log.step 447
content.source.verbose 446
ContentSource 449
control structures 450–452
CreateIndex 445, 453
creating line doc file 350
DeleteByPercent 456
DeleteDoc 456
deletion.policy 448
DirContentSource 449
directory 448
disabling statistics 451
disabling statistics per-task 452
doc.body.tokenized.norms 446
doc.delete.step 447
doc.index.props 447
doc.maker 445
doc.random.id.limit 446
doc.reuse.fields 351, 447
doc.store.body.bytes 446
doc.stored 446
doc.term.vector 446
doc.term.vector.offsets 446
doc.term.vector.positions 446
doc.tokenized 446
doc.tokenized.norms 446
DocMaker 449
docs.dir 446
docs.file 446
EnwikiContentSource 449
EnwikiQueryMaker 450
file.query.maker.default.field 447, 450
file.query.maker.file 447, 450
FileBasedQueryMaker 450
FlushReader 454
html.parser 446
indexing documents from a directory 449
indexing documents from a Wikipedia XML

export 449
indexing documents from lines in a file 449
indexing Reuters documents 449
indexing TREC documents 449
Judge 460
line files 457
LineDocSource 449
log.queries 447
log.step 447
max.buffered 448
max.field.length 448
measuring memory usage 444

merge.policy 448
merge.scheduler 356, 448
naming a sub-task 451
NearRealtimeReader 454
NewAnalyzer 454
NewRound 452
OpenIndex 453
OpenReader 454
OptimizeIndex 453
PerfTask 452
PrecisionRecall 461
QualityQuery 460
QualityQueryParser 460
QualityStats, average 460
query.maker 447, 450
ram.flush.mb 351, 448
ReadTokens 457
RepAll 458
repeating a task 451
RepSelectByPref 458
RepSumByName 458
RepSumByNameRound 458
RepSumByPref 458
RepSumByPrefRound 458
ResetInputs 452
ResetSystemErase 453
ResetSystemSoft 453
ReutersContentSource 449
ReutersQueryMaker 450
RollbackIndex 453
running tasks in a background thread 450
running tasks in parallel threads 451
Search 454
SearchTrav 455
SearchTravRet 455
SearchTravRetHighlight 455
SearchTravRetLoadFieldSelector 455
SearchTravRetVectorHighlight 455
SearchWithSort 455
sequence of tasks 450
SetProp 455
SimpleDocMaker 450
SimpleQueryMaker 450
SimpleSloppyPhraseQueryMaker 450
SingleDocSource 449
SortableSingleDocSource 449
task.max.depth.log 447
TrecContentSource 449
TrecJudge 460
TrecTopicsReader 460
UpdateDoc 456
Wait 457
Warm 456
work.dir 445
WriteLineDocTask 457
merge.factor 448 writer.info.stream 447

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

473INDEX

contrib (continued)
benchmark framework 441–462

builtin reporting tasks 458
builtin tasks 452
content source, document maker 448
query maker 450
running an algorithm 442–445
testing search quality 459

building 286
ChainedFilter 185
Highlighter 268–274
obtaining analyzers 267
QueryParser 320–322
Spatial Lucene 308–316

field cache usage 314
indexing 308
Mercator projection 309
performance 314
projection 309
searching 312
sinusoidal projection 309

Surround query language 306–308
wikipedia 351
XmlQueryParser 299–305

extending 304
using 300

contrib modules
introduction 6
spatial search 206

coordination, query term 87
CorePlusExtensionsParser 301
CorruptIndexException 376
CPIO Archives, extracting text from 237
createLineFile.alg 350
CreateSpellCheckerIndex 279
CreateThreadedIndexTask 359
CSS 268

in highlighting 272
CustomQueryParser 216
CustomScoreQuery 186

getCustomScoreProvider 186
Cutting, Doug 7, 149

relevant work 9
CzechAnalyzer 262

D

database
primary key 40
storing index inside Berkeley DB 292

DatabaseConfig 292
DateField, dateToString 218
DateFilter, within ChainedFilter 290
DateFormat, SHORT 218

DateTools 218
Debian

Linux open file limit 366
Lucene ports 341

debugging queries 102
DefaultEncoder 271
DefaultSimilarity 88
Delbru, Renaud 392
DeletionPolicy 381
denormalization 34
DERI 392

Sindice.com search engine 393
Dictionary 279
Digester

addCallMethod 252
addObjectCreate 252
addSetNext 253
addSetProperties 252
See also Apache Commons Digester

DigesterXMLDocument 251, 253
Digg 393
Digital Enterprise Research Institute. See DERI
DirContentSource 349
Directory 38–39, 55, 66, 292, 362, 431–432

copying all files 57
introduction 26
sync 67

Directory implementations
FileSwitchDirectory 56
MMapDirectory 56
NIOFSDirectory 56
RAMDirectory 56
SimpleFSDirectory 56

directory in Berkeley DB 292
DirectSolrConnection 338
DisjunctionMaxQuery 167

tie-breaker 168
disk usage

during backup 365
impact of commit frequency 67
impact of open readers 365

DistanceComparatorSource 207
DistanceQueryBuilder 312–313
DistanceSortSource 313
DocIdBitSet 178
DocIdSet 222
Document 34, 210, 242, 431, 434

editing with Luke 259
reuse 351
setBoost 48

document
analyzing 13
boosts 13
browsing with Luke 257
DateRecognizerSinkTokenizer 263–264 building 12–13

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

474 INDEX

document (continued)
clustering 267
definition 12
filters 12
ID 75
indexing 14
introduction 32
parsing, filtering 242
vs. Document class 27

document type definition. See DTD
documentation 427
documents and fields 32–33
DOMUtils 305
Donovan, Aaron 292
downloading Lucene 426
Droids 12
DSight, denormalization 34
DTD 300
DuplicateFilter 285
DutchAnalyzer 263
dynamic fragmenting vs. highlighting 268

E

EdgeNGramFilter 266
EdgeNGramTokenizer 279
Edit distance. See Levenshtein distance
Elastic search, sharding and replication 18
Elschot, Paul 306
encoding UTF-8 144
entitlements, definition 11
EnvironmentConfig 292
EnwikiContentSource 349
Eventful 393
Excel. See Microsft Excel
Explanation 88
Extensible Hypertext Markup Language. See

XHTML
Extensible Stylesheet Language. See XSL

F

FacetAccessible 412
faceted search

Bobo Browse 408
definition 408

FacetHandler 408, 413–414
FacetSpec 411

setMaxCount 412
setMinHitCount 412
setOrderBy 412

FastVectorHighlighter 275–277
compared to Highlighter 277

Field 34, 40, 49, 413, 431
Index

NOT_ANALYZED 143, 223
NOT_ANALYZED_NO_NORMS 142, 186

introduction 27
omitTermFreqAndPositions, impact on disk

usage 364
reuse 351
setBoost 49
setOmitNorms 50
setOmitTermFreqAndPositions 43
Store, YES 200, 413
TermVector, WITH_POSITIONS_OFFSETS 192

field
boosting, with catchall field 166
date and time values 52
implicit length boost 49
indexing for sorting 46
introduction 32
keyword analysis 142–144
multivalued 47
numeric value 51
NumericField 51
omitTermFreqAndPositions 43
options 32–33
Reader value 45, 47
reanalysis during searching 195
TokenStream value 45, 47
truncation 52–53, 389

field cache 153–155
DEFAULT 154
memory usage 154, 390
per segment readers 155
setInfoStream 155
used by sorting 413
used for sorting 155

field options 42–47
combinations 46
compressing fields 44
indexing

ANALYZED 43
ANALYZED_NO_NORMS 43
NO 43
NOT_ANALYZED 43
NOT_ANALYZED_NO_NORMS 43

sorting 46
storing 44

NO 44
YES 44

term vectors 44
NO 45
WITH_OFFSETS 45
WITH_POSITIONS 45
WITH_POSITIONS_OFFSETS 45
Ferret 336–339 YES 45

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

475INDEX

FieldCache 354, 372, 414, 422
reducing memory usage 372
String 372
StringIndex 372
using from custom Collector 211

FieldCacheRangeFilter 177, 179
FieldCacheSource 185
FieldCacheTermsFilter 177, 180
FieldComparator 208
FieldComparatorSource 205, 208

using field cache 155
FieldDocs 209
FieldMaskingSpanQuery 169
FieldNormModifier 323
FieldQuery 277
FieldScoreQuery 185
FieldSelector 153, 200–201, 355

accept 200
loading only specified fields 201
specify fields by set 201
stopping after first field 201
time savings 201

FieldSelectorResult 200
LAZY_LOAD 200
LOAD 200
LOAD_AND_BREAK 200
LOAD_FOR_MERGE 200
NO_LOAD 200
SIZE 200
SIZE_AND_BREAK 200

FieldSortedTermVectorMapper 199
file descriptors, finding the limit 366
FileNotFoundException over remote file

systems 60
FileSwitchDirectory 58
Filter 156, 285, 305

custom 221–225
turning into Query 224
used by Bobo Browse 411
using field cache 155

filter
as a query 185
by specific terms 180
by term prefix 183
cached as bit set 178
caching 184
ChainedFilter 289–291
chaining 185
combining multiple 289
creating from Query 180
creating from SpanQuery 181
filtering another filter 184
getDocIdSet 222
security filter 181
using a BooleanQuery 183

FilteredDocIdSet 178, 184
match 184

FilteredQuery 185, 224, 291
filtering

by numeric range 179
by term range 178
search space 177
security filter

dynamic 183
using field cache 179

filtering token. See TokenFilter
finding similar documents using termvectors 191
FlagsAttribute 123
Flash. See Adobe Flash
Formatter 271
FragmentsBuilder 277
FrenchAnalyzer 263
frequency factor formula 88
FSDirectory 292, 354, 437

open 56
open method 26
seeing open files 367

fsync 69
Fuller, Robert 392
function queries 185–189

boosting by recency 187
using field cache 187

FuzzyLikeThisQuery 284
FuzzyQuery 100, 281, 284, 323, 355

formula 101
minimumSimilarity 355
prohibiting 215

G

GermanAnalyzer 262
Glouser, Grant 381
Google

alternative word suggestions 131
as model for basic search features 10
definitions 294

Google Analytics 18
Google Enterprise Connector Manager 12
GradientFormatter 271
Grails search plugin 19
GreekAnalyzer 262
Grub 12
GZIP compression, extracting text from 237

H

Hadoop, creation of 9
Harwood, Mark 268, 283, 299
hasDeletions 41
wrapped as query 184 Hatcher, Erik 338

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

476 INDEX

Heritrix 12
Hibernate Search, denormalization 34
hierarchical organizational schemes 4
HighFreqTerms 323
Highlighter

compared to FastVectorHighlighter 277
Encoder 271
faster alternative 275
Formatter 271
Fragmenter 269
highlighting search results 273
Scorer 270
setMaxDocCharsToAnalyze 274
TokenSources 269
using CSS 272

highlighting
query terms 268, 273–274
using CSS 268
vs. dynamic fragmenting 268

HightlightIt 272
Hoschek, Wolfgang 298
HTML

cookie 84
extracting text from 235, 237
meta tag 144
parsing 114

HtmlParser 239
HTTP headers, indexing Last-Modified

header 52
HTTP request, content type 144
HttpServletRequest 219
Humphrey, Marvin 334, 336

I

I18N. See internationalization
IDF 87, 183
images, extracting text from metadata 237
Index

NOT_ANALYZED 160
with field cache 154

NOT_ANALYZED_NO_NORMS 160
with field cache 154

index
accessing over remote file systems 59–60
adding input to 35–36
commits 67–69

ACID transactions 69
commitUserData 67
custom metadata 67
file syncing 67
IndexDeletionPolicy 67–68
multiple 68
rollback 68

compound file format 36
performance 355

creating 22–23
definition 11
file format 36
flexible schema 33
inverted, definition 35
merging 323
norms 50
operations 36–42
printing high frequency terms 323
replicating 18
safety after JVM, OS or machine crash 69
searching 23–25
segments 36, 433
segments file 36, 67
segments generation 36
splitting into subindexes 322
transactions 67–69

index structure, converting 436
index, inverted 437
IndexCommit 39

getUserData 68
IndexDeletionPolicy 39, 60, 67–68

example usage 68
Indexer 432

limitations 242
Indexer program 19–23
IndexFiles 427
IndexHTML 428
indexing

.del file 440

.fdt file 439

.fdx file 439

.fnm file 437

.frq file 439

.nrm file 439

.prx file 439

.tii file 438

.tis file 438

.tvdf ile 439

.tvf file 439

.tvf files 439
acquiring content 11–12
adding documents 37–39
advanced topics 64–72
analysis 35
backing up the search index 373–375
batching up deletions 65
binary documents 235
boosting 47–49
browsing tool 256
buffering and flushing 66–67
building document 12–13
two-phased 67 catchall field 372

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

477INDEX

indexing (continued)
combining multiple indexes 390
components of 11–14
compound index 435
content, acquiring 11
corruption 376

causes 376
enabling assertions 376
repairing the index 377

data structures 11
dates & times 52
debugging 63
dedicated memory indices 298
definition 11
deletes buffered in RAM 40
deletions 440
directory structure 432
disk usage formula 364
disk usage over time 364
document

analyzing 13
building 12
indexing 14

extract text 34
extracting text 242
file descriptor usage 366
file descriptors 436

usage while merging 436
file view with Luke 261
flushing 66

by deletion count 66
by document count 66
by RAM usage 66

format 431
incremental 434
index files 434
into RAMDirectory 57
locking 60–63

LockStressTest 61
LockVerifyServer 61
NativeFSLockFactory 61
NoLockFactory 61
SimpleFSLockFactory 61
SingleInstanceLockFactory 61
testing if an index is locked 62
unlocking an index 62
VerifyingLockFactory 61

logical steps 14
logical view 431
memory usage 370–373
merging 36, 69–72

customizing 72
formula 70
SerialMergeScheduler 72

norms 372, 439
numbers 51–52
open files over time 368
optimization 54–55

background 55
partial 54
temporary disk usage 55

RAM buffer size 369
reducing disk usage 363–365
removing documents 39–41

all documents 40
by Query 40
by Term 39
reclaiming disk space 65
using IndexReader 64

removing stop words 35
replacing documents 41–42
resource consumption 363
restoring an index from backup 375
segments 433–434
setInfoStream 63
steps 34–36
storing in Berkeley DB 292
swapping 371
term dictionary 438
term frequency 439
term positions 439
term vectors 439

for use with Highlighter 274
termInfosIndexDivisor 372
the Reuters corpus 349
the Wikipedia export 349
thread and process safety 58
tools 256
transactional support using BDB 292
using threads 356–359
XML 247

using Apache Commons Digester 250–253
using SAX 248–250

indexing classes 25–28
IndexMergeTool 323
IndexReader 155, 210, 283, 298, 365, 411–412, 417

acting as a writer 65
creation 81
deleting documents with 64
getTermFreqVector 192, 198
listCommits 68
multiple readers on same index 58
opened in Zoie 418
perform deletions 64
point in time searching 58, 67
point in time view 82
read-only 354
reload frequently 415
multifile index structure 432 reopen 82, 348, 362, 369, 415, 423

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

478 INDEX

IndexReader (continued)
reopening after commit 66
replace only when required 346
retrieving term vectors 192
setNorm 50
sharing across threads 59
thread-safety 58, 356
undeleteAll 65
verify documents 38
with IndexWriter on same index 58

IndexReaderDecorator 414, 421
IndexReaderFactory 418
IndexReaderWarmer 422
IndexSearcher 38, 301, 316, 362, 431

benefit from caching 184
close 362
compare to MultiSearcher 189
compute scores per hit 157
creation 81
introduction 28
opening from a directory 81
paging through results 84
passing custom Collector 213
purpose 75–76
reopening 360
search 360
searching 82
setDefaultFieldSortScoring 156
thread-safety 356
using 80–86

IndexSplitter 322
IndexWriter 140

addDocument 35, 37, 72, 349, 431
addDocument(Document,Analyzer) 37
addDocument(Document) 37
addIndexes 69, 352
addIndexesNoOptimize 57, 352
Analyzer instance 113
close 40, 66, 358

time required 348
commit 40, 66–67, 356, 362, 415, 422
constructors 39
default RAM buffer size 66
deleteAll 40
deleteDocuments 39, 72
deleteDocuments(Query) 40
deleteDocuments(Query[]) 40
deleteDocuments(Term) 39
deleteDocuments(Term[]) 39
DISABLE_AUTO_FLUSH 66
expungeDeletes 65, 71
getMaxFieldLength 53
getReader 54, 348
getReader for near-real-time search 86, 422

introduction 26
inverted index 437
isLocked 62
making changes to an index 335
maxBufferedDocs 349
maxDoc 41
mergeFactor 70, 351
multifile index 435
numDocs 41
optimize 54, 66, 352, 365
partial optimize 352, 369
per-document analysis 113
prepareCommit 68, 356
reopening 346
rollback 67, 358
setIndexReaderWarmer 422
setInfoStream 63
setInfoStream, field truncation 53
setMaxBufferedDocs 351
setMaxFieldLength 53
setMaxMergeDocs 71
setMergedSegmentWarmer 349
setMergeFactor 71
setRAMBufferSizeMB 351, 369
setSimilarity 49
setUseCompoundFile 36, 351, 435
sharing across threads 59
steps during commit 67
thread-safety 356
unlock 62
updateDocument 349
updateDocument(Term, Document,

analyzer) 41
updateDocument(Term, Document) 41
waitForMerges 72

IndexWrter 365
information

explosion, dealing with 4–6
overload 6
specific, locating quickly 4

information retrieval. See IR
InputStream 242
INSO, filters 253
Installing Lucene 426–430
InstantiatedIndex 298
InstantiatedIndexWriter 298
intelligent agent, creating 6
internationalization 144
InvalidTokenOffsetException 269
inverse document frequency. See IDF
inverted index. See index, inverted
InvIndexer 335
IR 6

definition 6

handing off to Lucene to index 35 library vs. search engine 6

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

479INDEX

ISYS file readers 253
iTunes search feature 5

J

J2ME 129
JaroWinkler, distance metric for spell

correction 281
Java

tokenizing 386
Unicode escape sequences 146

Java 2 Micro Edition. See J2ME
Java C Compiler. See JCC
Java class files, extracting text from 237
Java JAR files, extracting text from 237
Java Management Extensions. See JMX
Java Native Interface. See JNI
Java Runtime Environment. See JRE
javac, compile with UTF-8 encoding 146
JavaCC, building Lucene 429
JavaServer Page. See JSP
JCC 328
JConsole used by Zoie 420
JEDirectory 292
Jetty 424
JFlex 108, 128

building Lucene 429
usage in SIREn 399

JMX 419
used by Zoie 419

JNI 292
Jones, Tim 205
JRE 56, 256
JRuby 339

accessing Lucene from 327
JSP 302
JVM

heap size 371
seeing garbage collection details 371
-server switch 346

Jython 341

K

Katta, sharding and replication 18
KeepOnlyLastCommitDeletionPolicy 68, 374
KeyView filters 253
keyword analyzer 143
KeywordAnalyzer 46, 127, 143, 154
KeywordTokenizer 118
KinoSearch 334

differences vs Lucene 335
Krugle 381–391

Krugle.org 381
Krugler, Ken 381
KStem 138

L

language detection 149
Last.fm 393
lemmatization 110
LengthFilter 118
letter ngrams used by spellchecker 278
LetterTokenizer 118, 125, 130
Levenshtein

distance 100
distance metric for spell correction 281

LineDocSource 350, 352
LinkedIn 393, 407, 414
LoadFirstFieldSelector 201
local wrapper port, definition 327
LockFactory 376
locking

during indexing 60–63
write.lock file 62

LockObtainFailedException 375
LockStressTest 61
LockVerifyServer 61
LogByteSizeMergePolicy 70

setMaxMergeDocs 71
setMaxMergeMB 71
setMergeFactor 71
setMinMergeMB 71

LogDocMergePolicy 70–71
LowerCaseFilter 35, 118, 125, 399
LowerCaseTokenizer 115, 118, 125, 139
lowercasing, order may matter 126
lsof 366
Lucene

access from .NET 331
access from C/C++ 328
access from Perl 334
adding search to apps 7
advantages over other search apps 6
analyzers, built-in 13
API, introduction 6
backing up the search index 373
backwards compatibility 346
building from source 429
capabilities 7
community 9
content model 32–34
demonstration applications 427
developers 9
documentation 427
downloading 426
enterprise appliance 383 fitting into app 18

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

480 INDEX

Lucene (continued)
flexible schema 33
history 7–9
index 11
integration of 10
introduction 6–9
release history 7
sample application 19–25
sample indexing application 19–23
sample searching application 23–25
search models 16
using from PHP 339
using from Python 340
using from Ruby 337
vs. search engine or web crawler 7
website 6
wiki 7

Lucene ports 325–343
Lucene.Net 331–334

API compatibility 332
index compatibility 334
performance 332

LUCENE_24 21
LUCENE_29 21
Lucy 336
Luke 51, 64, 256–262, 429

Analyzer Tool 261
browsing by term 258
browsing term vectors 259
Custom Similarity 262
document browsing 257
editing documents 259
Hadoop Plugin 262
indexing file view 261
Overview tab 257
scripting with JavaScript 262
search explanation 260
searching 259
searching with QueryParser 260
viewing synonyms 296
viewing term statistics 262

LuSQL, denormalization 34

M

Mac OS X
open file limit 366
search feature 4
Spotlight 5

Mannix, Jake 407
MAP 460
MapFieldSelector 201
MappingCharFilter 146
MatchAllDocsQuery 101, 178

Maven 2, used by Tika 240
maxDoc vs. numDocs 41
MaxFieldLength

UNLIMITED 38
UNLIMITED or LIMITED 53

MD5, reducing field cache memory usage 390
mean average precision. See MAP
mean reciprocal rank. See MRR
MemoryIndex 298
mergeFactor 348, 355, 365, 368

performance impact 351
MergePolicy 36, 71, 322, 349

avoiding large segments 322
MergeScheduler 36, 72
merging

LogByteSizeMergePolicy 70
LogDocMergePolicy 70
waiting for merges to finish 72

Metadata, Tika class 236
Metaphone 129
Microsoft Excel, extracting text from 235, 237
Microsoft Office 2007, extracting text from 237
Microsoft Outlook, extracting text from 235, 237
Microsoft PowerPoint, extracting text from 235,

237
Microsoft Visio, extracting text from 235, 237
Microsoft Word

extracting text from 235, 237
parsing 114

MIDI files, extracting text from 237
Miller, George and WordNet 294
MMapDirectory 56, 354
Montezuma 338
MoreLikeThis 283
MoreLikeThisQuery 195
MP3 audio, extracting text from tags 237
MRR 460
MultiFieldQueryParser 165–166

default operator 166
interations with Analyzer 167

multifile index, creating 435
MultiPassIndexSplitter 322
MultiPhraseQuery 136, 153, 163–165

QueryParser 165
slop 164

MultiSearcher 189, 316, 424
multithreaded searching. See ParallelMulti-

Searcher

N

native port, definition 326
native2ascii, Java tool 146
used for browsing facets 411 NativeFSLockFactory 61, 375

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

481INDEX

near-real-time reader 360
near-real-time search 54, 84, 422

avoiding commit 67
introduction 54
reducing turnaround time 348

Networked File System. See NFS
newBooleanQuery 214
newFuzzyQuery 215
newMatchAllDocsQuery 215
newMultiPhraseQuery 215
newPhraseQuery 214
newPrefixQuery 215
newRangeQuery 215
newTermQuery 214
newWildcardQuery 215
NFS 59

sharing index over 68
used for indexing 59

NGramTokenizer 279
NIOFSDirectory 56, 354
NoLockFactory 61
non-English language analysis 144
normalization

field length 87
query 87

norms
changing after indexing 323
high memory usage 50
impact on disk usage 364
omitting 50

NullFragmenter 269
numDocs vs. maxDoc 41
numeric fields

filtering during search 179
in field cache 154

numeric range queries 216
NumericField 51–52, 92, 218, 390

filtering during searching 179
precisionStep 52
setDoubleValue 51
setIntValue 52
setLongValue 52
sorting 160

NumericPayloadTokenFilter 226
NumericRangeFilter 51, 177, 179
NumericRangeQuery 51, 92, 179

created by QueryParser 217
creation from QueryParser 216
precisionStep 179

Nutch 12, 383
creation of 9
Explanation 89
sharding and replication 18
shingles 139

O

O’Leary, Patrick 308
OfficeParser 239
OffsetAttribute 123, 140

endOffset 140
OLE 34
Open Office, extracting text from 235
open source software, judging success 9
OpenBitSet, used by Filter 223
OpenDocument files, extracting text from 237
OpenSolaris, open file limit 366
optimize 355
Oracle/Lucene integration, denormalization 34
OS, I/O cache 354
Outlook. See Microsoft Outlook
OutOfMemoryError 370
OutOfMemoryException 375
OutputStream 239

P

paging through results 84
ParallelMultiSearcher 191, 316, 390
Parr, Terr 386
ParseContext 245
ParseException 215
parsing 77, 79

query expressions. See QueryParser
QueryParser method 79
versus analysis 114

ParsingReader 246
partitioning indexes 316
PayloadAttribute 123, 226
PayloadHelper 226
PayloadNearQuery 230
payloads 225–230, 398

access via TermPositions 230
and SpanQuery 230
constructors 226
during analysis 226–227
during searching 227–230
example uses 225
usage in SIREn 392
used by SIREn 400

PayloadTermQuery 227, 230
PDF 237

See alsoAdobe PDF
PDFBox 247
PDFParser 239
PerFieldAnalyzerWrapper 127, 143
performance tuning 345–355

best practices 346
increasing indexing throughput 349–353
NutchDocumentAnalyzer 149 issues with WildcardQuery 100

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

482 INDEX

performance tuning (continued)
Java profiler 346
managing resources 363–373
reducing disk usage 363–365
reducing file descriptor usage 366
reducing index to search delay 348
reducing memory usage 370
reducing search latency 353–355
testing approach 347
working with threads 355

indexing 356
searching 360

Perl, tokenizing 386
per-segment searching, field cache 155
PersianAnalyzer 263
PHP Bridge 340
PhraseQuery 43, 165, 277, 388, 400

contrasted with SpanNearQuery 173
converting to SpanNearQuery 214
forcing term order 220
from QueryParser 99
multiple terms 98
scoring 98
slop 389
slop factor 96
with synonyms 135

PipedReader 246
PipedWriter 246
plain text, detecting character set 237
PLucene 335
Porter stemmer. See Porter stemming algorithm
Porter stemming algorithm 138
Porter, Dr. Martin 138, 264
PorterStemFilter 35, 118, 138, 197
ports

acts_as_solr 338, 342
Beagle 332, 341
choosing 328
CLucene 328
Ferret 337
JCC 328
Jython 341
KinoSearch 334
Lucene.Net 331
Lucy 336
native 326
other Perl options 337
other Python options 341
PHP 339
PHP Bridge 340
PLucene 335
PyLucene 340

JCC 340
Ruby on Rails 338

SolForrest 343
SolJava 342
SolJSON 342
SolPerl 342
SolPHP 342
SolPython 341–342
Solr 342
Solr.pm 342
SolrJS 343
Solrnet 343
solr-ruby 337
SolrSharp 343
SolRuby 342
trade-offs 327
types of 326
types of ports 326–327
Zend Framework 339

PositionalPorterStopAnalyzer 138
PositionBasedTermVectorMapper 199
PositionIncrementAttribute 123–124

setPositionIncrement 124
positionIncrementGap 245
PowerPoint. See Microsoft PowerPoint
PrecedenceQueryParser 323
precision, definition 14
PrefixFilter 177, 183
PrefixQuery 93, 323
PrintStream 155, 157
probabilistic model 16
Process Monitor 366
properties file, encoding 147
ps Unix process monitor 357
pure Boolean model 16
PyLucene 292, 340

API compatibility 341
Python, tokenizing 386

Q

queries, built-in 90
Query 75, 77, 195, 411, 431

contrib queries 283–285
creating from Filter 224
expressing with XML 300
produced by XmlQueryParser 300
rewrite 202

used for highlighting 270
starts with 93
toString 102, 142
turning into a Filter 180
types 29
See also QueryParser

query
building 15
SolColdFusion 343 creating from filter 184

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

483INDEX

query (continued)
flexible, creating 4
rewrite 355
searching 16
toString 355

query expression. See QueryParser
QueryAutoStopWordAnalyzer 263
QueryBuilder 320
QueryBuilderFactory 305
QueryFilter 290

as security filter 181
querying 75
QueryNodeProcessor 320
QueryParser

analysis 78, 114
analyzer choice 114
analyzing all text 323
and NumericField 104
and SpanQuery 177
Boolean operators 105
combining with another Query 90
combining with programmatic queries 109
creating FuzzyQuery 106
creating MatchAllDocsQuery 107
creating PhraseQuery 99, 105
creating SpanNearQuery 220
creating TermQuery 103
creating WildcardQuery 104
date parsing locale 219
date ranges 218
default field name 79
embedding wildcard and fuzzy queries inside

phrases 323
escape characters 102
expression examples 80
expression syntax 80
extending 214–221
field selection 107
flexible 320
getBooleanQuery 215
getFieldQuery 215, 220
getFuzzyQuery 215
getPrefixQuery 215
getRangeQuery 215
getWildcardQuery 215
grouping expressions 107
handling numeric ranges 216
handling operator precedence 323
introduction 15
Keyword fields 142
newRangeQuery 218
one analyzer applied 140
overriding Query construction by type 214
producing MultiPhraseQuery 165

purpose 75
query on unanalyzed field 141
setDateResolution 218
setLocale 220
setting boost factor 108
subclassing 216
supporting span queries 306
surround contrib module 177
term range queries 103
testing SynonymAnalyzer 136
tradeoffs 108
using 79
using ParseException for error handling 214
version compatibility 79
with span queries 177

QueryTemplateManager 301
QueryTermScorer 270
QueryWrapperFilter 177, 180, 182–183, 221

R

RAID array 346
RAMDirectory 57, 292, 295, 415, 423, 437
RangeFilter 304
RDF 292, 392

creating the Web of Data 394
definition 394
triplestores 392

ReadTokens task 352
recall 459

definition 14
RecencyBoostingQuery 188
RegexFragmenter 270
RegexQuery 285
regular expressions. See WildcardQuery
relational database 392
relevance 83
remote file systems 59–60
Remote Method Invocation. See RMI
remote procedure call. See RPC
remote searching 316–320
RemoteSearchable 316
RemoteSearcher 424
removing common terms. See stop words
Representational State Transfer. See REST
Resource Description Framework. See RDF
REST 383
ReutersContentSource 349
reverse native port, definition 327
ReverseStringFilter 263–264
Rich Text Format. See RTF
RMI 424

searching via 316
robocopy, for hot backups of an index 374
prohibiting expensive queries 215–216 RPC 424

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

484 INDEX

RSolr 338
rsync, for hot backups of an index 374
RTF 235

extracting text from 235, 237
Ruby, tokenizing 386
RussianAnalyzer 263

S

Samba file system, used for indexing 59
SAX 239

parsing using 248
scaling

index replication 18
index sharding 18

schema, flexible 33
SCM 383
SCMI 383
score 75
ScoreCachingWrapperSource 212
ScoreDoc 75, 412, 431
ScoreOrderFragmentsBuilder 277
Scorer 270, 402

score 210
scoring 86

formula 86
raw score 87

scrolling. See paging
search

administration options 17
building query 15
latency 353
latency vs. throughput 353
logs, for load testing 354
pervasiveness of 4
quality metrics 14
reopening searcher with threads 360
resource consumption 363
results

boosting 15
presentation 14
rendering 16

searching query 16
span queries 168–177
using threads 360–363

search application
architecture 10
baseline requirements 10
components 9–19

search engine
administration interface 17
analytics interface 17
components of 14–16
result presentation 14

spell correction 15
UI 14
vs. Lucene 7

search model
probabilistic 16
pure Boolean 16
vector space 16

search within search, using Filters 177
Searchable 191, 316, 412
SearchClient 317
Searcher program 23–25
SearcherManager 360

get 362
maybeReopen 362
release 362
warm 363

SearchFiles 427
searching

advanced user interfaces 299
API 75
assigning constant scores 184
automatically testing index coverage 389
boosting by sub-query 284
boosting specific term occurrences 225
by multiple terms 284
by regular expression 285
catchall field 166
custom filters 221
custom scoring 185
custom sorting 205–210
date ranges 218
dealing with common terms 384
dedicated memory indices 298
definition 14
example advanced scenario 74
explanation with Luke 260
file descriptor usage 366
filtering 177–185

overview 177
for similar documents 192, 283
handling a search timeout 202
highlighting 273
indexes in parallel 191
multiple indexes 189
numeric ranges 216
on multiple fields 166–168
open files over time 368
per-segment 155, 187
remote indexes 316, 320
removing duplicate documents 285
sorting search results 155–163
source code 381–391
spatial search 308
stopping a slow search 201
scaling 18 unanalyzed fields 141

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

485INDEX

searching (continued)
URIs 400
using custom Collector 210–214
using IndexSearcher 82
using XSL to transform requests 302
with Luke 259

searching classes 28–29
SearchServer 316
security filtering 181

mixed static and dynamic 185
SegmentReader 362, 422
SegmentTermEnum, next 405
Sekiguchi, Koji 275
Semantic Information Retrieval Engine. See SIREn
semantic web 392
semistructured data 395
SerialMergeScheduler 72, 356
SetBasedFieldSelector 201
setMaxBufferedDeleteTerms 66
setRAMBufferSizeMB 66
shard, definition 18
shingles

no stop words discarded during indexing 267
See also analysis, shingles
used by Nutch 149

Similarity 49, 88, 323
improving default relevance 323
lengthNorm 49

similarity between documents. See term vectors
similarity scoring formula 86
Simple API for XML. See SAX
SimpleAnalyzer 111–112, 115–116, 141

discards numbers 51
steps taken 127

SimpleDateFormat 305
SimpleFragmenter 269
SimpleFSDirectory 55, 432
SimpleFSLockFactory 61
SimpleHTMLEncoder 271
SimpleHTMLFormatter 271
SimpleSpanFragmenter 270
SingleInstanceLockFactory 61
sinks 120
SinkTokenizer 118
SinusoidalProjector 311
SIREn 392

benchmarks 403–405
BooleanQuery performance compared to

Lucene 405
data model 397
data preparation 399–400
postings format compare to Lucene 404
searching entities 400–403
semistructured search 392, 403–406

slop 96
factor defined 98
with MultiPhraseQuery 164
with SpanNearQuery 173

SmartChineseAnalyzer 146, 148, 262
SnapshotDeletionPolicy

limitations 375
used for index backups 374

Snowball stemmer 138
SnowballAnalyzer 145, 263–264
solid-state disk. See SSD
SolPerl 337
SolPHP 339
SolPython 341
Solr 12, 342

creating analysis chain 128
Ruby response format 338
sharding and replication 18
SIREn integration 393, 403

Solr.pm 337
Solr.QParser 403
Solr.QParserPlugin 403
Sort 162

INDEXORDER 159
RELEVANCE 158

SortedTermVectorMapper 199
SortField 162, 209

types 162
sorting

accessing custom values 209–210
by a field 160
by field value 156–158
by geographic distance 205–206
by index order 159
by multiple fields 161
by relevance 158
custom method 205–210
field type 163
geographic distance formula 207
reversing 161
search results 155–163
specifying locale 163

SortingExample 156
Soundex. See Metaphone
source code management interface. See SCMI
source code management. See SCM
span queries 168–177

access to payloads 168
combining 175
dumpSpans method 170
excluding matches 174
matching near one another 173
matching near the field start 172
matching single term 170
SirenPayloadFilter 393, 399 phrase within phrase matching 176

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

486 INDEX

span queries (continued)
QueryParser 177
turning into a filter 181

SpanFirstQuery 169, 172
SpanGradientFormatter 271
SpanNearQuery 106, 169, 173, 220, 230, 306

contrasted with PhraseQuery 173
deriving from PhraseQuery 214
inOrder flag 173
slop 173

SpanNotQuery 169, 174–175
SpanOrQuery 169, 175, 307
SpanQuery 43, 230, 277, 285

aggregating 175
and QueryParser 177
getSpans 230
visualization utility 171

SpanQueryFilter 177, 181
bitSpans 181

SpanRegexQuery 285
SpanScorer 230, 270
SpanTermQuery 168–170, 172, 230, 307
SPARQL query language 393
SPARQLParser 403
SPARQLParserPlugin 403
SPARQLQueryAnalyzer 393, 403
SpecialsAccessor 223
SpecialsFilter 222, 224
spell correction 277–282

generating suggestions 278–279
ideas for improvement 281
offering 15
picking best candidate 280–281
presenting to user 281

SpellChecker 279
setAccuracy 281
suggestSimilar 281

Spencer, David 277, 294
spider. See web crawler
Spolksy, Joel 144
Spotlight search 5
Spring 408
Spring-RPC 424
SSD 346
Stale NFS file handle exception 60
StandardAnalyzer 127–128, 351–352

common choice 128
core analyzers 427
example 111
steps taken 112
with CJK characters 146, 148
wrapped with additional filter 133

StandardFilter 118, 126
StandardQueryParser 320
StandardTokenizer 118, 126

stemmers, SnowballAnalyzer family 145
stemming analyzer 264
stop words 27, 384

default 127
removing 35

StopAnalyzer 51, 111–112, 125, 127, 264
StopFilter 35, 118, 125, 127

setEnablePositionIncrements 138
StopWordFilter 399
Store, YES 160
stored fields, custom loading 200
String.compareTo, compares by UTF16 code

unit 92
StringDistance, getDistance 281
StringUtils 157
Subversion

building Lucene from sources 429
checkout out contrib sources 286

swappiness, controlling swapping on Linux 371
SweetSpotSimilarity 323
SynLookup 295
SynonymAnalyzer 117, 131–138, 297
SynonymAnalyzerViewer 297
SynonymEngine 297
synonyms

injecting with MultiPhraseQuery 165
tradeoffs for indexing and searching 136
with PhraseQuery 136
See also WordNet

Syns2Index 295
System, nanoTime 346

T

Tan, Kelvin 289
TAR Archives, extracting text from 235, 237
tar, for hot backups of an index 374
Task Manager 366

measuring page faults 371
process monitor 357

TeeSinkTokenFilter 120
TeeTokenFilter 118
Term 198
term

definition 110
frequency 87
navigation with Luke 258

term vectors 124, 191–199
aggregating 196
browsing with Luke 259
computing angles between 197
computing archetype document 195
custom loading 198
example usage 44
formula for angle 197
Stellent document filters. See INSO filters introduction 44

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

487INDEX

term vectors (continued)
regenerating from index 323
storing positions and offsets 192

TermAttribute 123
TermFreqVector 192
TermPositions 230
TermPositionVector 192
TermQuery 90, 215, 388

combining 402
contrasted with SpanTermQuery 168
in keywords field 182
most basic Query type 76
with synonyms 135

TermRangeFilter 177–178, 304
includeLower 178
includeUpper 178
open-ended ranges 179
with caching 184

TermRangeQuery 91, 191, 323, 355
created by QueryParser 217

terms, vs. tokens 116
TermsFilter 180, 284

addTerm 284
TermVectorAccessor 323
TermVectorMapper 192, 198, 323, 355

isIgnoringOffsets 199
isIgnoringPositions 199
map 199
setDocumentNumber 199
setExpectations 199

ThaiAnalyzer 263
The Grinder load testing tool 353
ThreadedIndexWriter 356, 359
Tika 35

alternatives 253
built-in text extraction tool 240
customizing parser selection 246
getFileMetadata 244
installing 240
introduction 236
limitations 246
logical design 238
metadata extraction 236
modular design 240
parse 245
parser implementations 236
using UNIX pipes 241
utility class 245

TikaConfig 246
getParsers 246

TikaException 245
TikaIndexer 242
TimeExceededException 201–202
TimeLimitingCollector 201

limitations 202

TokenFilter 117, 399
additional 262
importance of order 125
shingles 384
splitting source code terms 387

TokenFilters, for creating payloads 226
tokenization, definition 110
Tokenizer 117–118

additional 262
TokenOffsetPayloadTokenFilter 226
TokenRangeSinkTokenizer 263–264
tokens

attributes 123
flags 120
offset 120
offsets 124
payload 120
positionIncrement 120
term 120
type 120, 130

definition 13, 110
endOffset 269
introduction 35, 116–117
offsets 124
offsets used for highlighting 269
position increment 117
same position 117
startOffset 269
type 124
visualizing positions 137
vs. terms 116

TokenSources 269
getAnyTokenStream 274

TokenStream 115, 117–118
architecture 117
buffering 119
incrementToken 123
used for highlighting 269

TokenTypeSinkTokenizer 263–264
Tomcat, demo application 428
tool, Luke 256
top Unix process monitor 357
top, measuring page faults 371
TopDocs 75, 82, 209
TopFieldCollector 211
TopFieldDocs 209
TopScoreDocCollector 202, 211
Toupikov, Nickolai 392
triplestore, searching the Web of Data 393
troubleshooting 430
truncation. See field truncation
Tummarello, Giovanni 392
TupleAnalyzer 393, 399
TupleQuery 393

addClause 402

Token 123 TupleScorer 402

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

488 INDEX

TupleTokenizer 393, 399
two-phased commit 67
TypeAsPayloadTokenFilter 125, 226
TypeAttribute 123

U

UI novel, creating 6
unanalyzed fields, searching 141
Unicode 144
Unix, deletion of open files 365
URINormalisationFilter 393, 399
user interface. See UI
UTF-8 144

V

Vajda, Andi 292, 340–341
value 45, 47
ValueSource 185
ValueSourceQuery 185
van Klinken, Ben 328
van Rossum, Guido 340
Vector Space Model 16, 43
VerifyingLockFactory 61
Version 21
Visio. See Microsoft Visio
vmstat, measuring page faults 371

W

W3C 393
Wall, Larry 334
Wang, John 407
WAVE Audio, extracting text from sampling

metadata 237
WeakHashMap

for filter caching 184
keyed by IndexReader 154

Web 3.0 392
web application

CSS highlighting 272
demo 428

web application server, thread pool 360
web crawler

definition 11
open source 11
vs. Lucene 7

Web of Data 393
Wettin, Karl 298
WhitespaceAnalyzer 51, 111–112, 127–128
WhitespaceTokenizer 118
Wikipedia

document source 349

WikipediaTokenizer 264
WildcardQuery 99, 277, 323

inefficiency 396
prohibiting 215

Windows Explorer 371
Windows Server 2003, open file limit 366
Windows, deletion of open files 365
with payloads 225
Word. See Microsoft Word
WordNet 294–297

adding synonyms during analysis 297
building synonym index 295
example synonyms 297

WordNetSynonymEngine 297
write.lock 376
WriteLineDoc 349
Writer 239

X

XHTML 238
used by Tika 238

XML
encoding 144
extracting text from 235, 237
parsing 114

XmlQueryParser 90, 299
XSL 300

Z

Zend Framework 339
ZIP Archives, extracting text from 237
ZIP files, extracting text from 235
Zoie 407, 414

batchDelay 419
batchSize 419
compared to Lucene’s built-in NRT search 422
data consumer, definition 416
data provider, definition 416
disk index 417
fault tolerance 416
indexing requests 419
mapping Lucene’s docID to application UID 415
near-real-time 419
RAM indexes 417
static ranking of people 415
unique IDs 419

ZoieIndexable 419
ZoieIndexableInterpreter 419
ZoieIndexReader 414, 422
ZoieSystem 423–424
indexing 351

Licensed to theresa smith <anhvienls@gmail.com>
www.it-ebooks.info

http://www.it-ebooks.info/

W hen Lucene fi rst appeared, this superfast search engine
was nothing short of amazing. Today, Lucene still delivers.
Its high-performance, easy-to-use API, features like nu-

meric fi elds, payloads, near-real-time search, and huge increases
in indexing and searching speed make it the leading search tool.

And with clear writing, reusable examples, and unmatched ad-
vice, Lucene in Action, Second Edition is still the defi nitive guide
to eff ectively integrating search into your applications. Th is
totally revised book shows you how to index your documents,
including formats such as MS Word, PDF, HTML, and XML.
It introduces you to searching, sorting, and fi ltering, and covers
the numerous improvements to Lucene since the fi rst edition.
Source code is for Lucene 3.0.1.

NEW in the Second Edition
Performing hot backups
Using numeric fi elds
Tuning for indexing or searching speed
Boosting matches with payloads
Creating reusable analyzers
Adding concurrency with threads
Four new case studies
Much more!

Michael McCandless is a Lucene PMC member and committer
with more than a decade of experience building search engines.
Erik Hatcher and Otis Gospodnetic are the authors of the fi rst
edition of Lucene in Action and long-time contributors to Lu-
cene, Solr, Mahout, and other Lucene-based projects.

For online access to the authors and a free ebook for owners
of this book, go to manning.com/LuceneinActionSecondEdition

$49.99 / Can $62.99 [INCLUDING eBOOK]

Lucene in Action Second Edition
Michael McCandless Erik Hatcher Otis Gospodnetic

Foreword by Doug Cutting

JAVA

“...brings you up to speed.”
 —From the Foreword by
 Doug Cutting, Founder of
 Lucene, Nutch, and Hadoop.

“Th is new edition has it all.”
 —Chad Davis, Blackdog Soft ware
 Author of Struts 2 in Action

“Very readable, full of
 expert tips.”
 —Rick Wagner, Acxiom Corp.

“Elegant, and easy to read—
 just like Lucene itself.”
 —Shai Erera
 IBM Haifa Research Labs

“For a Lucene developer,
 it’s required reading.”
 —Stuart Caborn, Th oughtworks

M A N N I N G

SEE INSERT,

,

www.it-ebooks.info

http://www.it-ebooks.info/

	Lucene in Action, 2e
	brief contents
	contents
	foreword
	preface
	preface to the first edition
	From Erik Hatcher
	From Otis Gospodnetic´

	acknowledgments
	Michael McCandless
	Erik Hatcher
	Otis Gospodnetic´

	about this book
	Roadmap
	What’s new in the second edition?
	Who should read this book?
	Code examples
	Why JUnit?
	Code conventions and downloads
	Our test data

	Author Online
	About the title
	About the cover illustration

	JUnit primer
	Assertions
	JUnit in context
	Testing Lucene
	Mock objects

	about the authors
	Chapter 1 Meet Lucene
	1.1 Dealing with information explosion
	1.2 What is Lucene?
	1.2.1 What Lucene can do
	1.2.2 History of Lucene

	1.3 Lucene and the components of a search application
	1.3.1 Components for indexing
	1.3.2 Components for searching
	1.3.3 The rest of the search application
	1.3.4 Where Lucene fits into your application

	1.4 Lucene in action: a sample application
	1.4.1 Creating an index
	1.4.2 Searching an index

	1.5 Understanding the core indexing classes
	1.5.1 IndexWriter
	1.5.2 Directory
	1.5.3 Analyzer
	1.5.4 Document
	1.5.5 Field

	1.6 Understanding the core searching classes
	1.6.1 IndexSearcher
	1.6.2 Term
	1.6.3 Query
	1.6.4 TermQuery
	1.6.5 TopDocs

	1.7 Summary

	Part 1 Core Lucene
	Chapter 2 Building a search index
	2.1 How Lucene models content
	2.1.1 Documents and fields
	2.1.2 Flexible schema
	2.1.3 Denormalization

	2.2 Understanding the indexing process
	2.2.1 Extracting text and creating the document
	2.2.2 Analysis
	2.2.3 Adding to the index

	2.3 Basic index operations
	2.3.1 Adding documents to an index
	2.3.2 Deleting documents from an index
	2.3.3 Updating documents in the index

	2.4 Field options
	2.4.1 Field options for indexing
	2.4.2 Field options for storing fields
	2.4.3 Field options for term vectors
	2.4.4 Reader, TokenStream, and byte[] field values
	2.4.5 Field option combinations
	2.4.6 Field options for sorting
	2.4.7 Multivalued fields

	2.5 Boosting documents and fields
	2.5.1 Boosting documents
	2.5.2 Boosting fields
	2.5.3 Norms

	2.6 Indexing numbers, dates, and times
	2.6.1 Indexing numbers
	2.6.2 Indexing dates and times

	2.7 Field truncation
	2.8 Near-real-time search
	2.9 Optimizing an index
	2.10 Other directory implementations
	2.11 Concurrency, thread safety, and locking issues
	2.11.1 Thread and multi-JVM safety
	2.11.2 Accessing an index over a remote file system
	2.11.3 Index locking

	2.12 Debugging indexing
	2.13 Advanced indexing concepts
	2.13.1 Deleting documents with IndexReader
	2.13.2 Reclaiming disk space used by deleted documents
	2.13.3 Buffering and flushing
	2.13.4 Index commits
	2.13.5 ACID transactions and index consistency
	2.13.6 Merging

	2.14 Summary

	Chapter 3 Adding search to your application
	3.1 Implementing a simple search feature
	3.1.1 Searching for a specific term
	3.1.2 Parsing a user-entered query expression: QueryParser

	3.2 Using IndexSearcher
	3.2.1 Creating an IndexSearcher
	3.2.2 Performing searches
	3.2.3 Working with TopDocs
	3.2.4 Paging through results
	3.2.5 Near-real-time search

	3.3 Understanding Lucene scoring
	3.3.1 How Lucene scores
	3.3.2 Using explain() to understand hit scoring

	3.4 Lucene’s diverse queries
	3.4.1 Searching by term: TermQuery
	3.4.2 Searching within a term range: TermRangeQuery
	3.4.3 Searching within a numeric range: NumericRangeQuery
	3.4.4 Searching on a string: PrefixQuery
	3.4.5 Combining queries: BooleanQuery
	3.4.6 Searching by phrase: PhraseQuery
	3.4.7 Searching by wildcard: WildcardQuery
	3.4.8 Searching for similar terms: FuzzyQuery
	3.4.9 Matching all documents: MatchAllDocsQuery

	3.5 Parsing query expressions: QueryParser
	3.5.1 Query.toString
	3.5.2 TermQuery
	3.5.3 Term range searches
	3.5.4 Numeric and date range searches
	3.5.5 Prefix and wildcard queries
	3.5.6 Boolean operators
	3.5.7 Phrase queries
	3.5.8 Fuzzy queries
	3.5.9 MatchAllDocsQuery
	3.5.10 Grouping
	3.5.11 Field selection
	3.5.12 Setting the boost for a subquery
	3.5.13 To QueryParse or not to QueryParse?

	3.6 Summary

	Chapter 4 Lucene’s analysis process
	4.1 Using analyzers
	4.1.1 Indexing analysis
	4.1.2 QueryParser analysis
	4.1.3 Parsing vs. analysis: when an analyzer isn’t appropriate

	4.2 What’s inside an analyzer?
	4.2.1 What’s in a token?
	4.2.2 TokenStream uncensored
	4.2.3 Visualizing analyzers
	4.2.4 TokenFilter order can be significant

	4.3 Using the built-in analyzers
	4.3.1 StopAnalyzer
	4.3.2 StandardAnalyzer
	4.3.3 Which core analyzer should you use?

	4.4 Sounds-like querying
	4.5 Synonyms, aliases, and words that mean the same
	4.5.1 Creating SynonymAnalyzer
	4.5.2 Visualizing token positions

	4.6 Stemming analysis
	4.6.1 StopFilter leaves holes
	4.6.2 Combining stemming and stop-word removal

	4.7 Field variations
	4.7.1 Analysis of multivalued fields
	4.7.2 Field-specific analysis
	4.7.3 Searching on unanalyzed fields

	4.8 Language analysis issues
	4.8.1 Unicode and encodings
	4.8.2 Analyzing non-English languages
	4.8.3 Character normalization
	4.8.4 Analyzing Asian languages
	4.8.5 Zaijian

	4.9 Nutch analysis
	4.10 Summary

	Chapter 5 Advanced search techniques
	5.1 Lucene’s field cache
	5.1.1 Loading field values for all documents
	5.1.2 Per-segment readers

	5.2 Sorting search results
	5.2.1 Sorting search results by field value
	5.2.2 Sorting by relevance
	5.2.3 Sorting by index order
	5.2.4 Sorting by a field
	5.2.5 Reversing sort order
	5.2.6 Sorting by multiple fields
	5.2.7 Selecting a sorting field type
	5.2.8 Using a nondefault locale for sorting

	5.3 Using MultiPhraseQuery
	5.4 Querying on multiple fields at once
	5.5 Span queries
	5.5.1 Building block of spanning, SpanTermQuery
	5.5.2 Finding spans at the beginning of a field
	5.5.3 Spans near one another
	5.5.4 Excluding span overlap from matches
	5.5.5 SpanOrQuery
	5.5.6 SpanQuery and QueryParser

	5.6 Filtering a search
	5.6.1 TermRangeFilter
	5.6.2 NumericRangeFilter
	5.6.3 FieldCacheRangeFilter
	5.6.4 Filtering by specific terms
	5.6.5 Using QueryWrapperFilter
	5.6.6 Using SpanQueryFilter
	5.6.7 Security filters
	5.6.8 Using BooleanQuery for filtering
	5.6.9 PrefixFilter
	5.6.10 Caching filter results
	5.6.11 Wrapping a filter as a query
	5.6.12 Filtering a filter
	5.6.13 Beyond the built-in filters

	5.7 Custom scoring using function queries
	5.7.1 Function query classes
	5.7.2 Boosting recently modified documents using function queries

	5.8 Searching across multiple Lucene indexes
	5.8.1 Using MultiSearcher
	5.8.2 Multithreaded searching using ParallelMultiSearcher

	5.9 Leveraging term vectors
	5.9.1 Books like this
	5.9.2 What category?
	5.9.3 TermVectorMapper

	5.10 Loading fields with FieldSelector
	5.11 Stopping a slow search
	5.12 Summary

	Chapter 6 Extending search
	6.1 Using a custom sort method
	6.1.1 Indexing documents for geographic sorting
	6.1.2 Implementing custom geographic sort
	6.1.3 Accessing values used in custom sorting

	6.2 Developing a custom Collector
	6.2.1 The Collector base class
	6.2.2 Custom collector: BookLinkCollector
	6.2.3 AllDocCollector

	6.3 Extending QueryParser
	6.3.1 Customizing QueryParser’s behavior
	6.3.2 Prohibiting fuzzy and wildcard queries
	6.3.3 Handling numeric field-range queries
	6.3.4 Handling date ranges
	6.3.5 Allowing ordered phrase queries

	6.4 Custom filters
	6.4.1 Implementing a custom filter
	6.4.2 Using our custom filter during searching
	6.4.3 An alternative: FilteredQuery

	6.5 Payloads
	6.5.1 Producing payloads during analysis
	6.5.2 Using payloads during searching
	6.5.3 Payloads and SpanQuery
	6.5.4 Retrieving payloads via TermPositions

	6.6 Summary

	Part 2 Applied Lucene
	Chapter 7 Extracting text with Tika
	7.1 What is Tika?
	7.2 Tika’s logical design and API
	7.3 Installing Tika
	7.4 Tika’s built-in text extraction tool
	7.5 Extracting text programmatically
	7.5.1 Indexing a Lucene document
	7.5.2 The Tika utility class
	7.5.3 Customizing parser selection

	7.6 Tika’s limitations
	7.7 Indexing custom XML
	7.7.1 Parsing using SAX
	7.7.2 Parsing and indexing using Apache Commons Digester

	7.8 Alternatives
	7.9 Summary

	Chapter 8 Essential Lucene extensions
	8.1 Luke, the Lucene Index Toolbox
	8.1.1 Overview: seeing the big picture
	8.1.2 Document browsing
	8.1.3 Using QueryParser to search
	8.1.4 Files and plugins view

	8.2 Analyzers, tokenizers, and TokenFilters
	8.2.1 SnowballAnalyzer
	8.2.2 Ngram filters
	8.2.3 Shingle filters
	8.2.4 Obtaining the contrib analyzers

	8.3 Highlighting query terms
	8.3.1 Highlighter components
	8.3.2 Standalone highlighter example
	8.3.3 Highlighting with CSS
	8.3.4 Highlighting search results

	8.4 FastVectorHighlighter
	8.5 Spell checking
	8.5.1 Generating a suggestions list
	8.5.2 Selecting the best suggestion
	8.5.3 Presenting the result to the user
	8.5.4 Some ideas to improve spell checking

	8.6 Fun and interesting Query extensions
	8.6.1 MoreLikeThis
	8.6.2 FuzzyLikeThisQuery
	8.6.3 BoostingQuery
	8.6.4 TermsFilter
	8.6.5 DuplicateFilter
	8.6.6 RegexQuery

	8.7 Building contrib modules
	8.7.1 Get the sources
	8.7.2 Ant in the contrib directory

	8.8 Summary

	Chapter 9 Further Lucene extensions
	9.1 Chaining filters
	9.2 Storing an index in Berkeley DB
	9.3 Synonyms from WordNet
	9.3.1 Building the synonym index
	9.3.2 Tying WordNet synonyms into an analyzer

	9.4 Fast memory-based indices
	9.5 XML QueryParser: Beyond “one box” search interfaces
	9.5.1 Using XmlQueryParser
	9.5.2 Extending the XML query syntax

	9.6 Surround query language
	9.7 Spatial Lucene
	9.7.1 Indexing spatial data
	9.7.2 Searching spatial data
	9.7.3 Performance characteristics of Spatial Lucene

	9.8 Searching multiple indexes remotely
	9.9 Flexible QueryParser
	9.10 Odds and ends
	9.11 Summary

	Chapter 10 Using Lucene from other programming languages
	10.1 Ports primer
	10.1.1 Trade-offs
	10.1.2 Choosing the right port

	10.2 CLucene (C++)
	10.2.1 Motivation
	10.2.2 API and index compatibility
	10.2.3 Supported platforms
	10.2.4 Current and future work

	10.3 Lucene.Net (C# and other .NET languages)
	10.3.1 API compatibility
	10.3.2 Index compatibility

	10.4 KinoSearch and Lucy (Perl)
	10.4.1 KinoSearch
	10.4.2 Lucy
	10.4.3 Other Perl options

	10.5 Ferret (Ruby)
	10.6 PHP
	10.6.1 Zend Framework
	10.6.2 PHP Bridge

	10.7 PyLucene (Python)
	10.7.1 API compatibility
	10.7.2 Other Python options

	10.8 Solr (many programming languages)
	10.9 Summary

	Chapter 11 Lucene administration and performance tuning
	11.1 Performance tuning
	11.1.1 Simple performance-tuning steps
	11.1.2 Testing approach
	11.1.3 Tuning for index-to-search delay
	11.1.4 Tuning for indexing throughput
	11.1.5 Tuning for search latency and throughput

	11.2 Threads and concurrency
	11.2.1 Using threads for indexing
	11.2.2 Using threads for searching

	11.3 Managing resource consumption
	11.3.1 Disk space
	11.3.2 File descriptors
	11.3.3 Memory

	11.4 Hot backups of the index
	11.4.1 Creating the backup
	11.4.2 Restoring the index

	11.5 Common errors
	11.5.1 Index corruption
	11.5.2 Repairing an index

	11.6 Summary

	Part 3 Case studies
	Chapter 12 Case study 1: Krugle
	12.1 Introducing Krugle
	12.2 Appliance architecture
	12.3 Search performance
	12.4 Parsing source code
	12.5 Substring searching
	12.6 Query vs. search
	12.7 Future improvements
	12.7.1 FieldCache memory usage
	12.7.2 Combining indexes

	12.8 Summary

	Chapter 13 Case study 2: SIREn
	13.1 Introducing SIREn
	13.2 SIREn’s benefits
	13.2.1 Searching across all fields
	13.2.2 A single efficient lexicon
	13.2.3 Flexible fields
	13.2.4 Efficient handling of multivalued fields

	13.3 Indexing entities with SIREn
	13.3.1 Data model
	13.3.2 Implementation issues
	13.3.3 Index schema
	13.3.4 Data preparation before indexing

	13.4 Searching entities with SIREn
	13.4.1 Searching content
	13.4.2 Restricting search within a cell
	13.4.3 Combining cells into tuples
	13.4.4 Querying an entity description

	13.5 Integrating SIREn in Solr
	13.6 Benchmark
	13.7 Summary

	Chapter 14 Case study 3: LinkedIn
	14.1 Faceted search with Bobo Browse
	14.1.1 Bobo Browse design
	14.1.2 Beyond simple faceting

	14.2 Real-time search with Zoie
	14.2.1 Zoie architecture
	14.2.2 Real-time vs. near-real-time
	14.2.3 Documents and indexing requests
	14.2.4 Custom IndexReaders
	14.2.5 Comparison with Lucene near-real-time search
	14.2.6 Distributed search

	14.3 Summary

	Appendix A Installing Lucene
	A.1 Binary installation
	A.2 Running the command-line demo
	A.3 Running the web application demo
	A.4 Building from source
	A.5 Troubleshooting

	Appendix B Lucene index format
	B.1 Logical index view
	B.2 About index structure
	B.2.1 Understanding the multifile index structure
	B.2.2 Understanding the compound index structure
	B.2.3 Converting from one index structure to the other

	B.3 Inverted index
	B.4 Summary

	Appendix C Lucene/contrib benchmark
	C.1 Running an algorithm
	C.2 Parts of an algorithm file
	C.2.1 Content source and document maker
	C.2.2 Query maker

	C.3 Control structures
	C.4 Built-in tasks
	C.4.1 Creating and using line files
	C.4.2 Built-in reporting tasks

	C.5 Evaluating search quality
	C.6 Errors
	C.7 Summary

	Appendix D Resources
	D.1 Lucene knowledgebases
	D.2 Internationalization
	D.3 Language detection
	D.4 Term vectors
	D.5 Lucene ports
	D.6 Case studies
	D.7 Miscellaneous
	D.8 IR software
	D.9 Doug Cutting’s publications
	D.9.1 Conference papers
	D.9.2 U.S. Patents

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

